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A random and distributed, yet simple, algorithm is presented
to embed trees in rectangular processor arrays in the presence
of faults and manufacturing defects. One major characteristic
of the algorithm is its ability to obtain emibeddings in the presence
of defect clusters in the processor array. Another useful feature
is that the algorithm can be executed on the processor array
itself, requiring only limited interprocessor communication. The
performance of random algorithms is very difficult to analyze.
Therefore, extensive simulation experiments were conducted and
are presented in this paper. We also suggest an approach to
overlapping algorithm runs to reduce the time needed to obtain
a good embedding. The proposed algorithm can easily be ex-
tended to embed trees in hexagonal as well as other types of
ProcCessor arrays. © 1991 Academic Press, Inc.

1. INTRODUCTION

Tree machines have been shown to be suitable for solving
a large class of problems like sorting, searching, finding
cliques in graphs, graph coloring, and the general class of
divide-and-conquer algorithms. Horowitz and Zorat [5] have
observed that the binary tree is an important interconnection
network and have addressed several issues related to the use
of a binary tree in parallel computations.

Advances in VLSI technology over the last decade have
made the design and implementation of a tree machine on
a single large-area IC, or a small number of such ICs, possible.
Each IC contains a large number of processing elements and
interconnection links. As a result, the probability that one
or more of these elements will either have a manufacturing
defect or become inoperable is not insignificant. To increase
the yield and reliability of these tree machines and to allow
their use in the presence of faulty processors, two different
approaches have been proposed.

In the first approach, a tree with redundant processors and
links is implemented in such a way that spare processors can
be incorporated into the tree architecture in the event of a
manufacturing defect or fault, Such an approach toward a
fault-tolerant tree machine was proposed by Raghavendra
et al. [10]. Their scheme provides a spare node for each level
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in the binary tree, with redundant links to ensure protection
against failures. Hassan and Agarwal [4] proposed a modular
fault-tolerant tree. In their scheme, a fault-tolerant module
capable of tolerating a single fault is designed. Many copies
of the basic module when properly interconnected vield a
complete fault-tolerant binary tree. A drawback of the above
schemes is that because the switching circuitry must not be
too complex, each redundant processor has only a small set
of processors that it can replace. Consequently, as is often
the case, if there is a cluster of defects [13], it is possible to
run out of processors in a localized region while having an
ample supply of redundant processors elsewhere.

Another scheme which is better suited to handle clusters
of defects was recently proposed by Howells and Agarwal
[6]. In their scheme, spare processors, along with an elaborate
setup of switches and redundant links, are placed in qua-
sioptimal points in the layout to achi¢ve the largest possible
yield enhancement. The amount of redundant hardware
(processors, switches, and links) is optimized with respect
to a fault model and not with respect to the number of faults
actually present in individual arrays. The actual number of
faults will vary from array to array. As a result, it is possible
that too much redundancy will be provided for some arrays
with a smaller-than-estimated number of defects, or too little
for other arrays with a greater-than-estimated number of de-
fects.

In the second approach, called the embedding approach
to the incorperation of defect and fauit tolerance into tree
machines, a tree is embedded in a “host™ architecture such
as a square or hexagonal array of processors. Whenever a
processor in the host architecture becomes faulty, the
embedding is repeated to route around the fanity processors.
The embedding is accomplished by using some of the func-
tioning nodes as connecting elements (CEs) which merely
act as a conduit to pass messages between processing ele-
ments (PEs).

An important advantage of the embedding approach over
the first approach is that the host architecture is a general-
purpose array which is dynamically configured to match the
needs of the currently used algorithm. The configuration can
be changed as the algorithm changes. This flexibility is not
available in the first approach.
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A second advantage of the embedding approach is the
ease with which fault clusters can be allowed for. The scope
of redundancy in this approach is automatically global. By
contrast, elaborate structures of redundant Links and switches
are required to allow for global sparing in the first approach.

Several embedding algorithms (e.g., [2, 3, 7-9, I, 12,
14]) have already been proposed in the literature, the earliest
being the H-tree embedding [9]. Most of these algorithms
only deal with fault-free arrays. The Diogenes approach [11]
is a scheme for embedding trees in a /inear array with faulty
elements. However, the problem of embedding binary trees
in rectangular or hexagonal processor arrays in the presence
of random faults is known to be NP-complete, and hence
no ¢fficient deterministic algorithm exists,

A different approach to the embedding of tree machines
was proposed by Koren and Pomeranz [ 8] and is applicable
to partially faulty rectangular and hexagonal arrays. The
main idea behind this approach can be stated as follows:
when a subtree cannot be mapped in its original position
because of faulty elements, it is “moved™ in a predetermined
direction, until it either can be mapped successfully or cannot
be moved any more. This approach also uses CEs to route
around faulty processing elements.

In this paper, we present an algorithm which embeds bi-
nary trees in rectangular arrays in the presence of faulty pro-
cessors. The essence of the algorithm lies in its random and
distributed nature. Unlike the algorithm in [§], our algorithm
has no predetermined pattern for embedding the tree. In-
stead, it attempts to embed a given subtree in the currently
available region in a completely random manner. A node
which is specified as a root of a &-level tree chooses two
neighboring nodes, say o and 3, at random, and the algorithm
continues recursively: nodes o and 8 consider themselves as
roots of a (k — 1)-level tree. Subtrees are grown in parallel,
and the process continues until the leaves of the tree are
reached. One major characteristic of the algorithm is its abil-
ity to obtain embeddings in the face of fault clusters in the
Processor array.

The main criterion used to evaluate the quality of the
embedded tree is the maximum root-to-leaf (MRL) distance.
The MRL distance is considered an important parameter to
determine how fast a given computation will run on a tree
machine.

A second measure is the time required to find an acceptable
embedding and is motivated as follows, Clearly, when a ran-
dom algorithm is employed, we cannot expect any single
run to necessarily achieve a satisfactory (small MRL)
embedding. Consequently, the user should run the algorithm
a few times until a satisfactory embedding is obtained. The
overall expected time taken by the algorithm to obtain an
acceptable embedding is therefore an important measure of
the quality of the algorithm. This quantity can be computed
from the probability distribution of the MRL values pro-
duced by the algorithm.

Ancther measure that would be of interest is the proba-
bility that this algorithm will find an embedding on a partially
faulty array, given that at least one embedding is theoretically
possible. Unfortunately, this measure would be impractical
to obtain. As we have already pointed out, the embedding
problem is NP-hard. Given a partially faulty array, it is a
nonpolynomial problem to determine whether an embedding
is possible on that array. Consequently, it would not be prac-
tical to determine this measure.

It should be pointed out that the algorithm does not at-
tempt to minimize the area of embedding. The region of the
array over which the embedding is to take place is specified
to the algorithm, which then proceeds to use as much of it
as it finds necessary. For this reason, the processor utilization,
i.e., how many of the available processors are used, is not of
much interest since such a measure would have no practical
bearing on the performance of the algorithm, apart from
that which is already taken into account by the maximum
root-to-leaf measure.,

The rest of the paper is organized as follows. In Section
2, we present a detailed description of the algorithm. Sections
3 and 4 evaluate the algorithm’s performance when the fault
distributions are uniform and clustered, respectively. In Sec-
tion 5 we demonstrate a method for further reducing the
mean execution time. We conclude in Section 6 with an
overall evaluation of the algorithm.

2. DESCRIPTION OF THE ALGORITHM

The algorithm described below is capable of embedding
binary trees in processor arrays which contain faulty pro-
cessing elements. A few definitions for understanding the
working of the algorithm are given.

The following types of node are recognized by the algo-
rithm.

Faulty Node. A node « appears to be faulty to a neigh-
boring node g if either the processing element located in o
is faulty or the communication link connecting « and g is
faulty. Hence a node « might appear to be faulty from 3 but
fault-free from a third node .

Fault-Free and Busy. A fault-free and busy node is one
which has already been allocated to a node in the tree. It
might be operating as

* a processing element capable of performing compu-
tations, or

« a connecting element whose only function is to pass
messages between PEs.

Fault-Free and Nonbusy. A fault-free and nonbusy node
is one which is operational and has not yet been allocated
to any node in the tree.

Child, parent. A node « is said to be the child of the parent
B if both & and B are processing ( not connecting ) elements,
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and « represents a child of 3 in the tree. Contrast this with
the definitions of predecessor and successor, defined below.

Successor, predecessor. A node « 15 said to be the successor
of (its predecessor node) § if either « is a child of 8 or « is
used as a connecting element which is part of the path be-
tween § and one of its children.

There are five different types of messages passed between
the nodes. They are described below:

Type 1. A message from node « to a nonbusy and fault-
free neighboring node allocating it to the root of a (k — 1)-
level subtree and requesting it to embed this subtree.

Type 2. A message from a node « to its predecessor in-
dicating that it is unable to embed the subtree rooted at .
This is a negative acknowledgement message.

Type 3. A message from node « to its predecessor indi-
cating that it has successfully completed the embedding of
the subtree rooted at . This is a positive acknowledgement
message.

Type 4. A message from node « to its previously selected
successor reguesting it to deallocate itself and all the nodes
it had allocated.

Type 5. A message from a node (which has previously
received a deallocation request) to its predecessor indicating
that the deallocation has been completed.

The input to the algorithm is a number k which signifies
the level of the complete binary tree which is to be embedded
onto the rectangular array.

The output from the algorithm, if successful, is an embed-
ding of a k-level complete binary tree on the processor array.
The algorithm declares failure if it is unable to find an
embedding.

Cutline of the Algorithm

A formal description of the algorithm in pseudocode is
presented in the Appendix. Below, we present an informal
description. Prior to the execution of the algorithm, the pro-
cessor array is initialized. This involves setting all operational
PEs in the rectangular array as nonbusy. An operational PE
o near the center of the array is then chosen to act as the
root of the binary tree to be embedded. Next, a path of op-
erational PEs from this PE to the edge of the array is found
and all PEs along this path are marked as busy. These PEs
then serve as connecting elements which enable the root of
the binary tree to communicate with the external world. A
simple message passing algorithm, where every PE (starting
with ) sends a message to each of its neighboring PEs, can
be used. The algorithm terminates as soon as a PE 8 on the
edge of the array receives a message. Each PE (starting with
#) then identifies the sender of its message and the entire
path from g to the root « is retraced. All PEs along this path
from « to B are marked as connecting elements. The array
is now ready to run the algorithm.

Let « be the node which has been allocated to be the root

of a k-level binary tree in the initialization phase of the al-
gorithm. Node « starts by selecting at random two fault-free
and nonbusy neighbors, say 8 and vy, out of its three neigh-
bors, the fourth being o’s predecessor, i.e., ¢ither its parent
or a CE on a path leading to its parent. Node o then orders
the two selected neighbors 5 and y (by sending them a type
1 message each) to embed in parallel a (k — 1)-level binary
tree. Each of these two neighbors will return either a positive
acknowledgement (type 3 message) if the embedding for their
respective subtree was completed successfully or a negative
acknowledgement {type 2 message) if all attempts to embed
the subtree have failed.

If either one of the two selected neighbors 8 or -y returns
a negative acknowledgement, « then transmits a deallocate
message ( message type 4) to both 8 and vy. Nodes 8 and ~
send similar deallocate messages to their successors and hence
the entire subtrees rooted at § and vy are deallocated. When
8 and v have deallocated their subtrees, they send messages
(message type 5) to « indicating that they have done so.
Node « then starts over by once again selecting two random
neighbors out of its three available neighbors. The maximum
number of times « attempts to select a set of two neighbors
is one of the parameters to the algorithm and is called the
PE retry count.

If, after a number of repetitions determined by the PE
retry count, «is still unable to find a set of two neighbors,
it selects a single fauli-free and nonbusy neighbor (say 3)
and declares itself to be a CE. 8 now starts recursively the
same procedure to which o was assigned. In the case where
« has only a single fault-free and nonbusy neighber (two
faulty or busy neighbors), the above step of choosing a single
neighbor would be performed right in the beginning.

Node «, now in the role of a CE, awaits an acknowledge-
ment from 8. If 8 returns a negative acknowledgement, it
sends 3 a deallocate message, waits for a confirmation of
deallocation, and proceeds to select a new neighbor at ran-
dom. The number of times a single neighbor is selected is
the other parameter to the algorithm and is called the CE
retry count. If the number of attempts by « exceeds the
CE retry count, then a negative acknowledgement is sent
by « to its parent.

The case when « receives a positive acknowledgement is
handled in one of two ways. If « is operating as a PE, it must
receive two positive acknowledgements before it sends a
positive acknowledgement to its parent. If « is operating as
a CE, the receipt of a single positive acknowledgement
prompts it to send a positive acknowledgement to its pre-
decessor.

The deallocate message assumes precedence over all ather
message types described above. The receipt of a deallocate
message by a node o prompts it to deallocate itself and all
its successors, regardless of whether o has received zero, one,
or two positive or negative acknowledgements prior to re-
ceiving the deallocate message.
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A copy of the algorithm executes at each of the operational
nodes during the embedding process. Each node essentially
idles until it receives an incoming message from one of its
neighboring PEs. A message contains the message type, the
sender’s identification, and a level number indicating the
level of the subtree. In response to a message, a node changes
its internal state and might, if necessary, send messages to
its neighbors. After processing a message, a node once again
goes back to its idle state.

Figures 1 and 2 show two example embeddings, obtained
by the above algorithm, of a 7-level complete binary tree on
a partially faulty processor array. The faulty nodes are
marked by circles in these figures. Each node in these two
arrays was independently determined to be either faulty with
a given probability p or fault-free with probability 1 ~ p.
Figure | shows a processor array of size 18 X 18 and node
tault probability p = 0.15. Figure 2 shows a processor array
with array size 20 X 20 and node fault probability p = 0.2.
Figure 3 depicts the embedding of an 8-level complete binary
tree in a 30 X 30 array with a node fault probability of p
= 0.05.

To summarize, our algorithm has the following charac-
teristics:

(i} it is recursive in nature,

{ii) it is nondeterministic, and

{ni} it is distributed.

We should stress that this algorithm is specifically meant
to embed trees in partially faulty arrays. It is not meant to
be used when the array is fault-free: there are better, and
deterministic, ways of doing that, for example, an H-tree

FIG. 1.

A 7-level binary tree in an 18 X 18 array (p = 0.15).
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FIG. 2. A 7-level binary tree in a 20 X 20 armay (p = 0.2).

embedding. For this reason, direct comparisons of this al-
gorithm with deterministic algorithms designed for fault-free
arrays are inappropriate.

The nondeterministic nature of the algorithm presents
many problems in its analysis. The use of standard analytical
tools, such as Markov modeling, is impractical for this case
since the action of any processor in choosing its children
affects the availability of children for the neighboring pro-
cessors, which in turn tends to affect the choices open to the
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FIG. 3. An 8-level binary tree in a 30 % 30 armay (p = 0.05).
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neighbors of these neighboring nodes, etc. The result is a
state space of a large number of dimensions, which cannot
be decoupled from one another. This leads to a number of
computations which grows exponentially with the size of the
tree being embedded.

Therefore, extensive simulation runs were conducted in
order to study the performance of the algorithm. The results
of these simulations are presented in Sections 3 and 4.

3. ALGORITHM PERFORMANCE: UNIFORMLY
DISTRIBUTED FAULTS

The first group of simulation experiments was conducted
with the intent of determining the algorithm’s ability to
embed binary trees in a grid with uniformly distributed faults.
The main purpose was to determine how the MRL distance
varies with an increase in failure probability and array size.

The experiments were conducted as follows. In a given
array, each node was independently determined to be faulty
with failure probability p. The algorithm was then executed
and an embedding obtained. For each value of failure prob-
ability and array size, 500 runs were made. The MRL dis-
tance was averaged over the 500 runs and their results tab-
ulated. Figure 4 shows the average of the MRL distance over
500 runs for a 127-node tree embedded in arrays of different
sizes.

As can be seen in Fig. 4, the MRL distance tends to in-
crease as the node failure probability increases. This is un-
derstandable because the algorithm has to use a larger num-
ber of connecting elements to route around the faulty nodes.
However, the other dependence—that of the MRL distance
on the array size—is not as monotonic. As the array size
increases, the tree has more room to grow, and so one might
expect the MRL distance to increase. However, as the array
size decreases, simulation results show that in a large number
of instances there is often a long train of connecting elements
along the edge of the array which contribute to a larger MRL
distance. The reason for a long train of connecting elements
along the edge is obvious—the algorithm, prevented from
growing outward, attempts to find an empty region within
the array to grow its subtree. This region is more likely to
exist along the edges, as areas toward the interior of the array
would have already been used for nodes which are part of
the upper levels of the tree.

The next step in evaluating the performance of our random
algorithm was to determine how long one had to execute it
in order to obtain an acceptable embedding. Also, as this
algorithm is specifically designed to embed trees in the pres-
ence of faulty nodes, it was necessary to determine how the
mean execution time varies with an increase in node failure
probability. The grid size was also used as a parameter to
study its effect on the mean execution time.

This set of experiments was conducted as follows. For
each value of node failure probability and array size, a fault
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FIG. 4. Average MRL distance as a function of the failure probability p.

pattern was chosen at random. The algorithm was then ex-
ecuted to obtain 500 embeddings for this fault pattern. The
resulting mean execution time for a 7-level tree is depicted
in Fig. 5. The exccution time is measured in units of single
PE operations. A single PE operation is defined as the number
of machine cycles ( typically about 50) required for a PE to
process completely any incoming message.

The dependence of the mean execution time on the node
failure probability and the array size is as one might expect.
As the array size increases, the algorithm has more room in
which to embed the tree and so tends to successfully complete
the embedding in a shorter time. However, as the failure
probability increases, the algorithm finds potential avenues
for growth increasingly blocked by failed nodes. For this rea-
son, a successful completion of the tree embedding takes a
larger number of attempts and therefore more time.

Since this is a random algorithm, the first embedding it
comes up with is not necessarily a good one, and several
runs might be necessary to find one. In Fig. 6, we present a
simulation-based estimate of the complementary probability
distribution function ( CPDF) of the MRL distance. Call this
function P,(x, p). That is,
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MHz, 50 machine cycles per PE operation, and from Fig. 5,
a mean execution time of 2+ 103, we get an embedding time

of
2 X 103X 50 X 90
" 107 ’
B
A
K which is 0.9 s,
E
X
¢ 4, ALGORITHM PERFORMANCE:
: CLUSTERED FAULTS
>
" Increasing the level of integration to larger chips with more
I transistors causes the defect distribution in VLSI to deviate
5 significantly from a uniform distribution. An extensive study
y of this has been carried out by Stapper [13], who showed
) that the effect of defect clustering is modeled more closely
0 by a negative binomial distribution. The performance of the
0 algorithm in the presence of clustered faults is thus important
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FIG. 5. Mean execution time as a function of the failure probability p i
for a 7-level tree. 505 ]
:
T
A
N
[+
4

Pi(x, p} = Prob{ MRL distance

> x when failure probability = p}.

EoErUND Lokt - S
+

If we run the embedding algorithm # times and choose that
with minimum MRL distance, the CPDF of this minimum
quantity is given by H
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We can casily get a feel for the actual time in seconds required ol
to find an embedding. Suppose we wish to determine how

many runs, 11.,,(x, p, 8), need to be made before we obtain, sh
with probability 8, an embedding whose MRL distance is
no greater than x. The embedding is assumed to be in an o o0z o4 06 08 10
array whose failure probability is p. Clearly, COMPLEMENTARY PROBABILITY DISTRIBUTION FUNCTION
Array ww«a 20 x 20 and p = 0.06
Mrun(X, p, B) = min{n| P,(x, p) < (1 — B)}. S bl b+ Jlall-+ et el
.......... Array size 22 x 22 and p = 0,03

From Fig. 6, fora 22 X 22 array, with x = 16 and p = 0.03, FIG. 6. The complementary probability distribution function of the
we have n,,,(x, p, 0.99) = 90. Assuming a clock rate of 10 MRL distance. (Inset shows detail )



A RANDOM ALGORITHM TO EMBED TREES IN

in this context. Specifically, it is important to study what
effect the degree of clustering has on the MRL distance.
Prior to the running of the algorithm and the generation
of an embedding, faulty nodes were distributed throughout
the array according to a negative binomial distribution. The
entire array was first divided into quadrants, each containing
25 processing elements. The negative binomial distribution
was used to determine the number of faults in each quadrant.
These faults were then uniformly distributed within each
quadrant. The negative binomial distribution used is

I'(a+k) (AD/a)*
kIT(a) (1+ ADja)’

P{X=k)=

where X is a random variable designating the number of
faults within the quadrant with area 4 and defect density D.
Each processor in the array was assumed to occupy unit
area, and hence D (the number of defects per unit area) is
equal to the fault probability p of Section 3. The clustering
parameter is o and must be greater than zero. The smaller
the value of @&, the more intense the clustering.

For each value of &, 500 runs were conducted and the
average of the MRL distance was calculated as before. Figure
7 shows the results of the simulation runs conducted with

mQZadAuHC [l = 1

O —+ + + t + t + } + + + ——
00 02 04 06 08 10 1.2 14 16 1B 20 22 24 26
CLUSTERING PARAMETER

FIG.7. Average MRL distance as a function of the clustering parameter o

FAULTY ARRAYS

1

<

F1G. 8. A 7-level binary tree embedded in an array with clustered defects
(xz =0.1,D=02).

various values of &. Values of & above 2.5 correspond to a
near-uniform distribution and hence were not studied. Figure
7 indicates that the MRL distance is essentially independent
of o,

Figures 8 and 9 show two embeddings obtained with «
equal to 0.1 and 2.5, respectively. Figure 8 is an example of
an array where the defects are highly clustered. As can be
readily seen, the algorithm successfully routes around the
clusters of defects to obtain an embedding with MRL. distance
equal to 26. The defect density (D) in this example is equal
to 0.2

Figure 9 shows an embedding in an array where the effect
of defect clustering is less pronounced. The defect density is
equal to 0.1 and the resulting embedding has MRL distance
equal to 15.

5. CONCURRENT RUNS

A closer look at the design of the algorithm of Section 2
reveals that the algorithm underutilizes the resources of the
processor array during the embedding process.

Any nonleaf node, «, is at the root of a k-level tree for
some k > 0. It starts by requesting two of its free neighbors
to be the roots of (k — 1)-level trees and then idles until it
receives a positive or negative acknowledgment from them.
If k is large, then a considerable time will most likely elapse
before node « receives such an acknowledgment. As a result,
the node will be idle for a large fraction of the embedding
time.

A similar argument can be put forward for leaf nodes.
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FIG.9. A 7-level binary tree embedded in an array with clustered defects
(=25 D=01).

Once allocated as a leaf, a node remains in the idle state,
unless it receives a deallocate message from its parent. In
fact, the maximum utilization of the processors in the array
occurs when all the leaf nodes of the binary tree are activated
by an incoming message. The number of leaf nodes consti-
tutes only half the total number of nodes in a binary tree
and only a small fraction of the total operational nodes
available in the processor array.

It is therefore apparent that this scheme greatly underu-
tilizes processors in the array. To avoid such wastage of pro-
cessing capacity, we adopt the simple stratagem of growing
more than one tree in parallel. The number of trees grown
in parallel is referred to as the degree of concurrency.

In the modified implementation of the algorithm, any
node in the processor array can simultaneously participate
in up to m different trees being grown in parallel, where m
is the degree of concurrency. All data structures in the original
algorithm are replicated # times to store the necessary status
information for the # trees. A tree number is included in
all messages to identify the tree to which the message pertains.

Each node then operates as follows. Upon receipt of a
message, the node examines the tree number, accesses and
updates status information for that tree, and sends messages
to its neighbors with the tree number field appropriately set.
If more than one message is received, the messages are pro-
cessed on a first-come-first-serve basis by the node,

An immediate question with this scheme is, What should
the value of m be for any given tree size? If the value of m
is too small, there will still be a number of idle processors
in the array at any given instant. However, if the value of m
is made too large, there will be a long queue of messages at
every node, which would require large local storage at each

node. This is the only significant factor to consider when
choosing m: since local storage is all that is being used, there
is hittle, if any, context-switching overhead.

Simulation runs for the concurrency scheme were made
and their results are shown in Fig. 10. For cach value of m,
the elapsed time (in PE operation units) required to generate
500 embeddings was recorded. These values were divided by
the time required to generate 500 embeddings with m = |
and the ratio was plotted in Fig. 10. In each case the array
size was kept constant. Runs were made for tree sizes of 15,
31, 63, and 127 nodes.

It can be seen that as the size of the tree is increased, the
value of m needs to be larger. From Fig. 10, for a tree size
of 15 nodes and m = 6, it would take approximately one-
fifth the time to generate 500 embeddings that it would take
if the degree of concurrency were equal to one. For a tree
size of 127 nodes and m = 20, it would take approximately
one-twentieth the time it would take if the degree of con-
currency were equal to one. Finally, the curves show that
beyond a certain value of m, increasing the degree of con-
currency does not improve the throughput in terms of the
number of embeddings generated per unit time. Quasiopti-
mum values of »1 for each tree size are indicated by circles
on the curves of Fig. 10.
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FIG. 10. Execution time ratio as a function of the degree of concurrency.
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6. CONCLUSIONS

An overall evaluation of the proposed algorithm to embed
binary trees in rectangular arrays produces the following
conclusions:

Advantages

(i) The main advantage of our embedding algorithm is
its ability to handle a random distribution of faulty nodes
and links. This is borne out by the simulation results using
random fault patterns.

(i} The algorithm is capable of handling fault clustering,
which is inevitable in VLSI. The simulation results indicate
that the degree of clustering has no substantial impact on
the performance of the algorithm. This is a definite advantage
compared to other schemes which require high levels of re-
dundancy to accommodate fault clustering.

(iii) The algorithm is also capable of embedding incom-
plete binary trees in fault-free as well as partially fauity arrays.
Figure 11 shows an example of a 7-level incomplete binary
tree containing 95 nodes embedded in a partially faulty array
with fault probability p = 0.1. The resulting MRL distance
is 14,

(iv) The parallel nature of the algorithm has the added
advantage that one can use the processor array itself to carry
out the embedding, rather than doing so off-line. The algo-
rithm, due to its simplicity, does not require the use of any
special instructions at the hardware level. Moreover, the
memory requirement at each node is fairly low.

(v) Finally, the algorithm can be easily extended to embed
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[4) [+]
e
o R m— . ]
o f—] ﬁ o _.
. !
o [+] a
e
-] L— © -]
. | . |
(o] I o
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[e]
[s]
FIG. 11. A 7-level incomplete binary tree with 95 nodes.

" Root of Level 9 tres o
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=]
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CE's, Length = 16 a
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/ Root of Level {0 wee

Faully Elemenls

FIG. 12. A modified algorithm for embedding a 10-leve] binary tree.

binary trees in arrays of higher degree, as well as trees of
greater degree than binary. Thus, this algorithm could be
easily extended to run, for example, on hexagonal arrays or
a hypercube architecture.

Disadvantages

The main disadvantage of the proposed algorithm is the
increased execution time needed to generate embeddings for
trees where the number of nodes is very large, since as the
number of nodes increases, the potential for interference be-
tween the “‘growth” of the various subtrees increases also.
So, for large trees (say, for trees of more than /., levels for
some appropriate /..., additional measures must be taken.
4.ax 18 11Ot @ constant, but rather it depends on the algorithm’s
execution time that is considered acceptable in a particular
implementation.

This problem can be solved by introducing certain heu-
ristics within the algorithm. It is apparent that the increased
execution time is a result of the collisions which occur at the
upper levels of the tree because of the large number of nodes
which need to be embedded at the lower levels. One possible
solution is to separate adjacent nodes at the upper levels with
a long chain of connecting elements, thereby reducing the
probability that adjacent subtrees will compete with each
other for the same region of the processor array. The length
of the chain of connecting elements which separate a node
at level k from a node at level {k — 1), where k is greater
than /,..., can be the same as that for the H-tree type of
embedding. This value grows exponentially [7] and should
provide sufficient room for subtrees to grow without excessive
collisions, For embedding subtrees of level /., — } and less,
the algorithm can revert to its original form.

In our implementation of the algorithm we have decided
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to set /.. = 9. Thus, a tree of 10 or more levels can benefit
from the incorporation of the above modification into the
algorithm, Figure 12 shows how the modified algorithm
works to embed a 10-level binary tree. The PE which is the
root of the 10-level tree grows two paths of CEs in random
directions. The length of each path is equal to 16, which is
the same as that for a 10-level H-tree embedding. The two
PEs at the end of each path then grow 9-level subtrees using
the original form of the algorithm.

APPENDIX: FORMAL DESCRIPTION
OF THE ALGORITHM

A free neighbor indicates a nonbusy, fault-free, and ac-
cessible neighboring node. A neighbor of « is accessible if
the communication link connecting it to « is fault-free. It
should be noted that a node which is inaccessible from «
may still be accessible from its other neighbors and can
therefore be allocated to another tree node.

switch ( message type ){
case l : if {leaf node)
set my_node type to PE; ]
send message type 3 to parent;
else
if (two free neighbors are
available)
set my_node type to PE;
decrement the level number by
one;
send message type 1 to two free
neighbors selected at random;
else
if {only one free neighbor is
available)
set my_node type to CE;
send message type 1 to that node
with the same level number;
else {* no free neighbor is
available x}
send message type 2 to parent;

case 2 : if (node type is PE)
send message type 4 to both sons;
else {* node type is CE #}
send message type 4 to son;

case 3 : if (node type is PE)
if (two messages of type 3 have
been received)
send message type 3 to parent;
else {* node type is CE #}
send message type 3 to parent;

case 4 : if (node type is PE)

if (node is not a leaf)
send message type 4 to both
SOns;

else
send message type 5 to parent;
deallocate my_node;

else {* node type is CE #}
send message type 4 to son;

cagse 5 : if (node type is PE)
if (two messages of type 5 have
been received)
if (message type 4 received
earlier)
send message type 5 to
parent;
deallocate my_node;
else {+ the node originating
the deallocate
message was reached *}
if (PE retry count not
exceeded)
increment PE retry
count;
send message type 1 to
two free neighbors
selected at random;
else
set my_node type to CE
choose a free neighbor
at random;
send message type 1 to
that node;
else {* node type is CE *}
if (message type 4 received
earlier)
send message type 5 to
parent;
deallocate my_node;
else {* the node originating the
deallocate
message was reached =}
if (CE retry count not
exceeded)
increment CE retry count;
choose a free neighbor at
random;
send message type 1 to
that node;
else
send message type 2 to
parent;
deallocate my_node;
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