A Voltage Scheduling Heuristic for Real-Time Task Graphs

D Roychowdhury!, I Karen', C.M. Krishna', and Y.-H. Lee?

1

Department of Electrical and Computer Engineering

University of I'.-Iassan:husetts,ﬁmherst. MA 01003

*Department of Computer Sejence
Arizona State University, Tempe, AZ 85287

Abstract

Energy constrained compler real-time systems are
becoming increasingly important in defense, space,
and consumer applications. In this puper, we
present a sensible heuristic to address the prob-
lem of energy-efficient voltage scheduling of o hard
real-time fask graph with precedence constraints,
Chur algorithm uses only fwo voltage levels as it is
@ festure of many existing processors. We demon-
strate that significant energy gains are pussible
even with only twe voltage levels and our henris-
tic is as effective as those based on hypothetical
systemns having infinite voltage levels.

1 Introduction

In CMOS devices, the power consumption is pro-
portional to the square of the voltage, while the
circuit delay increases roughly linearly with the
voltage. As a result, controlling the supply volt-
age allows the user to trade off workload execution
time for energy consumption.

Over the past few years, many researchers haye
studied this tradeoff. For hard real-time systems,
so-called because the workload is associated with
a hard deadline, the tradeofl is particularly in-
teresting. In such applications, the workload is
characterized by analysis or profiling, so that its
worsl-case execution time can be bounded with
reasonable certainty. In most cases, the workload
is run periodically, with the period being known in
advance, The task deadlines are also known in ad-
vance. Further, many real-time applications {eg.,
spaceborne platforms) have constraints on their

—mThis research has been supported in part by the Na-
tional Science Foundation under grants EIA-0102696 and
ELA-0102555,

Power or energy consumption. There is thus an
increased need for power-management techniques
for such systems: the g priori knowledge about
the workload also provides an increased opporto-
nity to use such technigues.

Most of the power-aware voltage-scheduling work
for real-time systems has concentrated on mdepen-
dent tasks. By contrast, in this paper, we consider
voltage scheduling while executing & task graph,
which defines the precedence constraints between
tasks,

The problem can be informally described as fol-
lows. We are given a task graph, the worst-case ex-
ecution time of each task and the period at which
the task graph is to he exceuted, This workload
is to execute on a multiple-processor system, each
processor of which has its own private memory,
The problem is to allocate the tasks to Processors,
and to schedule the voltage of each processor in
such a way that the energy consumption is kept
Loy,

Our algorithm has both an offline and an online
component, The offline component provides volt-
age scheduling based on the worst-case execution
profiles. The online component adjusts the voltage
schedule as tasks complete: in most cases, tasks
consume less than their worst-case time, and this
can be exploited to run the processors slower than
might otherwise be required.

The remainder of this paper is organized as fol-
lows. In Section 2, we provide a hrief survey of
the relevant literature. In Section 3. we outline
our algorithm and in Section 4, we provide some
numerical results which serve to show its effective-
nesg, The paper concludes with a brief discussion
in Section 5.

2 Literature Survey

A good survey of system-level power optimization
techniques, including voltage scheduling, can he
found in [2]. A static voltage-control heuristic is
presented in [8], and an integer Programming ap-
proach is taken in [5]. In [8], the authors point
out that two voltage levels are usually sufficient
s0 long as these levels are properly chosen: not
much is gained by having a larger number of lev-
els,

Most papers in this area deal with independent
tasks (see, for example, [1, 3, 4]) An initial study of
tasks with precedence constraints has been made
in [7]. In this paper, a static evaluation is cac-
ried out that defines the order in which the Lasks
are to be executed. This order is kept unchanged,
even if the task execution times are much less than
the worst-case, When tasks are completed shead
of their worst-case time, the slack that is thus re-
leased can be used by running the processor(s) at
a lower voltage than would otherwise have been
the case.

3 The Algorithm

The given task graph, henceforth referred to as the
task precedence graph (TPG), is assumed to have
a hard degdline associated with it. Therefore our
algorithm tries to minimize energy expenditure by
voltage scheduling in such a way that the deadline
is always met,

3.1 System Model

Our system model consists of a multi-processor
where each of the processors is independent and is
connected by a low cost fast interconnection net-
work. The processors can operate in 3 voltage lev-
els - VHI VL, and viore. The Vi and Vg are the
voltages where the processors can do useful com-
putation whereas viprg is the voltage necessary
to sustain the system in idle state. From the en-
ergy perspective, when the processor is running at
VHI it can perform computation faster than when
running at Vg but consumes more power during
its operation following these well known relation-
ships:

The factor by which the processor is slower at volt-

age v relative to when at voltage vy is
W
slow(v) = —

('F'HI —‘”'T)I
VHE L v—wr

where vy is the threshold voltage.

We define one unit of computation as the COMpH]-
tation performed by the Processor at vy in unit
time, Thus, one unit of computation will take
slow(v) units of time at voltage v. The ratio of
bower consumed by processor at voltage v relative
to that of voltage wy;

i
; W
power_ratiofv) = (-—J
YHI

(1)

12)

For the purpose of analysis we have neglected the
energy cost of communication and idle processors,
We have also considered the voltage switching eost
as negligible both with respect to the time nesded
and the energy expended. This is justified by the
fact that our algorithm has at most one voltage
switch within the runtime of the task and at most
one switch at the time of context switching of the
tasks. Thus we can account for it by merging this
effect into the worst case profile information,

3.2 The Algorithm

We follow a three-pronged approach to achieve our
ohjective. The approach includes two offline com-
poments - effective assignment of the tasks to the
finite number of processors available to us {this
can modify the input TPG if the number of pro-
cessors available is not enough to exploit the par-
allelism completely) and the voltage scheduling of
the TPG based on the static worst case execution
profile. We use the very pessimistic worst case
execution profile approach becanse the EYRLEIm is
a hard real-time and a deadline miss under any
circumstances would be catastrophic. We follow
with a online phase - the dynamic slack reclama-
tion.

We will use the following terms for describing our
algorithm, The critical path is a set of tasks from
a source to a sink of the TP that misses deadline
under current voltage configuration. The reverse
slack or relack of a critical path is the difference be-
tween the deadline and the worst case execution
time of that path with current voltage configura-
tion. The start-time of the task is the time relative

to the beginning of the execution of the task set
that a task must start, and commit-time is the
time that a task must complete its execution un-
der static scheduling,

The task assignment problem of & task graph on a
finite number of processors is in general an NP-
complete problem [9] and many heuristics have
been put forward to address this issue. We follow
a list scheduling heuristic that gives the highest
preference to the tasks in the longest paths dur
ing the task assignment [10], This will allow us to
finish the execution of the entire task set as fast
as we can if we ran everything in vy, and hence
to exploit considerable slack before the deadiine
to slowdown substantial portion of tasks and run
them in v g instead. In order to achieve thia we
had come up with a scheme for assigning prierities
to the tasks by using the concept of the top_level
and botiom_level for the tasks. We define fop_level
as the maximum of the sum of worst case execu-
tion units from any connected source of the TPG
to the given task (excluding the execution units of
the given task) and bottom_level as the masinum
of the sum of the worst case execution units from
the given task (including the execution units of the
given task) to any connected leaf of the TPG, The
prierity of the task is the sum of bottom_leve! and
top-fevel. Once we assign the priovity we followr
the greedy algorithm that whenever a Processor is
free and tasks are ready to run we asgign the task
with the highest priority to the processor.

After we get the modified TPG due to our resource
constraints we are ready to apply our static volt-
age scheduling heuristics. In order to better un-
derstand this scheduling heuristic let us rephrase
the issue as the following optimization problem,
Let 5; denote the speedup associated with each
task i. For each path Py, we have to satisfy the

constraint ZS} >ty — D
jePy

where task j belongs to path Py ty is the worst
case execution time of the path Py, without any
speedups and D is the deadline associated with
the TPG. Our objective is to minimize T 5
where n is total number of tasks in the task sot.
There is a trivial solution for this problem if the
deadline is met when all the tasks are run at Vo
that is, we do not need any speedups, However,
the problem becomes more interesting when some

of the paths become eritical paths and a decision
has to be made about which task to speed up,
Based on the equations above it appears that if
we speed up a task that is present in more Criti-
cal paths than any other task, then we would af
fect many paths while paying the energy price only
ance. Based on this intuition we formulate the fal-
lowing sterative algorithm to figure out which task
needs to run at vy and for how many execution
units. We start the algorithm by assigning all the
tasks to run at v o and then spesding them up it-
eratively until there are no more crifical puths left.
The weight associated with each task is dependent
on the membership of the task in the set of critical
paths, every time we encounter a task in the erit-
ical path we increment its weight by 1. When we

Algorithm 1 Static Voltage Scheduling
" while list of critical paths not empty do
assign weights to the tasks
taskid = choose task with maximum weight
and if more than one task have the same max-
imim weight choose the one with minimum
bottomlevel value.
pathid = choose the path with minimum
rslack among all the critical paths having
taskld as a member task.
speed up taskld using the following scheme:
if rslack can be covered by changing units
from v g to vy then
change the appropriate units of taskld to
run them at vyp instead of Via
elze
run the entire luskld at vy and mark the
task so that its weight is never considered
during subsequent iterations.
end if
update the path execution times and remove
any path which now meets the deadline from
the list of critical paths,
end while

have to break a tie between tasks of equal weight
we chocse the task nearest to the leaf of the TPf,
that is the one having lower value of bottom_level
T'he rationale behind this is that we would like to
schedule a task to run at vy as late as we can
because during dynamic resource reclamation, we
could potentially re-acquire enough slack to avoid

having to run it at vy altogether.

Onee we have the static scheduling of the paths
we can assign the start time and the commit fime
of the individual tasks. Since the static analysis
was based on the worst case execution profile, the
tasks will always finish before or at the sommss
time during actual runtime. Thus, its successor
can begin execution earlier if it has no other pend-
ing dependencies and we can use this extra slock
between sfart time and the current time to slow
down the processor further under the constraint
that this task still finishes at its commit fime even
i running af worst case profile. This would result
in further energy savings.

We now provide an illustration to demonstrate our
algorithm. The example graph is shown in Fig-
ure 1. The number inside the circle represents the
task identity while the two numbers on the side
are the worst case execution units (in bold) and
the actual execution units at runtime, For this
case Yy is chosen at 3.3V and v g at 2V.

k1] I--"I"‘-. 4] .-""'-I
'.‘:I.IE‘-._T" Mf 1] I';'L:I
L owd
IEM:IHB&@ I/ 'I:J

Figure 1: An example task graph with execution times
in terms of .

CHATHLIRE
[1
PuocEsson 1| 1 | -
[Bt
Poocessamy] 2 | 4 [.
[i
PROCESSR 1 | A 1]
| T

Figure 2: The Gantt chart showing static sched uling,

We run this task graph in a system with three
processors. The processor assignment following
our heuristic keeps the graph unchanged in this
case. We then apply the static voltage heuristic
to the graph. Dwuring the first iteration, both the
tasks 2 and 4 have the maximum weight of 3, and

[EApURD
o o]
MCEscoeal 10 || 7 |
_| =
mocgssonzl 1] & |0 & "
rl-l:.l."m:.tl! 1 _I_' 3-] ‘
1] k]) L1 L] 1o

Figure 3: The Gantt chart showing actual behavior of
tasks at run time.

we choose task 4 since it is nearer to the leaf of
TPG and speed it up appropriately to make the
path (with minimum relack) consisting of tasks 2,
4 and 6 meet its deadline. We remove this path
from the list of critical paths and proceed with
our algorithm. In the next iteration the weights
of tasks 2.4 5 and 7 are all 2. We then choose task
T and speed it up such that the path consisting of
tasks 3 and 7 meets its deadline. We continue this
iterative procedure until finally we come up with
the static schedule as shown in Figure 2. vy is
represented by a greater height in this gantt chart,
We then do dynamic resource reclamation to re-
claim any slack that occurs in runtime. Figure 3
shows the effect of dynamic resource reclamation
on our static algorithm.

4 Numerical Results

We have performed extensive experimentation
with the algorithm described in the previous
section and describe here, for brevity, only our
experiences with two real-life applications, The
first is & task graph for a Newton-Euler dynamic
control caleulation of a robotic application for six
degrees of freedom, henceforth referred to as the
robot control, while the other is a task graph for a
random sparse matrix solver of electronic cireuit
simulation using symbolic generation technigque,
henceforth referred to as sparse matriz. The rebot
conirol has 88 tasks and the sparse matriz has
96 tasks. These task graphs have been published
by Kasahara Lab [11], and the timings are
based on actual profiling done on their OSCAR
multiprocessar system.

We first compare the energy gain that we get
when our scheduling method is followed with
respect to a system where there is no voltage

scheduling: that is, all tasks have to run in a
predefined vy, Analyzing Figure 4 we find that
our algorithm gives considerable energy gains, All
these graphs saturate at around 17 percent. This
is because the voltage range has been chosen be-
tween 3.3V and 2V. It can be shown analytically
that the maximum energy savings that we can
achieve is around 17.2 percent under this voltage
range. As the variance of the tasks increases,
we see that we can get increasing gain from the
algorithm due to the increasing slock that we
can exploit at runtime. But even in the case of
waorst-case execution, the plots demonstrate that
considerable energy gain can be made because of
the novel static algorithm we are using. Similarly,
when we vary the number of processors, we can
exploit the parallelism more and hence have
better performance with increasing number of
processors {see Figure 5), However, once we have
exploited the parallelism, there is little more gain
to be had from more resources (see Figure 6)
where 12 is the maximum number of DTOCESRGEE
which can be efficiently used.

18 ¢

e —
1ﬂ ____.-—. - "'___l-'
e
14 S
E
3 1 _//;_,f’
E 1 Jll."'.: ."'
lE al Ji4 25% 1o 100% of warsl case ——
* Gl% 4o 100% of wors! casg e
[i T5% 30 100% ol worsl case =
; WOrs asg o=
4 4
2 i
S0 &0 FOO 800 SO0 1000 1100 1200 1300

Deading

Figure 4: Energy Gain after runtime adjustments for
the robot control with differing variance in execution
time (for 12 processor ayabem),

The plots in Figure 7 show the gain achieved
by dynamic resource reclamation over the static
scheduling. As predicted we can see that the
higher the variance in execution time, the better is
the performance. Since our adjustment is fast and
happens only during context sawitch, we can have
substantial gain with relatively little overhead.
Next we compare our algorithm with & dynamic
voltage adjustment algorithm that chooses from
mhinite voltage levels [7] (see Figure 8). Here we

18 T T
e T
16 | oEE o
a F

= ‘ F
8 iz : r’
B i
Bwl £/ 4
" g
* L
. ! B proceasom ——
I 12 processan s
af & ¢ 16 procageans =
ol 20 PrGREnE —

4 i 1 5
1W1Eﬂﬂﬂ23ﬂmﬂmmﬂ)ﬂﬁmﬂ:ﬂ
Dsadling

Figure 5: Energy Gain after runtime adjustments for
the sparse matriz with varying number of ProcessoTs,

4 1 i 1
S0 GO0 VOO BOO BOO 1000 1100 1200 1300
Deasdbre

Figure 6: Energy Gain after runtime adjustments for
the robot control varying the number of processors.

W E e
T T T

% Ensrgy Gain
=

T S Y

Figure 7: Energy Gain due to dynamic resouree recla-
mation for sparse matriz (12 processor system),

relax the constraint that the vy has to be fixed
te a particular value and instead allow it to have
any value in the voltage range specified. vy for
the subsequent experiments is chosen as the min-
imum uniform voltage in which the tasks can e
ecute 8o that the longest path meets the deadline

& T T
W 25% to 100% worsf case ——
4.8 - . S0 oy 100% wonl cate e
it LY T5% Io 100% warsi cagg =
WOIrE] fSme &
M-
3
E‘ 25
& ot
L 1
i] "' E
05 b =
< -

150

Figure & Comparison with Infinite Voltage Algorithm
for sparse matriz (12 processor system),

1. v
" 25% 10 100% ol worsl tame ——
1.4 ! 0% o 100% of woes? casg e
n 5% o 100% of worst casa
12 F '|I'. worst case a-

§
18] R
E 0.8 o
k! [
I' L
£ 04t Y ON
p2p =h % "
.y -
<3 | = "

160 200 20 M0 MO0 0 480 S00
Dasadine

Figure 9: Comparison when infinite voltage level so
lection is used instead of dual voltage in our algorithm
for sparse matriz (12 processor SVstem).

under worst case scenario, Our two voltage al-
gorithm actually cutperforms the infinite-voltage
algorithm in most cases. Finally, we measure the
energy gain if we would have used a infinite voltage
selection for our algorithm instead of two voltage
levels (see Figure 9), We see that BNErEY gain is
less than 2% for most of our experiments. Thus,
we claim that our algorithm can be overlaid in
processors already existing using only software en-
hancements and would be at least as much EnerTgy
efficient as the hypothetical systems with infinite
voltage levels.

5 Discussion

In thiz paper we have considered the problem of
an energy efficient voltage scheduling heuristie for
task graphs having precedence constraints. We
have described a three-pronged approach to solve
this problem and have demonstrated that consid-

erable energy savings can be achieved by consid-
ering the relationships among the tasks in the set.
We have also considered a practical seenario where
we have only two voltage levels instead of infi-
nite voltage levels and demonstrated that our al.
gorithm outperforms or is at least as good as the
infinite voltage level algorithms in the majority of
cases. We acknowledge that we have ignored the
energy issues associated with the communication

in the distributed framework
future work to be taken

and keep this as a
up in due course.

References

(1]

[

(4]

[4]

(8]

19]

[10]

(11]

H. Aydin, R. Melhem, D. Mosse, and P. M. Al-
varez, “Determining optimal processor apecds for
periodic real-time tasks with different peower chiar-
acteristics," Bwromicre Conference on Real- Time
Systems, 2001.

L. Benini and G. De Micheli, “System-level power
optimizetion: techniques and tools,” ACM Trans.
Design Awtomation for Blectronic Syaterns, Vol. 5,
April 2000, pp. 115-192.

Y. Do, Y-H. Lee, and C. M. Krizhna, “EDF
Scheduling Using Two-mode viltage-clock-scaling
for hard real-time evatems" Mt Canf on (Com-
pilers, Architecture, and Synthesis for Embedded
Systems (CASES), 2001,

I. Hong, G. Qu, M. Potkonjak, and M. Srivas-
tava, “Synthesis techniques for low-power hard
real-time systems on variable voltage processors,”
Real-Time Systems Symposium, 1908,

T. Ishihara and H. Yasuura, “Voltage stheduling
prablem for dynamically variable voltage proces-
sors," ACM ISLPED, pp. 197199, 1088,

C. M. Krishna and Y.-H. Les, “Voltage-Clack-
Scaling Adaptive Scheduling Techniques for Low
Power in Hard Real-Time Systems,” Real- Timae
Applications Symposium, 2000,

D. Zhu, R. Melhem, and B. Childers, “Schedul-
ing with dynamic voltage spead adjustment. using
slack reclamation in multiprocessor real-time AVE-
tems," feal- Time Systems Symposium, 2001.

F. Yao, A, Demers, and 5. Sheoker, “A schedul-
ing model for reduced CPU energy,” Proc. $6ih
[EEE Symp. Foundations af Computer Science,
1995, pp. 3T4-382.

LA Hoogeveen, S.1.van de Velde, and B Veltman,
“Complexity of scheduling multiprocessor tasks
with prespecified processor allocations," OWT, Re-
port BS-R82171, Netherlands, 1992,

T. Yang and A. Gerasoulis, “List Scheduling With
and Without Communication Delays" Parallel
Computing 19/12), 1993, pp. 1321-1344
I:Lttp:,ﬁ"wa-w.kaaal:a:u.e!e:.wns&da.ujp,-"
schedule/old4 fapply_pe.htm]

