
Int. J. Embedded Systems, Vol. 6, No. 1, 2014 73

Copyright © 2014 Inderscience Enterprises Ltd.

Scheduling imprecise task graphs for real-time
applications

R.C. Ravindran*, C. Mani Krishna, Israel Koren and
Zahava Koren
Department of Electrical and Computer Engineering,
University of Massachusetts,
Amherst, MA 01003, USA
E-mail: rajeswarancr@gmail.com
E-mail: krishna@ecs.umass.edu
E-mail: koren@ecs.umass.edu
E-mail: zkoren@ecs.umass.edu
*Corresponding author

Abstract: Many of the real-time tasks within embedded real-time control applications fall into
the imprecise category. Such tasks are iterative in nature, with output precision improving as
execution time increases (up to a point). These tasks can be terminated early at the cost of poorer
quality output. Many imprecise tasks in CPS are dependent, with one task feeding other tasks in a
task precedence graph (TPG). A task output quality depends on the quality of its input data as
well as on the execution time that is allotted to it. In this paper, we study the
allocation/scheduling of imprecise TPGs on multiprocessors to maximise output quality where
resources (time and energy) are limited. Our heuristic algorithms can effectively reclaim
resources when tasks finish earlier than their estimated worst-case execution time. Dynamic
voltage scaling is used to manage energy consumption and keep it under a specified bound.

Keywords: imprecise tasks; dynamic voltage scaling; real-time systems.

Reference to this paper should be made as follows: Ravindran, R.C., Krishna, C.M., Koren I. and
Koren, Z. (2014) ‘Scheduling imprecise task graphs for real-time applications’, Int. J. Embedded
Systems, Vol. 6, No. 1, pp.73–85.

Biographical notes: R.C. Ravindran received his MS degree from the ECE Department at the
University of Massachusetts (UMass) in 2012. His research interests are in real time systems and
wireless networks. He is currently working in Qualcomm Research Center, San Diego.

C. Mani Krishna is a Professor of Electrical and Computer Engineering at the University of
Massachusetts. He received his PhD in Electrical Engineering at the University of Michigan
and has been at UMass ever since. His principal interests are in real-time, fault-tolerant and
distributed systems, as well as sensor networks. He has co-authored two texts on real-time
systems and fault-tolerant computing. His recent research includes projects in secure sensor
networks, resource provisioning in modern deeply-pipelined processors, power-aware issues in
real-time systems, parameter variation problems in nanotechnology, and the efficient design of
cyber-physical systems. He is a Fellow of the IEEE.

Israel Koren is a Professor of Electrical and Computer Engineering at the University of
Massachusetts and a Fellow of the IEEE. He is an Associate Editor of the VLSI Design Journal,
and IEEE Computer Architecture Letters. He served as the General/Programme Chair/committee
member for numerous conferences. He is the author of Computer Arithmetic Algorithms, second
edition, A.K. Peters, 2002, and a co-author of Fault Tolerant Systems, Morgan-Kaufman, 2007.
His research interests include fault-tolerant systems, VLSI yield and reliability, secure
cryptographic systems and computer arithmetic. He publishes extensively and has over 200
publications.

Zahava Koren is currently a Senior Research Fellow at the Department of Electrical and
Computer Engineering, University of Massachusetts, Amherst. She received her MA in
Mathematics and Statistics from the Hebrew University, Jerusalem, and DSc in Operations
Research from the Technion – Israel Institute of Technology. Previously, she has held positions
with the Department of Industrial Engineering at the University of Massachusetts, the
Department of Statistics, University of Haifa, Departments of Industrial Engineering and
Computer Science at the Technion, and the Department of Business and Economics, California
State University in Los Angeles. Her main interests are stochastic analysis of computer networks,
yield of integrated circuits and reliability of computer systems.

74 R.C. Ravindran et al.

1 Introduction

Imprecise tasks form an important category of workloads in
cyber-physical and other real-time applications. An
imprecise task [also known as an increased reward with
increased service (IRIS) task] is one which can be
terminated prematurely and still produce usable (albeit of
poorer quality) output. Such tasks usually consist of a
mandatory part that must be completed in order to produce
any usable output, and an optional part which yields
increasingly accurate results (up to a point) the longer it
executes. The value of the output accuracy to the
application is obviously application specific, and is captured
by means of a cost or reward function. There is a category
of imprecise tasks called anytime tasks, which are
characterised by extremely small mandatory portions.

We address the following problem. We are given a set
of imprecise tasks whose precedence conditions are
specified by a directed acyclic task graph. Tasks consume
results from their parents in the task graph (the root of the
task graph has the system as its parent). The output to the
application is from the leaves of the graph. Our aim is to
map tasks to processors and then schedule these tasks so
that the quality of output to the application is maximised,
subject to the execution completing by a specified deadline
while staying under some given energy limit. As proxy to
the quality of the output, we use the weighted sum of the
output errors of the graph’s leaves, which we attempt to
minimise. To this end, we present both offline and online
heuristic algorithms; the offline heuristic carries out
allocation of tasks to processors and produces an offline
schedule, under the assumption that tasks run to their
estimated worst-case execution times (WCET). The online
heuristic reclaims execution times released by tasks which
consume less than their WCETs.

This paper makes the following contributions. It
considers imprecise task workloads consisting of arbitrary
task precedence graphs (TPGs). It accounts for the fact that
tasks seldom take their estimated WCET, but in fact, often
complete much earlier, by providing means to reclaim
resources released early by completing tasks. It accounts for
the decrease in output quality that results when a task
receives imprecise input from one of its parents in the task
flow graph. Finally, it allows for energy management using
dynamic voltage scaling.

2 Examples of IRIS tasks

Imprecise tasks can be found for a wide variety of
applications. Consider the open source video codec tool,
xvid (‘Xvid tool’, http://www.xvid.org/). This tool has a
two-pass option for video encoding. The first pass analyses
the video clip; the second pass uses the results of that
analysis to obtain a high-quality encoding. Algorithm
settings allow one to control the time spent in first-pass
analysis; one can trade off the precision of the motion

search against the time taken. The second pass takes the first
pass results to efficiently encode the video clip. Controlling
the allowed bitrate allows us here to trade off the quality
against the computational work of this step. The quality of
the first pass affects the range of possibilities for the second
pass; the quality of both passes depends on the length of
time devoted to them.

A second example is path planning in robotics
(Zilberstein and Russell, 1993). Path planning includes
sensing and planning modules, both of which have the
imprecise property. The sensing module builds up an
awareness of the environment; this is then used by the
planning module to complete path planning.

A third example is developing control inputs for
cyber-physical systems. Suppose a linear control system has
multiple control variables. One approach is to calculate
these variables one at a time in order of their perceived
impact on the quality of control provided; when control
input k is calculated, the values of control inputs 1, ···, k – 1
are already available. Depending on the amount of time
available, we may only calculate the first N control inputs,
leaving the others at 0. Gupta (2009) has shown this to be a
viable strategy in an environment where the amount of time
available for computation is variable.

Our final example is the task structure for the control of
a planetary rover (Zilberstein et al., 2002) (see Figure 1).
The task is composed of a sequence of processing levels li
and each level contains alternative modules 1 2, , .i im m
Each alternative module has a different resource
requirement in return for which it provides a certain quality
output. By selecting the modules appropriately, we can
trade off the quality of control provided against the
resources (e.g., time) consumed.

Figure 1 Task structure in planetary rover

Source: Zilberstein et al. (2002)

 Scheduling imprecise task graphs for real-time applications 75

3 Related work

While there is a vast literature on scheduling traditional
real-time tasks, much less work has been reported on
scheduling imprecise real-time workloads. We can classify
prior work on imprecise task scheduling according to the
following criteria: whether the:

a tasks are independent

b computational platform is a uniprocessor or
multiprocessor

c execution time is fixed or variable.

Table 1 provides a summary of some representative papers
from the literature. Most work in this area deals with
independent tasks; only a handful of papers assume any
inter-task precedence relationship. Similarly, most work
assumes a fixed execution time, known in advance, for both
the mandatory and optional portions; only in a few cases is
the possibility of variable execution time considered. Only
in rare cases (e.g., Cortes et al., 2006) are the possibility
considered of dynamic voltage scaling to reduce energy
consumption (at the price of slowing down the computation
of the imprecise workload).

Table 1 Classification of some imprecise task scheduling
algorithms

Reference Workload Platform Exec. time

This paper Dep Multi Variable
Chishiro and Yamasaki
(2011)

Indep Multi Variable

Chishiro et al. (2010) Indep Multi Variable
Tchamgoue et al. (2010) Indep Uni Fixed
Li et al. (2009) Indep Multi N/A
Gupta (2009) One task Uni Fixed
Cortes et al. (2006) Dep Uni Variable
Cheng and Wang (2004) Dep Uni Fixed
de Oliveira et al. (2001) Dep Multi Variable
Shin et al. (2000) Indep Uni Fixed
Feng and Liu (1997) Dep Uni Fixed
Dey et al. (1996) Indep Uni Fixed
Khemka et al. (1993) Indep Muti Fixed
Shih and Liu (1992) Indep Uni Fixed
Liu et al. (1991) Indep Uni Fixed
Chung et al. (1990) Indep Multi Fixed
Shin et al. (1989) Dep Uni Fixed

Notes: Indep = independent tasks; Dep = dependent tasks (task
graph); Uni = uniprocessor; Multi = multiprocessor.

3.1 Independent tasks

Chung et al. (1990) consider periodic task sets running on
multiprocessors; the task set is known ahead of time and a
schedule can be setup offline. A first-fit approach is taken to
allocating tasks to processors; following this, uniprocessor

scheduling is carried out on each processor. The rate
monotonic algorithm (Liu and Layland, 1973) is used to
assign static priorities to the mandatory portions of each
task based. The optional portions of all tasks have lower
priority than the mandatory portion of any task. Various
simple heuristics have been studied for scheduling the
optional portions, including static priorities inversely related
to the task utilisation and dynamic priorities favouring the
optional portion with the least execution time provided or
the one with the least slack time. It is assumed that the error
associated with premature termination of an optional portion
is proportional to some positive power of the fraction of
uncompleted work.

An online approach is discussed in Shih and Liu (1992).
The workload consists of a set of tasks known ahead of time
together with tasks that arrive during system operation. The
error model is linear, the output error being equal to the
amount of unfinished work. As tasks arrive, time is reserved
for their mandatory portions using the latest-ready-time-first
order. Optional tasks can execute as long as there is enough
time.

Dey et al. (1993, 1996) presented three heuristic
scheduling algorithms for online scheduling of aperiodic
workloads. Their reward function is a concave
non-decreasing function of the execution time. Two of the
algorithms take a two-level approach. The top level is
executed whenever a new task arrives and is responsible for
deciding the allocation of service time to that task such that
the reward is maximised. The lower-level algorithms decide
the order in which tasks execute. The third algorithm takes a
greedy approach. The two metrics used for evaluating
performance are the reward rate and average number of task
preemptions using each scheduling policy. They have
developed an analytical model for an imprecise task system
and obtained the upper-bounds on the reward rate that is
achievable by any scheduling policy adopted. This work
concludes that with the appropriate lower-level scheduling
policy, the performance of their algorithm approaches quite
close to its upper bound. The average number of
preemptions is very small when the earliest deadline first
(EDF) scheduling algorithm is used at the lower level.

A hierarchical approach to scheduling is taken by
Tchamgoue et al. (2010). The overall workload is divided
into components; each component is guaranteed to obtain a
certain minimum amount of resources over every specified
period. Each component can then be scheduled with this
guarantee in mind. A hierarchical approach allows the
scheduling of one component to be decoupled from the
scheduling of another.

Chishiro and Yamasaki (2011) and Chishiro et al.
(2010) present a global semi-fixed-priority scheduling
approach. Independent tasks arrive at a multiprocessor, and
consist of three parts: mandatory, optional, and wind-up.
The wind-up part is responsible for organising the dispatch
of the output and terminating the task execution. Wind-up
obviously exists implicitly in all other imprecise task
models as well; however, here it is assumed to be
non-negligible. Mandatory and wind-up segments are in a

76 R.C. Ravindran et al.

real-time queue while optional segments are in a non-real-
time queue and are only executed if the real-time queue is
empty. The discipline is called semi-fixed priority because
the task priority drops when the task moves from mandatory
to the optional part and increases again for the windup part.

Li et al. (2009) discuss the problem of deciding when to
terminate the execution of an anytime task. They focus on
an air-defence case-study and suggest the use of three
factors in making this decision: the chances of improvement
in the solution quality, the cost of delaying action (i.e., in
launching a missile), and the impact of the operating
environment (e.g., the number and variety of other targets).

3.2 Dependent tasks

The above-mentioned works all deal with independent
tasks. By contrast, Feng and Liu (1993, 1997) consider
composite tasks, each of which consists of linearly
dependent tasks. That is, each task (except for the first and
last) in a composite task has exactly one parent and one
child; a task receives input from its parent, carries out some
processing, and then forwards the output to its child. The
first task receives inputs from the application; the final task
produces output to the application. The quality of output of
a task depends both on the quality of its input as well as on
the amount of time it executes for. An interesting
assumption is that inaccuracies in the input can cause the
mandatory and optional portions to require more time to
execute.

Feng and Liu (1997) introduce a two-level scheduler.
The first level schedules the composite tasks using a
modified EDF approach which treats the entire composite
task as optional and cuts off tasks at the deadline, even if
they have not been given their full execution time. If it
manages to find full execution time for each composite task,
we are done. If not, it augments the execution time
allocation to composite tasks with relatively small optional
parts. In the second level, the time allocated for each
composite task at the first level is distributed to its subtasks
such that the output error of the composite task is
minimised. They have developed, and compared the
performance of, five second-level heuristic scheduling
algorithms.

Cortes et al. (2006) consider a task graph being
scheduled on a single processor in a non-preemptive
fashion. Their reward model assumes that the quality of the
output depends as the sum of the rewards of the individual
tasks in the task graph; these rewards, in turn, depend only
on the amount of optional time given to the task in question.

Gupta (2009) considers modifying the workload for a
cyber-physical system responsible for computing control
inputs for some control plant. His approach, which can be
employed on either a uniprocessor or a multiprocessor
platform, is to calculate control inputs in the presumed order
of their importance to the controlled plant, stopping when
time runs out. For example, if we have a plant for which
three inputs u1, u2, u3 have to be computed in that order of
importance, we have the option of just calculating u1 and
setting u2 = u3 = 0, or of calculating u1 and u2 and setting

u3 = 0 or of calculating all three inputs. The quality of
control and the computational workload will obviously
improve in this order.

de Oliveira et al. (2001) consider a workload consisting
of arbitrary acyclic task graphs, with the same task being
entitled to belong to multiple task graphs. If a task has been
executed imprecisely (i.e., its optional portion has not been
calculated to completion), then the value to the system of a
precise calculation of the next iteration of that task is
increased. Input data of better quality is held to potentially
reduce the execution time of a task; the deterioration of the
quality of a child task output due to imprecise input from a
parent task output is not explicitly accounted for. They have
a four-algorithm suite in their approach:

a to allocate tasks to individual processors

b to verify that the allocation in (a) allows for feasible
execution of at least the mandatory portion of each task

c to perform admission control of optional portions based
on their perceived current value to the application

d determining whether a given optional part will, if
executed, risk causing a mandatory portion to miss its
deadline.

The work reported in this paper differs from prior work in
scheduling imprecise workloads in the following respects:

• The variability inherent in task execution times is
accounted for when deciding when to prematurely
terminate optional portions.

• Arbitrary task graphs are allowed, with inaccurate
output from a parent task contributing to the error of a
child task.

• The algorithms allow for dynamic voltage scaling of
both the mandatory and optional portions.

4 Model and problem statement

4.1 Task model

We are given a TPG indicating the dependence between
tasks.1 A task is assumed to require inputs from all its
parents before it starts executing; it delivers output only at
the end of its execution. Since the output of an imprecise
task can be inaccurate (due to premature termination), and
an imprecise task can provide input to another task, we have
to account for input errors. Let iσ denote the vector of
inputs and input errors applied to task Ti, and φi the fraction
of its optional portion that has been executed. Its output
error is given by (,).i i iE σ φ As a practical matter, unless we
instrument the code to monitor and output the progress of
the execution, φi is never known exactly except when the
optional portion finishes, i.e., when φi = 1. At all other
times, we must use our best estimate of this value based on
profiling and on the number of cycles consumed so far in its
execution.

 Scheduling imprecise task graphs for real-time applications 77

4.2 Processor model

The task workload runs on a set of processors which use
dynamic voltage scaling (Pillai and Shin, 2001) to trade off
clock frequency (and hence rate of execution progress) and
energy consumed. Due to the highly non-linear dependence
of energy on processor speed, voltage scaling has emerged
as a principal way by which real-time systems can reduce
their energy consumption while still ensuring that all task
deadlines are met.

In this paper, we assume that there are two discrete
voltage levels, Vhigh and Vlow. It is quite easy to extend this
algorithm to account for a larger number of voltage levels;
however, with maximum supply voltages dropping every
semiconductor generation, the range of voltages over which
the supply can be switched keeps shrinking, and it is
increasingly unlikely that more than two voltage levels will
be useful in the future. We assume that voltage switching
costs are negligible; this is reasonable, given that each task
in our algorithms undergoes at most one voltage switch. The
overhead of voltage switching is typically a few tens of
microseconds (Park et al., 2010), which is very small in
comparison to the execution time of complex control
algorithms and the task periods in cyberphysical systems.
For this reason, it is common to ignore such overheads in
real-time voltage scaling. The processor consumes ehigh and
elow energies per clock cycle at Vhigh and Vlow, respectively,
and the corresponding frequencies are fhigh and flow. The
energy spent in communication is folded into the cost of
execution and is not accounted for separately. Also, while
the number of cycles required to execute a task is assumed
independent of voltage, the time taken is obviously scaled
according to the clock frequency.

Table 2 Key notations

Notation Explanation
di Deadline of leaf task i
Fi Finish time of leaf task i
Be Energy bound for the TPG

high
ic Number of high voltage cycles spent executing

task i
low
ic Number of low voltage cycles spent executing

task i
wm
ic Mandatory worst case cycles of task i
wo
ic Optional worst case cycles of task i
m
in Number of cycles used by mandatory part of task i
o
in Number of cycles used by optional part of task i

ehigh Energy consumed by one high voltage cycle
elow Energy consumed by one low voltage cycle
χ A mapping of tasks to processors (1..n) → (1..m)

iσ Input vector to task i concatenated with input error
vector

Ei(·) Output error function of task i
Γ Final error of task graph
F(·) Recursive application of Ei(·)

As mentioned earlier, this algorithm runs on multiple-
processor systems. The algorithm places no restrictions
on the structure of the underlying hardware system; it is
not material whether it is a shared-memory or message-
passing system, for example. This underlying structure
will obviously have performance implications, which will
be taken into account by the algorithm when making its
decisions.

The key notation used is summarised in Table 2.

4.3 Optimisation objective and constraints
Denote by T1, …, Tn the set of all tasks, by L the set of
leaves of the TPG, by di and Fi the deadline and finishing
time of task Ti, and by , highlow

i ic c the number of low-voltage
and high-voltage clock cycles spent executing task Ti
(i = 1, …, n. Let Be be the upper bound of the energy
consumption (set to ∞ if no such bound exists).

The only output that is visible to the application is that
from the leaves of the TPG; therefore, our aim is to
minimise the weighted sum of the leaf errors, where κj is the
weight given to the error in the output of leaf task Tj and
reflects the scale of values of the application. The
optimisation problem, stated formally, is to minimise

(),i i i i
i

κ E σ
∈

⎧ ⎫⎪ ⎪Γ =⎨ ⎬
⎪ ⎪⎩ ⎭

∑
L

φ (1)

subject to the following constraints

()j jF d j≤ ∈L (2)

()
1

n
high low

high low ei i
i

c e c e B
=

⋅ + ⋅ ≤∑ (3)

There are two sources for a task input: the external world
and the other tasks. We have no control over the former; we
focus instead on the latter. We assume that any expected
errors from the external world input are factored into the
error functions. Applying the error function Ei recursively,
we can write the overall error as a function of the number of
clock cycles consumed by each task. That is, if

highlow
i i ic c c= + is the number of clock cycles consumed by

task Ti, we can write

()1 2, , , nF c c cΓ = (4)

where F(·) can be obtained by recursive application of the
Ei(·) functions.

As a simple example, consider the task graph shown in
Figure 2. Tasks T2 and T3 receive inputs from T1, and T4
receives inputs from both T2 and T3. We wish to derive F(·)
from the error functions, Ei(·, ·), i = 1, ···, 4. Based on our
profiling of these tasks, suppose our best estimate of the
mandatory and optional numbers of cycles used by these
tasks are given by μi, ωi, i = 1, ···, 4.

78 R.C. Ravindran et al.

Figure 2 Task graph example

Therefore, if ci is the number of cycles allocated to task Ti,
our best estimate of the fraction of the optional portions
completed is { }max 0, .i i

i

c μ
i ω

−=φ

Hence, we can write

()()
() ()()

2 3 1 1

4 2 2 2 3 3 3

0,

, , ,

σ σ E

σ E σ E σ

= =

=

φ

φ φ

The output error, which is the error in the output of T4, is
4 4 4(,).E σ φ Based on the above expressions, we can

obviously express E4 in terms of ci, i = 1, ···, 4.
In this paper, we explicitly account for the fact that the

actual total number of execution cycles required to finish a
task is not known precisely (except when the task finishes).
At best, we only know its probability distribution based on
workload profiling. We therefore have to use an estimate of
φi as a function of ci, based on the information available.
We do know the worst-case number of cycles, , ,wm wo

i ic c
required for the mandatory and optional portions,
respectively, of task Ti.

5 Offline allocation and scheduling heuristic

Minimising Γ in equation (1) is an NP-complete problem,
and in addition, we do not have the exact value of φi. We
therefore must use a minimisation heuristic.

Our heuristic exploits the fact that in cyber-physical
systems (our target application area), the computational
tasks are known in advance, and can be profiled extensively
before the system starts operation. Such advance
information can be exploited by having separate offline and
online phases in the scheduling process. In the offline phase,
which is executed once before the system is put into
operation, tasks are assigned to processors and a schedule is
generated making assumptions about the tasks’ running
times. The offline phase allocates the mandatory part’s
worst case requirement to all the tasks, thereby ensuring
meaningful output of each task in the system.

In the online phase, as tasks finish, we update our
knowledge of their actual running time and reclaim
whatever resources are released by early task completion.
For obvious reasons, the online heuristic must be
lightweight, while the same constraint does not apply to the
offline part.

The offline heuristic call structure is shown in Figure 3.
In our algorithm, we start with a candidate allocation of
tasks to processors. This allocation is assessed for its ability
to meet time and energy constraints as will be described
later. Simulated annealing is used to navigate through
various allocations in search of one which offers good
performance.

Figure 3 Offline heuristic call structure

5.1 Root module

The basic elements of the root module (Figure 4) are:

1 A finite set, S, of all possible configurations, where
each configuration is a mapping of the entire task set to
the processor set.

2 A step function STEP() which returns a configuration
after moving a random task from one processor to
another or swaps two random tasks on two different
processors based on Pswap (the probability with which
two tasks assigned to different processors are swapped).
The greater the Pswap, the more chances of tasks getting
exchanged between different processors.

3 A cooling schedule with an initial temperature
Tempinitial and a final temperature Tempfinal, a
depreciation factor df, and number of tries Ntries of the
greedy algorithm at each temperature value.

4 An acceptance criterion. If δ is the difference between
the new final error and the best final error, k is the
Boltzmann constant and T is the current temperature,
the new configuration is accepted with probability p.

()
1 if 0

exp / () if 0
δ

p
δ kT δ

<⎧
= ⎨ − ≥⎩

 (5)

5 An arbitrarily generated initial configuration χinitial with
a random mapping of {1..n}→{1..m}.

The worst-case mandatory and optional execution cycles of
task Ti are denoted by wm

ic and ,wo
ic respectively. We

assign cycles to tasks in steps where necessary: the step size
at high and low voltage levels is denoted by νhigh, νlow,
respectively. These are chosen so as to take the same time,
i.e., such that νhigh · fhigh = νlow · flow.

 Scheduling imprecise task graphs for real-time applications 79

Figure 4 Root module

function rootModule(Tinit, Tfinal, df, Ntries, χinit)
 temp = Tinit;
 χ = χinit;
 Πfinal = invalid;
 χfinal = invalid;
 while (temp > Tfinal) do
 for (i = 1 … Ntries step 1) do
 χnew = STEP(χ);
 Π = taskAlloc(χnew);
 if (δ < 0 OR RND(0, 1)> e–δ/(k·temp)) then
 χ = χnew;
 if ()() final

offlineF Π < Γ then

 ();final
offline FΓ = Π

 Πfinal = Π;
 χfinal = χ;
 end if
 end if
 end for
 temp = temp/df;
 end while
 return Πfinal;
end function

5.2 Task allocator module

The task allocator (Figure 5) returns a schedule based on
which one can estimate the offline final error, Γoffline for the
specified task assignment. The schedule is marked invalid if
it is unable to find one which satisfies the time and energy
constraints. It first generates a time allocation taking only
the deadlines into account and disregarding the energy
constraint, if any. If an energy constraint is specified, it then
modifies this schedule by swapping high-voltage and
low-voltage cycles if this is needed to meet the bound. If no
such swap can be found, it declares failure and returns an
invalid result.

Figure 5 Task allocator module

function taskAlloc(Configuration χ)
 Π = timeBound(χ);
 if (Π! = invalid) then
 if ()1

n high
high ei

i
c e B

=
≤∑ then

 return Π
 else
 return energyBound(Π);
 end if
 end if
end function

Figure 6 Time-bound module

function timeBound(Configuration χ)
 Π = invalid;
 , 1, ,wm

i ic c i n= =

 if (a deadline is violated) then
 return Π = invalid
 else
 1, 1, ,i

aft i n= =

 end if
 while (s.t. 1)i

afi t∃ == do

 for (each such i) do
 for (j = 1..n step 1) do
 ,

high
j j i jc c δ v′ = +

 end for
 ()1(, ,) , ,i n i nB F c c F c c′ ′= −

 end for
 Define imax = argmax1≤i≤n Bi

max
high

ic v+ =

 if (a deadline is missed) then
 Set 0highi

aft =

 Revert allocation max
high

ic v− =

 else
 update Π
 end if
 end while
 return Π
end function

5.3 Time-bound module

The time-bound module (Figure 6) generates a static offline
schedule for the given configuration. The input to the
algorithm is a configuration χ passed in by the root module.
The algorithm starts by assigning high voltage cycles
sufficient to meet the worst case mandatory requirement of
each task. Next, a check is done to analyse whether the
schedule generated after this step violates the deadline. If
this happens, the search heuristic is informed that this is an
invalid configuration. If the deadline is not violated then the
algorithm proceeds with the allocation of high cycles for the
optional part of all tasks. The allocation is given to tasks in
slices of νhigh. This algorithm allocates this slice greedily to
the tasks. The slice is given to the task where it will have
the greatest improvement in final error at that instant. If by
allocating the slice to a task, the path on which it is placed
becomes critical (the TPG violates end-to-end time
deadline) or if it exceeds the total worst case requirement of
this task, the allocation is retracted and the task is marked
for no allocations in the future. This allocation continues
until all the tasks are marked as unallocatable, at which
point the valid schedule is returned to the task allocator

80 R.C. Ravindran et al.

module (δij is the Kronecker delta, i.e., δij = 1 if i = j and 0
otherwise.).

Figure 7 Energy bound module

function energyBound((Configuration χ))
 for (1 ≤ i ≤ n) do
 /highlow

i low highic c f f⎢ ⎥= ⎣ ⎦

 0high
ic =

 end for
 for (1 ≤ i ≤ n) do
 while ()wm

i ic c< do

 low low
ic v− =

 high high
ic v+ =

 end while
 end for
 Calculate energy consumed, Ce
 while (Ce > Be) do
 low

foundtask False=

 for (1 ≤ i ≤ n) do
 Δi = ∞
 if ()wm low

i ic c v≥ + then

 low
foundtask True=

 for (1 ≤ j ≤ n) do
 ,

low
j j i jc c δ v′ = −

 () ()1 1, , , ,i n nF c c F c c′ ′Δ = −

 end for
 end if
 end for
 if ()low

foundtask False== then

 return invalid
 else
 imin = min arg1≤i≤n Δi

min
low low
ic v− =

 Recalculate Ce
 end if
 end while
 while (Ce < Be) do
 for (1 ≤ i ≤ n) do
 for (1 ≤ j ≤ n) do
 (),

high low
j j i jc c δ v v′ = + −

 end for
 () ()1 1, , , ,i n nB F c c F c c′ ′= −

 end for

 if (){1, , } low low
i ii n c v∀ ∈ < then

 return schedule Π
 end if
 if (){1, , } wo wm

i i ii n c c c∀ ∈ ≥ + then

 return schedule Π
 else
 Define imax = argmax1≤i≤n Bi.

max

high high
ic v+ =

max
low low
ic v− =

 Recalculate Ce
 end if
 end while
end function

5.4 Energy-bound module

The energy bound phase (Figure 7) starts after the
time-bound phase arrives at a valid schedule with respect to
time. The offline energy-bound phase starts by assigning
low-voltage cycles to all the tasks in the time frame
allocated by the time-bound phase. Then it makes sure that
all the tasks have enough cycles to satisfy their required
worst-case mandatory workload by converting low-voltage
cycles to high-voltage cycles. After this stage, if the
schedule has violated the energy constraint, then low cycles
are removed from the tasks which least affect the final error
without violating their worst case mandatory workload
requirement. If the algorithm runs out of tasks to remove
low cycles and the energy deadline is still violated, an
invalid schedule is returned. If we are still under the energy
deadline, after completing the mandatory workload of the
task, the low cycles of the tasks are converted into high
cycles greedily until the energy barrier is hit or we run out
of low cycles. When this condition is reached a valid
schedule is returned.

6 Online algorithm

As mentioned earlier, the actual execution times vary
considerably. The actual demand of a task is not known
unless and until the task completes execution. At this point,
we know that the entire optional part has been executed.
Once task Ti completes execution, we know that φi = 1,
meaning that the Ti output error will be given by (, 1).i iE σ
This then affects all tasks that are downstream from it and
allows the error function F(·) to be updated appropriately. If
a task (say Tf) completes before its assigned time has been
spent, additional time is released for other tasks to use. The
job of the online algorithm is to reclaim this released time to
improve on the offline schedule.

The online algorithm (Figure 8) makes sure that the
tasks do not exceed their static finish times assigned by the
offline algorithm while distributing the energy, thereby

 Scheduling imprecise task graphs for real-time applications 81

respecting the end-to-end deadline. The two parameters to
control the amount of time the online scheduler has for
distributing the released energy are the granularity of
allocation Δonline and the set of tasks considered for
distribution. The coarser the granularity, the longer the time
for calculating benefit for the tasks and distributing the
released energy.

The input parameter LEV controls the set of tasks
considered for energy distribution when a task finishes: it
can be regarded as a means to limit look-ahead in an effort
to reduce the algorithm overhead. We only consider tasks
which are LEV levels away from Tf in the task graph.
depth(Ti) gives the shortest distance of task Ti from the root
of the TPG and oncriticalpath(Ti) returns true if allocation
of additional energy to the task violates the deadline or
energy constraint and finished(Ti) returns true if the entire
optional portion has finished.

Note that there is an asymmetry in information
availability between tasks close to the top of the task graph
and those towards the bottom. The former are executed in
the face of very little information about actual execution
times. By contrast, by the time the later tasks start
executing, the actual execution times of the earlier tasks are
known and therefore better-quality decisions can be taken
with respect to these. On the other hand, note that the tasks
high in the task graph provide output consumed by a large
number of other tasks, and they get enhanced optional time
allocation because of this.

Figure 8 Online module

function online((Δonline, LEV))
 Calculate treclaim, time reclaimed on Tf completion.
 if (treclaim == 0) then
 return
 else
 while (treclaim > 0) do
 temp

reclaim lowlown t f= ⋅

 slice online lown f= Δ ⋅

 if ()temp
onlinelown < Δ then

 return
 end if
 nallocated = 0
 Find task set OTS of Tx such that:
 depth(Tx) – depth(Tf) ≤ LEV
 finished(Tx) = false
 Tx is not on a critical path to a leaf
 if (OTS is empty) then
 return
 end if
 for (Ti ∈ OTS) do
 if ()wo wm

i slice i ic n c c+ > + then

 Remove Ti from OTS

 end if
 if (OTS is empty) then
 return
 end if
 end for
 Assign nslice cycles at vlow to Tk in OTS
 which yields the greatest improvement in error:
 ck+ = nslice
 treclaim – = Δonline
 if (Tk finishes later than in offline schedule) then
 (reverse this)
 ck – = nslice
 Remove Tk from OTS
 treclaim + = Δonline
 end if
 end while
 end if
end function

7 Numerical results

7.1 Experimental setup

7.1.1 Task graph modelling

Our numerical results are based on simulating 1,000 random
directed acyclic directed TPGs, each of which was run 500
times with different random on-line run-times. Each TPG
was generated based on an edge probability P, P ∈ (0, 1),
which specifies the probability of an edge between two
nodes in the TPG, and a maximum out degree D specifying
the maximum number of children a node can have. Low
values of P and D will generate leaner TPGs with fewer
dependencies, and vice versa. The worst case mandatory
and optional parts of each task were selected at random out
of {5, 10, 15}. The deadline for each TPG was selected as
no lower than the sum of the worst case mandatory parts of
the longest directional path in the graph. During allocation
of time or energy to tasks, a critical path violation (a path in
the TPG which violates the deadline) is identified using
standard algorithms mentioned in Kwok and Ahmad (1999).

We assume that the error generated by an incomplete
task is a convex function of the fraction of the uncompleted
optional part out of the total optional part. We used as error
function the function x8 unless stated otherwise. In addition,
each task has sensitivity values, which denote the sensitivity
of its output error to its input errors. We selected these
sensitivities at random for each task out of the interval
(0, 2.0]. A high sensitivity value will lead to high increases
in output error for small input errors and vice versa. A linear
error propagation model is assumed for all the experiments
conducted; the output error is convex with respect to the
fraction of unexecuted optional part whereas it is linear with
respect to the input errors.

82 R.C. Ravindran et al.

The run-time characteristics of the tasks are modelled as
follows. The actual run-time follows the normal
distribution, conditioned on falling between specified
minimum and maximum values, with the mean midway
between them. The minimum value is given by a
fraction (mf) of the worst case requirement whereas the
maximum is the worst case itself: {[mf , 1.0]* }m wm

i it t∈ and
{[mf , 1.0]* },o wo

i it t∈ where , m o
i it t are the actual

mandatory and optional high-voltage execution times,
respectively. The online phase is sampled 500 times and the
average of 1,000 successfully scheduled TPGs is used for
analysis.

7.2 Results

Figure 9 shows the average online error as a function of
mf – the fraction of the minimum and the worst case run-
time of tasks. The different curves pertain to different
values of edge probability, P. As the value of P increases,
the dependency between the tasks increases. From the error
model it can be noted that both precedence and quality
dependency increase as P increases. This results in the sharp
rise of curves pertaining to a higher P value. Very high
values of P result in too many TPGs with cycles and cannot
produce meaningful results. When mf is 1.0, the tasks run to
their worst case rendering the offline error (worst possible
error for the given allocation) during the online phase.

Figure 9 Effect of minimum run-time

Figure 10 shows the effect of varying the standard deviation
of the run-time distribution for different deadlines. As the
standard deviation increases, the information available to
the offline algorithm about the actual execution times
decreases, and its expected error in estimating the actual
execution time tends to increase. This leads to an increase in
final error, as seen in the figure.

Figure 11 demonstrates the advantage obtained by
online reclamation, by showing the ratio of the average
online error with and without reclamation. We first observe

that for a very tight deadline, not much reclamation is done
even for increasing energy constraints. This can be due to
the fact that cycles released by tasks are not effectively used
by other tasks, because doing so would violate the TPG’s
deadline. Secondly, for medium time deadlines, reclamation
is more effective for relatively tighter energy constraints
than for loose energy constraints. This is due to the fact that
for stricter energy constraints, even a small amount of
energy released can be distributed much more effectively
than for looser energy constraints. Thirdly, for very relaxed
deadlines, there were not many chances to reclaim as tasks
were allocated with ample resources in the offline stage.

Figure 10 Effect of standard deviation of run-times

Figure 11 Effect of online reclamation

Figure 12 compares the average error for different error
functions. We used a convex error function f(x) = x2 and a
series of step functions g(x, steps) = (⌊(x ∗ steps)⌋)/steps
(where x is the fraction of the unexecuted/unallocated
optional part and steps is a power of 10). As the value of
steps increases, the step error function behaves much like
the convex error function but is bounded below by it. The
plot shows that for larger values of step (indicating a more
abrupt but less frequent change in error value), the output
error increases.

 Scheduling imprecise task graphs for real-time applications 83

Figure 12 Effect of step error function

7.3 Comparison with the BFA algorithm

We are not aware of any other scheduling algorithm
designed for arbitrary real-time imprecise task graphs
running on an energy-bounded multiprocessor. Hence, our
comparison is with a standard allocation approach: breadth
first allocation (BFA): see Figure 13. Our justification for
picking BFA as a baseline is that it is generally used as an
initial (round robin) task allocation step, following which a
uniprocessor scheduling step is undertaken. The standard
approach to scheduling real-time tasks in multiprocessors is
to first allocate them to processors and then use
uniprocessor scheduling algorithms for tasks allocated to
each processor.

Figure 13 Greedy vs. BFS allocation

The BFA offline and online algorithms have no knowledge
of the error functions associated with the tasks. This
algorithm prioritises the tasks based on their appearance in a
breadth first search and allocates time to them as per their

priorities while taking care not to violate the deadline. The
plot shows the ratio of the final average error of our
algorithm to BFA as a function of the deadline, for three
values of the number of iterations of the offline algorithm,
which depends on the time allotted to the offline scheduler.
Our algorithm performs much better than BFA when the
scheduler has less time and a very tight deadline for the
TPG. As expected, our algorithm beats BFA by larger
margins as the deadline gets loose. This is mainly because
the optional part for the tasks is allocated more wisely based
on the benefit in final error. The rate of improvement as a
function of the number of iterations is different for different
algorithms; the performance ratio is therefore not
monotonic.

7.4 A robot application

This experiment was conducted on a mathematical model of
a robot implementing anytime sensing, planning and action
as shown in Figure 14 (Zilberstein and Russell, 1993). Our
analysis concentrates on determining the resource allocation
for each of the tasks by using our scheduling algorithm for
minimising the error in the final output. Figure 15 shows the
effect of simultaneous time deadline and energy constraint
on the system. The error functions we used were obtained
by curve fitting to the performance profiles found in
Zilberstein and Russell (1993) as shown in Figure 16. The
curves in Figure 16 also show the effect of input error on
the performance profiles. The tasks that do not have an
optional part do not have an effect on the final output
quality. This figure quantifies the improvement possible
with looser deadline and energy constraints. Such
improvements can be taken into account when selecting
such deadlines in the process of designing the overall
system. In particular, such a selection would constitute a
trade-off between the quality of control output against its
timeliness, as it affects the control of the plant.

Figure 14 Anytime robot

Source: Zilberstein and Russell (1993)

84 R.C. Ravindran et al.

Figure 15 Error variation with time and energy constraints

Figure 16 Error functions based on performance profiles

8 Discussion

We have presented offline and online heuristics for
scheduling imprecise task graphs on multiprocessors. The
task graphs may be arbitrary; the error output of a task is a
function of both the input error and the premature
termination (if any) of the optional portion of the task. We
include in our model the fact that task run-times are not
known precisely in advance, but only statistically.

Future work includes the use of hierarchical scheduling
methods to allow imprecise tasks to coexist with traditional
0-1 task sets. Another promising area for study is the
instrumenting of imprecise code, which would allow one to
determine its execution progress and thereby provide
additional run-time information to the system without
imposing too great an overhead.

Acknowledgements

The authors would like to thank the referees for their careful
reading of the draft manuscript and their perceptive
comments. This paper was supported in part by the National
Science Foundation under grant CNS-0931035.

References
‘Xvid tool’ [online] http://www.xvid.org/ (accessed 01/02/2011).
Cheng, A. and Wang, R. (2004) ‘A new scheduling algorithm and

a compensation strategy for imprecise computation’, in
Proceedings of the Computer Software and Applications
Conference (COMPSAC), Vol. 1, pp.167–172.

Chishiro, H. and Yamasaki, N. (2011) ‘Global semi-fixed-priority
scheduling on multiprocessors’, in IEEE International
Conference on Embedded and Real-Time Computing Systems
and Applications, IEEE, pp.218–223.

Chishiro, H., Takeda, A., Funaoka, K. and Yamasaki, N. (2010)
‘Semi-fixed-priority scheduling: new priority assignment
policy for practical imprecise computation’, in IEEE
International Conference on Embedded and Real-time
Computing Systems and Applications, ser. RTCSA ‘10,
pp.339–348.

Chung, J-Y., Liu, J.W.S. and Lin, K-J. (1990) ‘Scheduling periodic
jobs that allow imprecise results’, IEEE Trans. Comput.,
September, Vol. 39, pp.1156–1174 [online]
http://dx.doi.org/10.1109/12.57057 (accessed 05/07/2011).

Cortes, L., Eles, P. and Peng, Z. (2006) ‘Quasi-static assignment of
voltages and optional cycles in imprecise-computation
systems with energy considerations’, IEEE Transactions on
VLSI, Vol. 14, No. 10, pp.1117–1129.

de Oliveira, R., Fraga, J. and Farines, J-M. (2001) ‘Scheduling
imprecise tasks in real-time distributed systems’, in IEEE
International Symposium on Object-Oriented Real-Time
Distributed Computing, IEEE, pp.319–326.

Dey, J.K., Kurose, J. and Towsley, D. (1996) ‘On-line scheduling
policies for a class of iris (increasing reward with increasing
service) real-time tasks’, in IEEE Transactions on Computers,
July, pp.802–813.

Dey, J.K., Kurose, J.F., Towsley, D.F., Krishna, C.M. and
Girkar, M. (1993) ‘Efficient on-line processor scheduling for
a class of iris (increasing reward with increasing service)
real-time tasks’, in SIGMETRICS, pp.217–228.

Feng, W. and Liu, J. (1993) ‘An extended imprecise computation
model for time-constrained speech processing and
generation’, in Proceedings of the IEEE Workshop on
Real-Time Applications, May, pp.76–80.

Feng, W. and Liu, J.W.S. (1997) ‘Algorithms for scheduling
real-time tasks with input error and end-to-end deadlines’, in
IEEE Transactions on Software Engineering, February,
pp.93–106.

Gupta, V. (2009) ‘On an anytime algorithm for control’,
Proceedings of the 48h IEEE Conference on Decision and
Control CDC held jointly with 2009 28th Chinese Control
Conference, pp.6218–6223 [online]
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=5400834 (accessed 12/08/2011).

Khemka, A., Shyamasundar, R. and Subrahmanyam, K. (1993)
‘Multiprocessors scheduling for imprecise computations in a
hard real-time environment’, in International Parallel
Processing Symposium, pp.374–378.

Kwok, Y-K. and Ahmad, I. (1999) ‘Static scheduling algorithms
for allocating directed task graphs to multiprocessors’, ACM
Computing Surveys, Vol. 31, No. 4, pp.406–471.

Li, P., Wu, W. and Lu, F. (2009) ‘Analysis on influential factors
for meta-level control of the anytime algorithm for dynamic
WTA problem’, in International Workshop on Intelligent
Systems and Applications (ISA), pp.1–4.

 Scheduling imprecise task graphs for real-time applications 85

Liu, C.L. and Layland, J.W. (1973) ‘Scheduling algorithms for
multiprogramming in a hard-real-time environment’, J. ACM,
January, Vol. 20, pp.46–61 [online]
http://doi.acm.org/10.1145/321738.321743.

Liu, J., Lin, K-J., Shih, W-K., Yu, A., Chung, J-Y. and Zhao, W.
(1991) ‘Algorithms for scheduling imprecise computations’,
IEEE Computer, May, Vol. 24, No. 5, pp.58–68.

Park, J., Shin, D., Chang, N. and Pedram, M. (2010) ‘Accurate
moeling and calculation of delay and energy overheads of
dynamic voltage scaling in modern high-performance
microprocessors’, in International Symposium on Low Power
Electronics and Design (ISLPED), pp.419–424.

Pillai, P. and Shin, K. (2001) ‘Real-time dynamic voltage scaling
for low-power embedded operating systems’, in Symposium
on Operating System Principles, pp.89–102.

Shih, W. and Liu, J. (1992) ‘On-line scheduling of imprecise
computations to minimize error’, in IEEE RealTime Systems
Symposium, December.

Shin, W-K., Lee, C-R. and Tang, C-H. (2000) ‘A fast algorithm for
scheduling imprecise computational with timing constraints to
minimize weighted error’, in IEEE Real-Time Systems
Symposium, pp.305–310.

Shin, W-K., Liu, J. and Chung, J-Y. (1989) ‘Fast algorithms for
scheduling imprecise computations’, in IEEE Real-Time
Systems Symposium (RTSS), pp.12–19.

Tchamgoue, G.M., Kim, K.H., Jun, Y-K. and Lee, W.Y. (2010)
‘Hierarchical real-time scheduling framework for imprecise
computations’, in IEEE/IFIP International Conference on
Embedded and Ubiquitous Computing, pp.273–280.

Zilberstein, S. and Russell, S.J. (1993) ‘Anytime sensing, planning
and action: a practical model for robot control’, in
Proceedings of the Thirteenth International Joint Conference
on Artificial Intelligence, Chambery, France, pp.1402–1407.
[online]
http://rbr.cs.umass.edu/shlomo/papers/ZRijcai93.html
(accessed 10/12/2011).

Zilberstein, S., Washington, R., Bernstein, D.S. and
Mouaddib, A-I. (2002) ‘Decision-theoretic control of
planetary rovers’, in Revised Papers from the International
Seminar on Advances in Plan-Based Control of Robotic
Agents, Springer-Verlag, London, UK pp.270–289 [online]
http://rbr.cs.umass.edu/shlomo/papers/ZWBMlnai02.html
(accessed 03/01/2012).

Notes
1 If the workload consists of multiple, independent, TPGs, this

can be handled within our framework by introducing a virtual
root node whose children are the roots of these independent
TPGs.

