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Abstract: Many of the real-time tasks within embedded real-time control applications fall into 
the imprecise category. Such tasks are iterative in nature, with output precision improving as 
execution time increases (up to a point). These tasks can be terminated early at the cost of poorer 
quality output. Many imprecise tasks in CPS are dependent, with one task feeding other tasks in a 
task precedence graph (TPG). A task output quality depends on the quality of its input data as 
well as on the execution time that is allotted to it. In this paper, we study the 
allocation/scheduling of imprecise TPGs on multiprocessors to maximise output quality where 
resources (time and energy) are limited. Our heuristic algorithms can effectively reclaim 
resources when tasks finish earlier than their estimated worst-case execution time. Dynamic 
voltage scaling is used to manage energy consumption and keep it under a specified bound. 
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1 Introduction 

Imprecise tasks form an important category of workloads in 
cyber-physical and other real-time applications. An 
imprecise task [also known as an increased reward with 
increased service (IRIS) task] is one which can be 
terminated prematurely and still produce usable (albeit of 
poorer quality) output. Such tasks usually consist of a 
mandatory part that must be completed in order to produce 
any usable output, and an optional part which yields 
increasingly accurate results (up to a point) the longer it 
executes. The value of the output accuracy to the 
application is obviously application specific, and is captured 
by means of a cost or reward function. There is a category 
of imprecise tasks called anytime tasks, which are 
characterised by extremely small mandatory portions. 

We address the following problem. We are given a set 
of imprecise tasks whose precedence conditions are 
specified by a directed acyclic task graph. Tasks consume 
results from their parents in the task graph (the root of the 
task graph has the system as its parent). The output to the 
application is from the leaves of the graph. Our aim is to 
map tasks to processors and then schedule these tasks so 
that the quality of output to the application is maximised, 
subject to the execution completing by a specified deadline 
while staying under some given energy limit. As proxy to 
the quality of the output, we use the weighted sum of the 
output errors of the graph’s leaves, which we attempt to 
minimise. To this end, we present both offline and online 
heuristic algorithms; the offline heuristic carries out 
allocation of tasks to processors and produces an offline 
schedule, under the assumption that tasks run to their 
estimated worst-case execution times (WCET). The online 
heuristic reclaims execution times released by tasks which 
consume less than their WCETs. 

This paper makes the following contributions. It 
considers imprecise task workloads consisting of arbitrary 
task precedence graphs (TPGs). It accounts for the fact that 
tasks seldom take their estimated WCET, but in fact, often 
complete much earlier, by providing means to reclaim 
resources released early by completing tasks. It accounts for 
the decrease in output quality that results when a task 
receives imprecise input from one of its parents in the task 
flow graph. Finally, it allows for energy management using 
dynamic voltage scaling. 

2 Examples of IRIS tasks 

Imprecise tasks can be found for a wide variety of 
applications. Consider the open source video codec tool, 
xvid (‘Xvid tool’, http://www.xvid.org/). This tool has a 
two-pass option for video encoding. The first pass analyses 
the video clip; the second pass uses the results of that 
analysis to obtain a high-quality encoding. Algorithm 
settings allow one to control the time spent in first-pass 
analysis; one can trade off the precision of the motion  
 
 

search against the time taken. The second pass takes the first 
pass results to efficiently encode the video clip. Controlling 
the allowed bitrate allows us here to trade off the quality 
against the computational work of this step. The quality of 
the first pass affects the range of possibilities for the second 
pass; the quality of both passes depends on the length of 
time devoted to them. 

A second example is path planning in robotics 
(Zilberstein and Russell, 1993). Path planning includes 
sensing and planning modules, both of which have the 
imprecise property. The sensing module builds up an 
awareness of the environment; this is then used by the 
planning module to complete path planning. 

A third example is developing control inputs for  
cyber-physical systems. Suppose a linear control system has 
multiple control variables. One approach is to calculate 
these variables one at a time in order of their perceived 
impact on the quality of control provided; when control 
input k is calculated, the values of control inputs 1, ···, k – 1 
are already available. Depending on the amount of time 
available, we may only calculate the first N control inputs, 
leaving the others at 0. Gupta (2009) has shown this to be a 
viable strategy in an environment where the amount of time 
available for computation is variable. 

Our final example is the task structure for the control of 
a planetary rover (Zilberstein et al., 2002) (see Figure 1). 
The task is composed of a sequence of processing levels li 
and each level contains alternative modules 1 2,  ,  .i im m  
Each alternative module has a different resource 
requirement in return for which it provides a certain quality 
output. By selecting the modules appropriately, we can 
trade off the quality of control provided against the 
resources (e.g., time) consumed. 

Figure 1 Task structure in planetary rover 

 
Source: Zilberstein et al. (2002) 



 Scheduling imprecise task graphs for real-time applications 75 

3 Related work 

While there is a vast literature on scheduling traditional 
real-time tasks, much less work has been reported on 
scheduling imprecise real-time workloads. We can classify 
prior work on imprecise task scheduling according to the 
following criteria: whether the: 

a tasks are independent 

b computational platform is a uniprocessor or 
multiprocessor 

c execution time is fixed or variable. 

Table 1 provides a summary of some representative papers 
from the literature. Most work in this area deals with 
independent tasks; only a handful of papers assume any 
inter-task precedence relationship. Similarly, most work 
assumes a fixed execution time, known in advance, for both 
the mandatory and optional portions; only in a few cases is 
the possibility of variable execution time considered. Only 
in rare cases (e.g., Cortes et al., 2006) are the possibility 
considered of dynamic voltage scaling to reduce energy 
consumption (at the price of slowing down the computation 
of the imprecise workload). 

Table 1 Classification of some imprecise task scheduling 
algorithms 

Reference Workload Platform Exec. time 

This paper Dep Multi Variable 
Chishiro and Yamasaki 
(2011) 

Indep Multi Variable 

Chishiro et al. (2010) Indep Multi Variable 
Tchamgoue et al. (2010) Indep Uni Fixed 
Li et al. (2009) Indep Multi N/A 
Gupta (2009) One task Uni Fixed 
Cortes et al. (2006) Dep Uni Variable 
Cheng and Wang (2004) Dep Uni Fixed 
de Oliveira et al. (2001) Dep Multi Variable 
Shin et al. (2000) Indep Uni Fixed 
Feng and Liu (1997) Dep Uni Fixed 
Dey et al. (1996) Indep Uni Fixed 
Khemka et al. (1993) Indep Muti Fixed 
Shih and Liu (1992) Indep Uni Fixed 
Liu et al. (1991) Indep Uni Fixed 
Chung et al. (1990) Indep Multi Fixed 
Shin et al. (1989) Dep Uni Fixed 

Notes: Indep = independent tasks; Dep = dependent tasks (task 
graph); Uni = uniprocessor; Multi = multiprocessor. 

3.1 Independent tasks 

Chung et al. (1990) consider periodic task sets running on 
multiprocessors; the task set is known ahead of time and a 
schedule can be setup offline. A first-fit approach is taken to 
allocating tasks to processors; following this, uniprocessor 

scheduling is carried out on each processor. The rate 
monotonic algorithm (Liu and Layland, 1973) is used to 
assign static priorities to the mandatory portions of each 
task based. The optional portions of all tasks have lower 
priority than the mandatory portion of any task. Various 
simple heuristics have been studied for scheduling the 
optional portions, including static priorities inversely related 
to the task utilisation and dynamic priorities favouring the 
optional portion with the least execution time provided or 
the one with the least slack time. It is assumed that the error 
associated with premature termination of an optional portion 
is proportional to some positive power of the fraction of 
uncompleted work. 

An online approach is discussed in Shih and Liu (1992). 
The workload consists of a set of tasks known ahead of time 
together with tasks that arrive during system operation. The 
error model is linear, the output error being equal to the 
amount of unfinished work. As tasks arrive, time is reserved 
for their mandatory portions using the latest-ready-time-first 
order. Optional tasks can execute as long as there is enough 
time. 

Dey et al. (1993, 1996) presented three heuristic 
scheduling algorithms for online scheduling of aperiodic 
workloads. Their reward function is a concave  
non-decreasing function of the execution time. Two of the 
algorithms take a two-level approach. The top level is 
executed whenever a new task arrives and is responsible for 
deciding the allocation of service time to that task such that 
the reward is maximised. The lower-level algorithms decide 
the order in which tasks execute. The third algorithm takes a 
greedy approach. The two metrics used for evaluating 
performance are the reward rate and average number of task 
preemptions using each scheduling policy. They have 
developed an analytical model for an imprecise task system 
and obtained the upper-bounds on the reward rate that is 
achievable by any scheduling policy adopted. This work 
concludes that with the appropriate lower-level scheduling 
policy, the performance of their algorithm approaches quite 
close to its upper bound. The average number of 
preemptions is very small when the earliest deadline first 
(EDF) scheduling algorithm is used at the lower level. 

A hierarchical approach to scheduling is taken by 
Tchamgoue et al. (2010). The overall workload is divided 
into components; each component is guaranteed to obtain a 
certain minimum amount of resources over every specified 
period. Each component can then be scheduled with this 
guarantee in mind. A hierarchical approach allows the 
scheduling of one component to be decoupled from the 
scheduling of another. 

Chishiro and Yamasaki (2011) and Chishiro et al. 
(2010) present a global semi-fixed-priority scheduling 
approach. Independent tasks arrive at a multiprocessor, and 
consist of three parts: mandatory, optional, and wind-up. 
The wind-up part is responsible for organising the dispatch 
of the output and terminating the task execution. Wind-up 
obviously exists implicitly in all other imprecise task 
models as well; however, here it is assumed to be  
non-negligible. Mandatory and wind-up segments are in a 
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real-time queue while optional segments are in a non-real-
time queue and are only executed if the real-time queue is 
empty. The discipline is called semi-fixed priority because 
the task priority drops when the task moves from mandatory 
to the optional part and increases again for the windup part. 

Li et al. (2009) discuss the problem of deciding when to 
terminate the execution of an anytime task. They focus on 
an air-defence case-study and suggest the use of three 
factors in making this decision: the chances of improvement 
in the solution quality, the cost of delaying action (i.e., in 
launching a missile), and the impact of the operating 
environment (e.g., the number and variety of other targets). 

3.2 Dependent tasks 

The above-mentioned works all deal with independent 
tasks. By contrast, Feng and Liu (1993, 1997) consider 
composite tasks, each of which consists of linearly 
dependent tasks. That is, each task (except for the first and 
last) in a composite task has exactly one parent and one 
child; a task receives input from its parent, carries out some 
processing, and then forwards the output to its child. The 
first task receives inputs from the application; the final task 
produces output to the application. The quality of output of 
a task depends both on the quality of its input as well as on 
the amount of time it executes for. An interesting 
assumption is that inaccuracies in the input can cause the 
mandatory and optional portions to require more time to 
execute. 

Feng and Liu (1997) introduce a two-level scheduler. 
The first level schedules the composite tasks using a 
modified EDF approach which treats the entire composite 
task as optional and cuts off tasks at the deadline, even if 
they have not been given their full execution time. If it 
manages to find full execution time for each composite task, 
we are done. If not, it augments the execution time 
allocation to composite tasks with relatively small optional 
parts. In the second level, the time allocated for each 
composite task at the first level is distributed to its subtasks 
such that the output error of the composite task is 
minimised. They have developed, and compared the 
performance of, five second-level heuristic scheduling 
algorithms. 

Cortes et al. (2006) consider a task graph being 
scheduled on a single processor in a non-preemptive 
fashion. Their reward model assumes that the quality of the 
output depends as the sum of the rewards of the individual 
tasks in the task graph; these rewards, in turn, depend only 
on the amount of optional time given to the task in question. 

Gupta (2009) considers modifying the workload for a 
cyber-physical system responsible for computing control 
inputs for some control plant. His approach, which can be 
employed on either a uniprocessor or a multiprocessor 
platform, is to calculate control inputs in the presumed order 
of their importance to the controlled plant, stopping when 
time runs out. For example, if we have a plant for which 
three inputs u1, u2, u3 have to be computed in that order of 
importance, we have the option of just calculating u1 and 
setting u2 = u3 = 0, or of calculating u1 and u2 and setting  

u3 = 0 or of calculating all three inputs. The quality of 
control and the computational workload will obviously 
improve in this order. 

de Oliveira et al. (2001) consider a workload consisting 
of arbitrary acyclic task graphs, with the same task being 
entitled to belong to multiple task graphs. If a task has been 
executed imprecisely (i.e., its optional portion has not been 
calculated to completion), then the value to the system of a 
precise calculation of the next iteration of that task is 
increased. Input data of better quality is held to potentially 
reduce the execution time of a task; the deterioration of the 
quality of a child task output due to imprecise input from a 
parent task output is not explicitly accounted for. They have 
a four-algorithm suite in their approach: 

a to allocate tasks to individual processors 

b to verify that the allocation in (a) allows for feasible 
execution of at least the mandatory portion of each task 

c to perform admission control of optional portions based 
on their perceived current value to the application 

d determining whether a given optional part will, if 
executed, risk causing a mandatory portion to miss its 
deadline. 

The work reported in this paper differs from prior work in 
scheduling imprecise workloads in the following respects: 

• The variability inherent in task execution times is 
accounted for when deciding when to prematurely 
terminate optional portions. 

• Arbitrary task graphs are allowed, with inaccurate 
output from a parent task contributing to the error of a 
child task. 

• The algorithms allow for dynamic voltage scaling of 
both the mandatory and optional portions. 

4 Model and problem statement 

4.1 Task model 

We are given a TPG indicating the dependence between 
tasks.1 A task is assumed to require inputs from all its 
parents before it starts executing; it delivers output only at 
the end of its execution. Since the output of an imprecise 
task can be inaccurate (due to premature termination), and 
an imprecise task can provide input to another task, we have 
to account for input errors. Let iσ  denote the vector of 
inputs and input errors applied to task Ti, and φi the fraction 
of its optional portion that has been executed. Its output 
error is given by ( ,  ).i i iE σ φ  As a practical matter, unless we 
instrument the code to monitor and output the progress of 
the execution, φi is never known exactly except when the 
optional portion finishes, i.e., when φi = 1. At all other 
times, we must use our best estimate of this value based on 
profiling and on the number of cycles consumed so far in its 
execution. 
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4.2 Processor model 

The task workload runs on a set of processors which use 
dynamic voltage scaling (Pillai and Shin, 2001) to trade off 
clock frequency (and hence rate of execution progress) and 
energy consumed. Due to the highly non-linear dependence 
of energy on processor speed, voltage scaling has emerged 
as a principal way by which real-time systems can reduce 
their energy consumption while still ensuring that all task 
deadlines are met. 

In this paper, we assume that there are two discrete 
voltage levels, Vhigh and Vlow. It is quite easy to extend this 
algorithm to account for a larger number of voltage levels; 
however, with maximum supply voltages dropping every 
semiconductor generation, the range of voltages over which 
the supply can be switched keeps shrinking, and it is 
increasingly unlikely that more than two voltage levels will 
be useful in the future. We assume that voltage switching 
costs are negligible; this is reasonable, given that each task 
in our algorithms undergoes at most one voltage switch. The 
overhead of voltage switching is typically a few tens of 
microseconds (Park et al., 2010), which is very small in 
comparison to the execution time of complex control 
algorithms and the task periods in cyberphysical systems. 
For this reason, it is common to ignore such overheads in 
real-time voltage scaling. The processor consumes ehigh and 
elow energies per clock cycle at Vhigh and Vlow, respectively, 
and the corresponding frequencies are fhigh and flow. The 
energy spent in communication is folded into the cost of 
execution and is not accounted for separately. Also, while 
the number of cycles required to execute a task is assumed 
independent of voltage, the time taken is obviously scaled 
according to the clock frequency. 

Table 2 Key notations 

Notation Explanation 
di Deadline of leaf task i 
Fi Finish time of leaf task i 
Be Energy bound for the TPG 

high
ic  Number of high voltage cycles spent executing  

task i 
low
ic  Number of low voltage cycles spent executing  

task i 
wm
ic  Mandatory worst case cycles of task i 
wo
ic  Optional worst case cycles of task i 
m
in  Number of cycles used by mandatory part of task i 
o
in  Number of cycles used by optional part of task i 

ehigh Energy consumed by one high voltage cycle 
elow Energy consumed by one low voltage cycle 
χ A mapping of tasks to processors (1..n) → (1..m) 

iσ  Input vector to task i concatenated with input error 
vector 

Ei(·) Output error function of task i 
Γ Final error of task graph 
F(·) Recursive application of Ei(·) 

As mentioned earlier, this algorithm runs on multiple-
processor systems. The algorithm places no restrictions  
on the structure of the underlying hardware system; it is  
not material whether it is a shared-memory or message-
passing system, for example. This underlying structure  
will obviously have performance implications, which will 
be taken into account by the algorithm when making its 
decisions. 

The key notation used is summarised in Table 2. 

4.3 Optimisation objective and constraints 
Denote by T1, …, Tn the set of all tasks, by L  the set of 
leaves of the TPG, by di and Fi the deadline and finishing 
time of task Ti, and by ,  highlow

i ic c  the number of low-voltage 
and high-voltage clock cycles spent executing task Ti  
(i = 1, …, n. Let Be be the upper bound of the energy 
consumption (set to ∞ if no such bound exists). 

The only output that is visible to the application is that 
from the leaves of the TPG; therefore, our aim is to 
minimise the weighted sum of the leaf errors, where κj is the 
weight given to the error in the output of leaf task Tj and 
reflects the scale of values of the application. The 
optimisation problem, stated formally, is to minimise 

( ),i i i i
i

κ E σ
∈

⎧ ⎫⎪ ⎪Γ =⎨ ⎬
⎪ ⎪⎩ ⎭

∑
L

φ  (1) 

subject to the following constraints 

( )j jF d j≤ ∈L  (2) 

( )
1

n
high low

high low ei i
i

c e c e B
=

⋅ + ⋅ ≤∑  (3) 

There are two sources for a task input: the external world 
and the other tasks. We have no control over the former; we 
focus instead on the latter. We assume that any expected 
errors from the external world input are factored into the 
error functions. Applying the error function Ei recursively, 
we can write the overall error as a function of the number of 
clock cycles consumed by each task. That is, if 

highlow
i i ic c c= +  is the number of clock cycles consumed by 

task Ti, we can write 

( )1 2, , , nF c c cΓ =  (4) 

where F(·) can be obtained by recursive application of the 
Ei(·) functions. 

As a simple example, consider the task graph shown in 
Figure 2. Tasks T2 and T3 receive inputs from T1, and T4 
receives inputs from both T2 and T3. We wish to derive F(·) 
from the error functions, Ei(·, ·), i = 1, ···, 4. Based on our 
profiling of these tasks, suppose our best estimate of the 
mandatory and optional numbers of cycles used by these 
tasks are given by μi, ωi, i = 1, ···, 4. 
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Figure 2 Task graph example 

 

Therefore, if ci is the number of cycles allocated to task Ti, 
our best estimate of the fraction of the optional portions 
completed is { }max 0, .i i

i

c μ
i ω

−=φ  

Hence, we can write 

( )( )
( ) ( )( )

2 3 1 1

4 2 2 2 3 3 3

0,

, , ,

σ σ E

σ E σ E σ

= =

=

φ

φ φ
 

The output error, which is the error in the output of T4, is 
4 4 4( ,  ).E σ φ  Based on the above expressions, we can 

obviously express E4 in terms of ci, i = 1, ···, 4. 
In this paper, we explicitly account for the fact that the 

actual total number of execution cycles required to finish a 
task is not known precisely (except when the task finishes). 
At best, we only know its probability distribution based on 
workload profiling. We therefore have to use an estimate of 
φi as a function of ci, based on the information available.  
We do know the worst-case number of cycles, ,  ,wm wo

i ic c  
required for the mandatory and optional portions, 
respectively, of task Ti. 

5 Offline allocation and scheduling heuristic 

Minimising Γ in equation (1) is an NP-complete problem, 
and in addition, we do not have the exact value of φi. We 
therefore must use a minimisation heuristic. 

Our heuristic exploits the fact that in cyber-physical 
systems (our target application area), the computational 
tasks are known in advance, and can be profiled extensively 
before the system starts operation. Such advance 
information can be exploited by having separate offline and 
online phases in the scheduling process. In the offline phase, 
which is executed once before the system is put into 
operation, tasks are assigned to processors and a schedule is 
generated making assumptions about the tasks’ running 
times. The offline phase allocates the mandatory part’s 
worst case requirement to all the tasks, thereby ensuring 
meaningful output of each task in the system. 

In the online phase, as tasks finish, we update our 
knowledge of their actual running time and reclaim 
whatever resources are released by early task completion. 
For obvious reasons, the online heuristic must be 
lightweight, while the same constraint does not apply to the 
offline part. 

The offline heuristic call structure is shown in Figure 3. 
In our algorithm, we start with a candidate allocation of 
tasks to processors. This allocation is assessed for its ability 
to meet time and energy constraints as will be described 
later. Simulated annealing is used to navigate through 
various allocations in search of one which offers good 
performance. 

Figure 3 Offline heuristic call structure 

 

5.1 Root module 

The basic elements of the root module (Figure 4) are: 

1 A finite set, S, of all possible configurations, where 
each configuration is a mapping of the entire task set to 
the processor set. 

2 A step function STEP() which returns a configuration 
after moving a random task from one processor to 
another or swaps two random tasks on two different 
processors based on Pswap (the probability with which 
two tasks assigned to different processors are swapped). 
The greater the Pswap, the more chances of tasks getting 
exchanged between different processors. 

3 A cooling schedule with an initial temperature 
Tempinitial and a final temperature Tempfinal, a 
depreciation factor df, and number of tries Ntries of the 
greedy algorithm at each temperature value. 

4 An acceptance criterion. If δ is the difference between 
the new final error and the best final error, k is the 
Boltzmann constant and T is the current temperature, 
the new configuration is accepted with probability p. 

( )
1 if 0

exp / ( ) if 0
δ

p
δ kT δ

<⎧
= ⎨ − ≥⎩

 (5) 

5 An arbitrarily generated initial configuration χinitial with 
a random mapping of {1..n}→{1..m}. 

The worst-case mandatory and optional execution cycles of 
task Ti are denoted by wm

ic  and ,wo
ic  respectively. We 

assign cycles to tasks in steps where necessary: the step size 
at high and low voltage levels is denoted by νhigh, νlow, 
respectively. These are chosen so as to take the same time, 
i.e., such that νhigh · fhigh = νlow · flow. 
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Figure 4 Root module 

function rootModule(Tinit, Tfinal, df, Ntries, χinit) 
 temp = Tinit; 
 χ = χinit; 
 Πfinal = invalid; 
 χfinal = invalid; 
 while (temp > Tfinal) do 
  for (i = 1 … Ntries step 1) do 
   χnew = STEP(χ); 
   Π = taskAlloc(χnew); 
   if (δ < 0 OR RND(0, 1)> e–δ/(k·temp)) then 
    χ = χnew; 
    if ( )( ) final

offlineF Π < Γ  then 

     ( );final
offline FΓ = Π  

     Πfinal = Π; 
     χfinal = χ; 
    end if 
   end if 
  end for 
  temp = temp/df; 
 end while 
 return Πfinal; 
end function 

5.2 Task allocator module 

The task allocator (Figure 5) returns a schedule based on 
which one can estimate the offline final error, Γoffline for the 
specified task assignment. The schedule is marked invalid if 
it is unable to find one which satisfies the time and energy 
constraints. It first generates a time allocation taking only 
the deadlines into account and disregarding the energy 
constraint, if any. If an energy constraint is specified, it then 
modifies this schedule by swapping high-voltage and  
low-voltage cycles if this is needed to meet the bound. If no 
such swap can be found, it declares failure and returns an 
invalid result. 

Figure 5 Task allocator module 

function taskAlloc(Configuration χ) 
 Π = timeBound(χ); 
 if (Π! = invalid) then 
  if ( )1

n high
high ei

i
c e B

=
≤∑  then 

   return Π 
  else 
   return energyBound(Π); 
  end if 
 end if 
end function 

Figure 6 Time-bound module 

function timeBound(Configuration χ) 
 Π = invalid; 
 , 1, ,wm

i ic c i n= =  

 if (a deadline is violated) then 
  return Π = invalid 
 else 
  1, 1, ,i

aft i n= =  

 end if 
 while ( s.t. 1)i

afi t∃ ==  do 

  for (each such i) do 
   for (j = 1..n step 1) do 
    ,

high
j j i jc c δ v′ = +  

   end for 
   ( )1( , , ) , ,i n i nB F c c F c c′ ′= −  

  end for 
  Define imax = argmax1≤i≤n Bi 
  

max
high

ic v+ =  

  if (a deadline is missed) then 
   Set 0highi

aft =  

   Revert allocation max
high

ic v− =  

  else 
   update Π 
  end if 
 end while 
 return Π 
end function 

5.3 Time-bound module 

The time-bound module (Figure 6) generates a static offline 
schedule for the given configuration. The input to the 
algorithm is a configuration χ passed in by the root module. 
The algorithm starts by assigning high voltage cycles 
sufficient to meet the worst case mandatory requirement of 
each task. Next, a check is done to analyse whether the 
schedule generated after this step violates the deadline. If 
this happens, the search heuristic is informed that this is an 
invalid configuration. If the deadline is not violated then the 
algorithm proceeds with the allocation of high cycles for the 
optional part of all tasks. The allocation is given to tasks in 
slices of νhigh. This algorithm allocates this slice greedily to 
the tasks. The slice is given to the task where it will have 
the greatest improvement in final error at that instant. If by 
allocating the slice to a task, the path on which it is placed 
becomes critical (the TPG violates end-to-end time 
deadline) or if it exceeds the total worst case requirement of 
this task, the allocation is retracted and the task is marked 
for no allocations in the future. This allocation continues 
until all the tasks are marked as unallocatable, at which 
point the valid schedule is returned to the task allocator 
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module (δij is the Kronecker delta, i.e., δij = 1 if i = j and 0 
otherwise.). 

Figure 7 Energy bound module 

function energyBound((Configuration χ)) 
 for (1 ≤ i ≤ n) do 
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 end for 
 for (1 ≤ i ≤ n) do 
  while ( )wm
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   low low
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 end for 
 Calculate energy consumed, Ce 
 while (Ce > Be) do 
  low
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  for (1 ≤ i ≤ n) do 
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  end for 
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   return invalid 
  else 
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   Recalculate Ce 
  end if 
 end while 
 while (Ce < Be) do 
  for (1 ≤ i ≤ n) do 
   for (1 ≤ j ≤ n) do 
    ( ),

high low
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   end for 
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  end for 
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   return schedule Π 
  end if 
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   return schedule Π 
  else 
   Define imax = argmax1≤i≤n Bi. 
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high high
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low low
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   Recalculate Ce 
  end if 
 end while 
end function 

5.4 Energy-bound module 

The energy bound phase (Figure 7) starts after the  
time-bound phase arrives at a valid schedule with respect to 
time. The offline energy-bound phase starts by assigning 
low-voltage cycles to all the tasks in the time frame 
allocated by the time-bound phase. Then it makes sure that 
all the tasks have enough cycles to satisfy their required 
worst-case mandatory workload by converting low-voltage 
cycles to high-voltage cycles. After this stage, if the 
schedule has violated the energy constraint, then low cycles 
are removed from the tasks which least affect the final error 
without violating their worst case mandatory workload 
requirement. If the algorithm runs out of tasks to remove 
low cycles and the energy deadline is still violated, an 
invalid schedule is returned. If we are still under the energy 
deadline, after completing the mandatory workload of the 
task, the low cycles of the tasks are converted into high 
cycles greedily until the energy barrier is hit or we run out 
of low cycles. When this condition is reached a valid 
schedule is returned. 

6 Online algorithm 

As mentioned earlier, the actual execution times vary 
considerably. The actual demand of a task is not known 
unless and until the task completes execution. At this point, 
we know that the entire optional part has been executed. 
Once task Ti completes execution, we know that φi = 1, 
meaning that the Ti output error will be given by ( , 1).i iE σ  
This then affects all tasks that are downstream from it and 
allows the error function F(·) to be updated appropriately. If 
a task (say Tf) completes before its assigned time has been 
spent, additional time is released for other tasks to use. The 
job of the online algorithm is to reclaim this released time to 
improve on the offline schedule. 

The online algorithm (Figure 8) makes sure that the 
tasks do not exceed their static finish times assigned by the 
offline algorithm while distributing the energy, thereby 
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respecting the end-to-end deadline. The two parameters to 
control the amount of time the online scheduler has for 
distributing the released energy are the granularity of 
allocation Δonline and the set of tasks considered for 
distribution. The coarser the granularity, the longer the time 
for calculating benefit for the tasks and distributing the 
released energy. 

The input parameter LEV controls the set of tasks 
considered for energy distribution when a task finishes: it 
can be regarded as a means to limit look-ahead in an effort 
to reduce the algorithm overhead. We only consider tasks 
which are LEV levels away from Tf in the task graph. 
depth(Ti) gives the shortest distance of task Ti from the root 
of the TPG and oncriticalpath(Ti) returns true if allocation 
of additional energy to the task violates the deadline or 
energy constraint and finished(Ti) returns true if the entire 
optional portion has finished. 

Note that there is an asymmetry in information 
availability between tasks close to the top of the task graph 
and those towards the bottom. The former are executed in 
the face of very little information about actual execution 
times. By contrast, by the time the later tasks start 
executing, the actual execution times of the earlier tasks are 
known and therefore better-quality decisions can be taken 
with respect to these. On the other hand, note that the tasks 
high in the task graph provide output consumed by a large 
number of other tasks, and they get enhanced optional time 
allocation because of this. 

Figure 8 Online module 

function online((Δonline, LEV)) 
 Calculate treclaim, time reclaimed on Tf completion. 
 if (treclaim == 0) then 
  return 
 else 
  while (treclaim > 0) do 
   temp

reclaim lowlown t f= ⋅  

   slice online lown f= Δ ⋅  

   if ( )temp
onlinelown < Δ  then 

    return 
   end if 
   nallocated = 0 
   Find task set OTS of Tx such that: 
    depth(Tx) – depth(Tf) ≤ LEV 
    finished(Tx) = false 
    Tx is not on a critical path to a leaf 
   if (OTS is empty) then 
    return 
   end if 
   for (Ti ∈ OTS) do 
    if ( )wo wm

i slice i ic n c c+ > +  then 

     Remove Ti from OTS 

    end if 
    if (OTS is empty) then 
     return 
    end if 
   end for 
   Assign nslice cycles at vlow to Tk in OTS 
   which yields the greatest improvement in error: 
   ck+ = nslice 
   treclaim – = Δonline 
   if (Tk finishes later than in offline schedule) then 
    (reverse this) 
    ck – = nslice 
    Remove Tk from OTS 
    treclaim + = Δonline 
   end if 
  end while 
 end if 
end function 

7 Numerical results 

7.1 Experimental setup 

7.1.1 Task graph modelling 

Our numerical results are based on simulating 1,000 random 
directed acyclic directed TPGs, each of which was run 500 
times with different random on-line run-times. Each TPG 
was generated based on an edge probability P, P ∈ (0, 1), 
which specifies the probability of an edge between two 
nodes in the TPG, and a maximum out degree D specifying 
the maximum number of children a node can have. Low 
values of P and D will generate leaner TPGs with fewer 
dependencies, and vice versa. The worst case mandatory 
and optional parts of each task were selected at random out 
of {5, 10, 15}. The deadline for each TPG was selected as 
no lower than the sum of the worst case mandatory parts of 
the longest directional path in the graph. During allocation 
of time or energy to tasks, a critical path violation (a path in 
the TPG which violates the deadline) is identified using 
standard algorithms mentioned in Kwok and Ahmad (1999). 

We assume that the error generated by an incomplete 
task is a convex function of the fraction of the uncompleted 
optional part out of the total optional part. We used as error 
function the function x8 unless stated otherwise. In addition, 
each task has sensitivity values, which denote the sensitivity 
of its output error to its input errors. We selected these 
sensitivities at random for each task out of the interval  
(0, 2.0]. A high sensitivity value will lead to high increases 
in output error for small input errors and vice versa. A linear 
error propagation model is assumed for all the experiments 
conducted; the output error is convex with respect to the 
fraction of unexecuted optional part whereas it is linear with 
respect to the input errors. 
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The run-time characteristics of the tasks are modelled as 
follows. The actual run-time follows the normal 
distribution, conditioned on falling between specified 
minimum and maximum values, with the mean midway 
between them. The minimum value is given by a  
fraction (mf) of the worst case requirement whereas the 
maximum is the worst case itself: {[mf , 1.0]* }m wm

i it t∈  and 
{[mf , 1.0]* },o wo

i it t∈  where ,  m o
i it t  are the actual 

mandatory and optional high-voltage execution times, 
respectively. The online phase is sampled 500 times and the 
average of 1,000 successfully scheduled TPGs is used for 
analysis. 

7.2 Results 

Figure 9 shows the average online error as a function of  
mf – the fraction of the minimum and the worst case run-
time of tasks. The different curves pertain to different 
values of edge probability, P. As the value of P increases, 
the dependency between the tasks increases. From the error 
model it can be noted that both precedence and quality 
dependency increase as P increases. This results in the sharp 
rise of curves pertaining to a higher P value. Very high 
values of P result in too many TPGs with cycles and cannot 
produce meaningful results. When mf is 1.0, the tasks run to 
their worst case rendering the offline error (worst possible 
error for the given allocation) during the online phase. 

Figure 9 Effect of minimum run-time 

 

Figure 10 shows the effect of varying the standard deviation 
of the run-time distribution for different deadlines. As the 
standard deviation increases, the information available to 
the offline algorithm about the actual execution times 
decreases, and its expected error in estimating the actual 
execution time tends to increase. This leads to an increase in 
final error, as seen in the figure. 

Figure 11 demonstrates the advantage obtained by 
online reclamation, by showing the ratio of the average 
online error with and without reclamation. We first observe  
 
 
 

that for a very tight deadline, not much reclamation is done 
even for increasing energy constraints. This can be due to 
the fact that cycles released by tasks are not effectively used 
by other tasks, because doing so would violate the TPG’s 
deadline. Secondly, for medium time deadlines, reclamation 
is more effective for relatively tighter energy constraints 
than for loose energy constraints. This is due to the fact that 
for stricter energy constraints, even a small amount of 
energy released can be distributed much more effectively 
than for looser energy constraints. Thirdly, for very relaxed 
deadlines, there were not many chances to reclaim as tasks 
were allocated with ample resources in the offline stage. 

Figure 10 Effect of standard deviation of run-times 

 

Figure 11 Effect of online reclamation 

 

Figure 12 compares the average error for different error 
functions. We used a convex error function f(x) = x2 and a 
series of step functions g(x, steps) = (⌊(x ∗ steps)⌋)/steps 
(where x is the fraction of the unexecuted/unallocated 
optional part and steps is a power of 10). As the value of 
steps increases, the step error function behaves much like 
the convex error function but is bounded below by it. The 
plot shows that for larger values of step (indicating a more 
abrupt but less frequent change in error value), the output 
error increases. 
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Figure 12 Effect of step error function 

 

7.3 Comparison with the BFA algorithm 

We are not aware of any other scheduling algorithm 
designed for arbitrary real-time imprecise task graphs 
running on an energy-bounded multiprocessor. Hence, our 
comparison is with a standard allocation approach: breadth 
first allocation (BFA): see Figure 13. Our justification for 
picking BFA as a baseline is that it is generally used as an 
initial (round robin) task allocation step, following which a 
uniprocessor scheduling step is undertaken. The standard 
approach to scheduling real-time tasks in multiprocessors is 
to first allocate them to processors and then use 
uniprocessor scheduling algorithms for tasks allocated to 
each processor. 

Figure 13 Greedy vs. BFS allocation 

 

The BFA offline and online algorithms have no knowledge 
of the error functions associated with the tasks. This 
algorithm prioritises the tasks based on their appearance in a 
breadth first search and allocates time to them as per their  
 
 
 
 
 
 

priorities while taking care not to violate the deadline. The 
plot shows the ratio of the final average error of our 
algorithm to BFA as a function of the deadline, for three 
values of the number of iterations of the offline algorithm, 
which depends on the time allotted to the offline scheduler. 
Our algorithm performs much better than BFA when the 
scheduler has less time and a very tight deadline for the 
TPG. As expected, our algorithm beats BFA by larger 
margins as the deadline gets loose. This is mainly because 
the optional part for the tasks is allocated more wisely based 
on the benefit in final error. The rate of improvement as a 
function of the number of iterations is different for different 
algorithms; the performance ratio is therefore not 
monotonic. 

7.4 A robot application 

This experiment was conducted on a mathematical model of 
a robot implementing anytime sensing, planning and action 
as shown in Figure 14 (Zilberstein and Russell, 1993). Our 
analysis concentrates on determining the resource allocation 
for each of the tasks by using our scheduling algorithm for 
minimising the error in the final output. Figure 15 shows the 
effect of simultaneous time deadline and energy constraint 
on the system. The error functions we used were obtained 
by curve fitting to the performance profiles found in 
Zilberstein and Russell (1993) as shown in Figure 16. The 
curves in Figure 16 also show the effect of input error on 
the performance profiles. The tasks that do not have an 
optional part do not have an effect on the final output 
quality. This figure quantifies the improvement possible 
with looser deadline and energy constraints. Such 
improvements can be taken into account when selecting 
such deadlines in the process of designing the overall 
system. In particular, such a selection would constitute a 
trade-off between the quality of control output against its 
timeliness, as it affects the control of the plant. 

Figure 14 Anytime robot 

 
Source: Zilberstein and Russell (1993) 
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Figure 15 Error variation with time and energy constraints 

 

Figure 16 Error functions based on performance profiles 

 

8 Discussion 

We have presented offline and online heuristics for 
scheduling imprecise task graphs on multiprocessors. The 
task graphs may be arbitrary; the error output of a task is a 
function of both the input error and the premature 
termination (if any) of the optional portion of the task. We 
include in our model the fact that task run-times are not 
known precisely in advance, but only statistically. 

Future work includes the use of hierarchical scheduling 
methods to allow imprecise tasks to coexist with traditional 
0-1 task sets. Another promising area for study is the 
instrumenting of imprecise code, which would allow one to 
determine its execution progress and thereby provide 
additional run-time information to the system without 
imposing too great an overhead. 
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Notes 
1 If the workload consists of multiple, independent, TPGs, this 

can be handled within our framework by introducing a virtual 
root node whose children are the roots of these independent 
TPGs. 


