2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems

Performance and Power Benefits of Sharing
Execution Units between a High Performance Core
and a Low Power Core

Rance Rodrigues, Israel Koren and Sandip Kundu
Depatment of Electrical and Computer Engineering
University of Massachusetts Amherst, MA 01003
Email: {rodrigues,koren kundu} @ecs.umass.edu

Abstract—Several studies and real world designs have advocated
the sharing of large execution units between pairs of cores
in Symmetric Multicore Processors (SMP) for area and power
savings. Such sharing was shown to have negligible impact on per-
formance. Recently, a number of Asymmetric Multicore Processor
(AMP) designs have become available. The objective of this paper
is to investigate whether sharing of resources across AMPs offers
similar benefits. Our study shows that while the area and the
power savings remain similar, the performance of the smaller core
in the AMP can improve significantly making sharing even more
attractive for AMPs. Simulation results indicate that for certain
workloads, the performance of the small core may improve by as
much as 54% by sharing certain large execution resources of the
big core, while affecting the performance of the big core by only
~4Y%, resulting in an overall gain in system performance of 20%.
The corresponding improvement in aggregate performance/Watt
is 12% while the area savings is about 7%.
Keywords—Asymmetric Multicore Processor (AMP), Symmetric
Multicore Processor (SMP), resource sharing, performance, per-
Jormance/Watt

I. INTRODUCTION

Sharing underutilized resources has been investigated by sev-
eral researchers [1], [2] and applied recently in the AMD
Bulldozer architecture [3]. The general consensus is that such
sharing has only a limited impact on the performance of SMPs.
Apart from savings in area that results from such sharing, static
power savings also yield an improvement in performance-per-
Watt. In particular, sharing of large execution units such as
the multiply and divide units has been reported to result in
negligible performance penalty [1].

Previous studies have explored sharing in SMPs. These SMPs
are designed such that reasonable performance is achieved for a
wide variety of applications. Whenever these resources are not
fully utilized, performance-per-Watt suffers. It is well-known
that applications have diverse needs for compute resources.
Furthermore, the resource needs for an application change over
time, exhibiting distinct phases [4]. If the computing resources
are underutilized during an execution phase of the application,
power is wasted. AMPs have been proposed as a potential
solution to this problem. Assigning a low demand application
to a smaller core saves power without sacrificing performance
[5], [6]. [7]. Recently real world designs have emerged [8]. At
a high level, AMPs consist of big (high performance) and small
(low power) cores. Usually, workloads with high instruction-
ievel parallelism (ILP) and memory-level parallelism (MLP)
are best run on big cores while others run more efficiently on
small cores.

The big cores are designed for performance and they are
often over-provisioned with resources. For example, they have
larger ROB, reservation stations and load/store queue to take
full advantage of out-of order (OOO) execution. They also

1063-9667/14 $31.00 © 2014 IEEE
DOI 10.1109/VLSID.2014.42

204

Big core

-

‘ L2 cache ‘

Fig. 1. A high level view of the resource sharing explored in this paper.
have multiple low latency execution units. In contrast, the
small cores are designed for power efficiency and therefore
do not warrant a similar provisioning of resources. These
cores have smaller OOO execution resources, if any, and
the execution units are often fewer in number with higher
latencies. Occasionally, such cores may benefit from additional
(or more powerful) execution resources, but such provisioning
is expected to be inefficient in terms of performance-per-Watt
for the more common use-cases of these cores.

Sharing execution resources in the context of AMPs has not
been yet explored. By sharing resources in AMPs, the small
core may benefit from getting access to the high performance
resources of the big core. If the shared resources are not
continously used by the big core, the impact on the big
core’s performance will be small. Consequently, overall system
level performance is expected to improve. Performance-per-
Watt will also improve due to savings in static power. Thus,
unlike in SMPs where sharing only results in power savings,
sharing resources in AMPs may also result in performance
improvement for the small core. Sharing must, however, be
limited to the relatively underutilized resources in the big core
such that its performance is not compromised.

In this paper, we analyze the sharing of large and underutilized
execution units belonging to a big (high performance) core
with a small (low power) core. Specifically, the integer (INT)
multiply (Mult) and divide (Div) units, and the floating-point
(FP) ALU, Mult and Div units of the big core are shared
with the small core. A high level view of the resource sharing
explored in the paper is shown in Figure 1. The small core that
now has access to the fast execution units of the big core can
benefit whenever workloads that demand such resources are
executed on it. It also leads to static power savings since the
small core no longer needs dedicated execution units. On the
other hand, the big core may experience a performance loss.
Design changes required to allow for sharing are also expected
to add a small performance penalty due to an increased access
latency of the shared resources. Still, our results indicate that
sharing large and underutilized execution units between a big
and a small core may result in performance improvement
of as much as 54% for the small core and a performance

IEEE
computer
psoaety

loss of at most 4% for the big core. Overall, the system
performance is enhanced by as much as 20% in the best case
and by 7% for the average case. A best case performance-
per-Watt improvement of 12% and average improvement of
6% were observed over several multi-threaded and multi-
programmed workloads considered in this study. The shared
resources architecture also results in area savings of 7%.

The major contributions made in this paper are:

e Performance and performance-per-Watt analysis of sharing
large and underutilized execution units of a high performance
core with a low power core.

e Analyzing the sensitivity of the results to the shared resource
access latency, and

e Demonstrating that sharing large execution resources in
AMPs results in greater benefits than similar sharing for SMPs.
The rest of the paper is organized as follows. Recent related
work is presented in Section II, followed by the details of the
proposed architecture in Section III. The experimental set-up
is discussed in Section IV. The simulation results are presented
in Section V and the conclusions in Section VII.

II. RELATED WORK

The idea of resource sharing has long been in existence [1],
[9], [10] for improving the performance-per-Watt of SMPs.
Simultaneous Multi-Threading (SMT) [9], [11] was one of
the first approaches for sharing idle resources. In an SMT
processor, multiple threads are run on the same core and
they share and compete for core resources. Such dynamic
sharing improves resource utilization for certain combinations
of workloads resulting in performance-per-Watt improvement.
Dolbeau and Seznec [1] explore intermediate design points
between the Chip Multiprocessor (CMP) and SMT architec-
tures where the sharing of the caches, branch predictor and
long latency execution units is explored. A similar study was
presented in [2] where the caches, crossbar and floating-point
units were shared. In these studies, significant area savings
at a minor loss of performance were reported. However, the
analysis was focused on the performance of SMPs and did not
consider AMPs or performance-per-Watt. Further, the impact
of access latency of the shared resources was not investigated.
Often, an inverse relation between the shared resource access
latency and the design complexity exists. Thus, this aspect
warrants a more thorough investigation.

Other approaches have also been followed in the context of
resource sharing. Watanabe et al. [12] explore flexible sharing
of a pool of “execution engines” among various cores. By
ensuring that the producer and immediate consumers are sent
to the same engine, efficient usage of the shared units is made
possible. However, each engine requires a queue and other
data to keep track of producers and consumers resulting in
a complex design. In [13], the authors propose the sharing of
functional units across cores in a 3D stacked die. Depending on
the need, execution units from a nearby core may be accessed
to boost performance. A similar approach to 3D resource
sharing was proposed in [14] where the re-order Buffer (ROB),
register file, instruction queue and the load/store queues were
shared.

The work most closely related to ours is that presented by
Rodrigues et al. in [7], [15] where dynamic exchange of
execution units between cores in an AMP was investigated.
Depending on the current workload characteristics, two cores
may exchange execution units to maximize performance-per-

205

FP Issue

Decode Retire

INT Issue
ALU
Mult Mult
Div Div

Big core

FP Issue

>

Retire

Fetch

Decode

[T+

INT Issue
Small core

Fig. 2. Pipeline level view of the resource sharing explored in this paper. In

the figure, FP = floating-point and INT = integer.

Execute

Watt. With respect to design complexity, this approach is
similar to ours. The major advantage of this architecture is
that resource contention between the two cores does not take
place. In our design, if the demand for the shared execution
units from both big and small cores increases at the same time,
performance will suffer due to contention. On the other hand,
our design has the following advantages:

e To trigger a dynamic resource exchange, Rodrigues et al.
monitor performance counters for estimating the utilization of
the execution units. Based on these counters, decisions are
made to exchange execution units. In contrast, our scheme
does not require such monitoring.

e The decision making mechanism requires off-line training
using a few workloads which is not always practical. Our
scheme requires no off-line training.

e Execution units are exchanged at coarse grain intervals (2K -
10K instructions) to avoid the associated overheads. This may
result in missing potential opportunities at finer granularities.
In our scheme, cycle by cycle sharing of the execution units
takes place and.

e Their scheme does not provide any hardware savings while
our scheme results in 7% area savings.

To the best of our knowledge, this is the first work that explores
resource sharing between AMPs to boost performance and
performance-per-Watt.

III. ARCHITECTURAL DETAILS
The details of the proposed resource sharing architecture
are presented is this section. Then, sources of performance
penalties and estimated hardware savings are outlined.

A. The shared resource multicore architecture

In the proposed architecture, the large and underutilized exe-
cution units of the big core are shared with the small core in
the AMP. The shared execution units are depicted in Figure 2
and include the floating-point ALU, Mult, Div and the integer
Div and Mult units. In the figure, it can be seen that the big
core is abundant with resources. It is deeply pipelined and can
fetch, issue and retire up to 4 instructions per cycle. It features
deeper issue and retire queues and has several fast execution
units. The small core, on the other hand, has a fetch width
of 2, smaller issue and retire queues, and its execution units
are slow and fewer in number. Details of each modeled core
may be found in Table I. Each core retains control of its own
integer ALU execution unit since these units are small and so
frequently encountered that sharing would result in significant
performance penalties. Due to sharing, the small core no longer
needs the corresponding dedicated execution units resulting in

instructions
all cores

1
Y&y

Control logic ‘

Request to execute

INT ALU requests from big and
‘ Control logic ‘
i, lSharcd rcgioni l

‘ Control logic ‘
CDB I | CDB

INT ALU
requests

‘ Control logic ‘

Big core Small core

Fig. 3. The arbitration logic required to control access to the shared execution
units.

area savings. However, additional hardware may be required
to arbitrate access to the shared execution units.

B. Hardware details

A high level view of the control logic that grants access
to the shared execution units is shown in Figure 3. In the
baseline architecture (no sharing), each core has its own control
logic that arbitrates access to the execution units. Whenever
instruction dependencies are resolved, a request is made to the
control logic for the appropriate execution unit. Depending
on the opcode of the requesting instruction and whether the
particular execution unit is busy or not, the request may or may
not be granted. The instruction may then need to make another
request in the next cycle. In the shared resource architecture,
the hardware is different. Since each core retains its own INT
ALU, dedicated control logic exists in each core to control
access to these units. Any request made to one of the shared
execution units must be arbitrated by common control logic
that monitors requests coming from either core. The design
of the logic is very similar to that in the baseline with two
exceptions: (i) it must be designed to handle more requests
than that in the baseline (up to 4 from the big core plus up to 2
from the small core), and (ii) there is need for instruction result
tagging such that the result of the execution is forwarded to
the correct bus. For example, result of an FP ALU instruction
that belongs to the small core must be forwarded to the CDB
of the small core. For this, a single bit flag may be used.
With respect to the sharing policy while there are several
approaches possible, we explore in this paper the first come
first served policy for simplicity of analysis. We will consider
more complicated approaches in the future.

C. Performance implications of sharing

A performance boost for the small core is expected since this
core now has access to the faster and more numerous execution
units of the big core. On the other hand, a small performance
penalty is expected for the big core whenever contention for the
shared resources is high. Another source of increased latency
is the slightly more complex control logic that grants access
to the shared execution units to requests coming from the two
cores and, the bus forward logic where an additional check
must be made to forward the result to the correct core. Several
authors [1], [2] claim this overhead to be around O to 1 cycle.
For the sake of completeness, we analyzed the sensitivity of
our results to the shared resources’ access latency.

D. Area implications of sharing

We have estimated the area savings due to hardware resource
sharing using McPAT [16] for a 45nm technology. This tool
takes as input the dual-core configuration and outputs the

206

TABLE 1.
[Parameter | Small |

CORE PARAMETERS
Big [[Parameter | Small | Big |

Issue 2 4 INTREG 64 96
FPREG 64 80 INTISQ 16 36
FPISQ 16 24 LS units 2 4
LSQ 32 32 ROB 56 128
L1(I/D) 32K 32K L2 2M shared
Freq (GHz) 24 24 Type 000 [000
TABLE II. EXECUTION UNIT SPECIFICATIONS FOR THE CORES. (P -
PIPELINED, NP - NOT PIPELINED, PP - PARTIALLY PIPELINED)
Core FP DIV FP MUL FP ALU
Small 1 unit, 60 cyc, NP | 1 unit, 4 cyc, PP | 1 unit, 5 cyc, P
Big 1 unit, 21 cyc, P I unit, 5 cyc, P | 2 units, 3 cyc, P
INT DIV INT MUL INT ALU
Small || 1 unit, 207 cyc, NP | 1 unit, 10 cyc, P | 2 unit, 1 cyc, P
Big 1 unit, 23 cyc, P 1 unit, 8 cyc, P | 4 units, 1 cyc, P

estimated area for each block in the floorplan. For the con-
sidered dual-core (see Table I), the small core was estimated
to occupy 23mm? while the big core around 35mm? excluding
the L2 cache which was estimated to be around 15mm?. Hence,
the total baseline (no sharing) core area was estimated to be
around 73mm?. The large execution units occupy 5.11mm?
and 9.78mm? in the small and big cores, respectively. Thus,
the total area of the AMP with sharing is about 68mm? which
results in area savings of approximately 7%. A small area
overhead arises due to the control logic required to arbitrate
requests to the shared execution units (see Figure 3). This
overhead is expected to be lower than 1%. Thus, the area
savings of the proposed architecture is expected to be slightly
lower than 7%.

IV. EXPERIMENTAL SETUP

The parameters of the big and small cores modeled in our
experiments are shown in Table I. The execution unit charac-
teristics are shown in Table II. These parameters were obtained
from [17]. SESC was used as the architectural performance
simulator [18]. We made significant modifications to the sim-
ulator to enable shared resource execution with arbitration.
Power was measured using Wattch [19] and Cacti [20] with
modifications to account for static power.

For the experiments, we have selected 15 benchmarks: 7
benchmarks from the SPLASH-2 [21] (barnes, cholesky, fimm,
lu, radix, raytrace, water) and 8 from the SPEC 2000 suite [22]
(fbench, flops, art, equake, gzip, ammp, mcf, gcc). These work-
loads were chosen because they are diverse enough and thus
enable a thorough evaluation of the architecture under study.
For the SPLASH-2 workloads, two threads were spawned
and run on the multicore. These threads are homogeneous
in characteristics and hence are expected to test the studied
architecture for cases where the threads execute instructions
that must be forwarded to the shared units. We also created
multiprogrammed workloads by combining two workloads
each from the SPEC 2000 suite. For these workloads the
threads are usually heterogeneous in characteristics. We thus
tried to evaluate the studied architecture over a broad spectrum
of potential workloads. The created workload sets and their
characteristics are shown in Table III. Each workload was run
until the sum of the instructions retired on the two core types
equals 500 million instructions. The instruction distribution
of the threads run is shown in Figure 4. In all Figures for
experiments concerning two threads run on the two cores, the
workload is denoted by thread;_threads on the x-axis, with
thread; executing on the big core and threads on the small
core.

‘ EiALU ®iMult @iDiv ®iBJ BilLoad BiStore ®fpALU mfpMult lpriv‘

s 2
00“’@ 3 ‘°q§<§0

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

¥ N S & 0‘55* & gg\
& & A ~c‘°° & &S
Workloads

Fig. 4. The instruction distribution of the various workloads when run for
500 million instructions. The average over all workloads is also shown.

TABLE III. WORKLOAD CHARACTERISTICS

\ Workload i

barnes_barnes
cholesky_cholesky
fmm_fmm
Iu_Iu
radix_radix
raytrace_raytrace
water_water

Characteristics |
FP and INT intensive
FP intensive
Both FP and INT intensive
INT intensive
FP intensive
FP and INT intensive
FP and INT intensive

flops_fbench Both FP intensive
equake_art Both INT intensive

gzip_ammp One INT and the other slightly FP
art_ammp One INT and the other slightly FP
mcf_gee Both memory intensive

V. RESULTS
We now present the performance and performance-per-Watt
analysis of the proposed architecture. We first explore the
upper bound on the performance enhancement possible for
the small core when its dedicated execution units are replaced
by the units it shares with the big core. We then present the
results for the shared resource architecture. Both individual
core (using the simple Speedup = val(new)/val(old)) and
system level results are presented. System level results are
based on the harmonic speedup metric which is calculated as
follows:
SO = (IPCthreadO)new/(IPCthreadO)baseline
S1 = (IPCthreadl)new/(IPCthreadl)baseline
Speeduphar'monic = 2/(1/30 +]-/Sl)
Here, baseline refers to the case where the cores do not share
any unit. Shared resource access latencies of 0, 1 and 2 cycles
were considered in the experiments, but we only show the
results for 0 and 2 cycles since we found the results to be
almost linearly dependent on latency.
To obtain the upper bound on the potential performance and
performance-per-Watt for the small core with access to the
shared execution units, we carried out an experiment where
only a single thread is run on the small core and the core
is assigned the INT Div, Mult and FP ALU, Div and Mult
execution units of the big core. Note that such an architecture
is not practical and is experimented with only to explore the
potential upper-bound. The performance and performance-per-
Watt results relative to the small core with its regular execution
units are plotted in Figure 5 for the considered workloads.
It has been observed that there are a few workloads that
would benefit significantly with respect to both performance
and performance-per-Watt if given access to faster execution
units (e.g., barnes, raytrace,equake,flops and fbench show 52%,
54%, 30%, 30% and 40.5% improvement in performance and

207

1.6 B Relative performance
L5 ORelative performance/Watt
1.4
1.3
1.2
1.1
1 h IH
0.9 I
0.8 H
za% SIS o4 iR R & &
.be @ & b ﬁ\ ‘Z" 0@» Q& EAEN Q’@@Q %6‘& Y:\@@
Fig. 5. The relative performance and performance-per-watt enhancement

possible for the small core when its dedicated small execution units are
replaced by those from the big core.

11%, 12%, 15%, 18% and 9% improvement in performance-
per-Watt, respectively). However, there are also workloads
such as lu, gcc, gzip where no performance improvement is
observed while the performance-per-Watt is reduced. There are
also workloads, such as cholesky, fmm, radix, water, ammp,
where only a modest performance gain is achieved and the
performance-per-Watt is decreased. The faster execution units
come at the cost of larger dynamic and static power. On
an average, the performance was found to increase by 20%,
while the performance-per-Watt gain was around 2%. This
experiment shows that not all workloads will benefit from
faster execution units on the small core.

A. Performance and Power analysis of resource sharing

The individual core level and system level performance ob-
served due to resource sharing between the big and small
cores are shown in Figures 6 and 7 for the various workloads.
The access latency of O cycles represents the ideal scenario
where the architecture and floorplan have been optimized
for resource sharing. This latency also shows the effect that
resource contention has on the results. We observe that the
average performance increase of the small core drops by 2%
from the observed 20% achieved when the small core has
its own dedicated fast execution units (see Figure 5). The
highest gain of 54% for the small core was observed when
running the workload raytrace_raytrace. For the big core,
contention related loss was found to be less than 1% on average
with a worst case loss of 4% experienced when running the
workload barnes_barnes. This shows that contention related
losses are very small for both cores. In general, workloads
where both threads run are FP intensive, e.g., (barnes_barnes,
raytrace_raytrace, equake_art and flops_fbench), show im-
provement in performance. The workloads that do not show
improvement are the ones that make no use of the faster shared
execution units such as ammp_gzip, mcf_gcc and lu_lu. On
an average, a system performance gain of 7% is observed
when considering shared resource access latency of O cycles.
The maximum system level gain of 20.2% was observed
when running the workload raytrace_raytrace. As expected,
an increase in the shared resource access latency reduces
the benefits of sharing. The largest drop is observed for the
workload radix_radix where a gain of 7% for a O-cycle latency
drops to a loss of around 18% for a 2-cycles latency. On an
average, the system level performance gain drops from 7%
to 1% going from a access latency of O to 2 cycles. This
shows the sensitivity of the architecture to the shared resource
access latency. Nonetheless, the fact that an improvement in

(3%

B Small latency 0

O Small latency 2

M Big latency 0 OBig latency 2

performance
—
n

1 R P ——
L
£05
s
L
Moo
‘0@5‘\ \e"’\i'\z \\3/ . (“6\ \‘%
o~ \ad e
o e @
&

\6‘

\-,m‘e‘ >

I

o
z\"@ ¥

¥
%,,}Q P S

o

Fig. 6.

The relative individual core performance of the big and small core in the shared resource configuration for various shared resource communication

latencies. In the plot, y = 1 is highlighted with a red dotted line for ease of analysis.

Qi B Latency
o L
g LIS O Latency
g 1.1
= 1.05
Lg 09; - -]— i
& 09
© 0.85
Z 08
= 075
& 0.7
FRSITFESS O P & S8
sofv \e;e ’&"Q > &‘Z* & 4\%\ \ga? & 3,? g}io ,[,&4@@%
z&»“& FE S e Sy
,(0 VAR & Q@/ 4@ & QQQ q’,& ¥
“0 \@ 4&‘
c:Qo &

Fig. 7. The system level relative performance of the big and small dual-core
in the shared resource configuration for shared resource access latencies of 0
and 2 cycles.

the average performance is observed even with a access latency
of 2 cycles shows the effectiveness of resource sharing.

We also conducted an analysis of the power consumption in
the non-sharing and sharing architectures. We do not include
figures due to lack of space. It is observed that for a few work-
load combinations, the power consumption increases although
in general, it is expected that resource sharing will reduce the
power, in particular, the static power. This is not necessarily
the case for dynamic power since the small core gets access
to the execution units of the big core that consume more
power. Power increases were observed for the workloads that
make best use of the shared resources such as barnes_barnes,
raytrace_raytrace, equake_art and flops_fbench for a shared
resource access latency of O cycles. This reduces with an
increase in the resource access latency. On the other hand,
workloads such as ammp_gzip, mcf_gcc and lu_lu that do not
make use of the shared resources result in power savings.
On an average, the system level power increases by 1% for
a 0O-cycles latency and drops by 2% for a 2-cycles latency.
The worst case power increase of 8% was observed for the
workload raytrace_raytrace that makes the most use of the
shared resources.

The individual core level and relative system level
performance-per-Watt for each workload is shown in Figures
8 and 9, respectively. The performance increase results in a
higher power consumption. Hence, the performance-per-Watt
did not increase as much as the performance. Still, average
improvements of 9% on the small core and 3% on the big
core are observed for a O-cycles access latency (see Figure

208

8). The best case for the small core, of almost 23%, was
observed for raytrace_raytrace. For the big core, with O-
cycles latency, no workload shows losses. An increase in the
latency, however, resulted in small (1% on average) loss. For
radix_radix, at a 2-cycles latency, the small and big cores
show 10% and 17% loss in performance-per-Watt, respectively,
resulting in system level loss of 14%. This shows that if
the shared resource access latency is high, sharing is not
beneficial if the majority of the workloads that will be run
on the multicore are sensitive to the latency. Still, system level
performance-per-Watt improvements of 6 to 1% on an average
and 12 to 9% in the best case, were observed for increasing
shared resource access latencies. This shows that for generic
workloads, improvements will be achieved even if the shared
resource latency is as high as 2 cycles. The workloads that
showed no performance improvement (ammp_gzip, mcf_gcc
and [u_lu) show performance-per-Watt improvement due to
static power savings. Sharing execution units in AMPs thus
provides both power savings and performance improvement,
something that sharing in SMPs cannot achieve.

VI. SCALABILITY
So far, we have considered the sharing of large and underuti-
lized execution units between one big and one small core and
observed the potential for performance and performance-per-
Watt improvements. In the future, we will consider sharing
resources between more than 2 cores in the AMP.

VII. CONCLUSIONS
We have presented a detailed analysis of the performance
and performance-per-Watt benefits of sharing execution units
between a high performance (big) core and a low power
(small) core. Specifically, the integer divide and multiply
and, the floating-point ALU, divide and multiply units of the
big core were shared with the small core. This architecture
was analyzed for several multithreaded and multiprogrammed
workloads. Since sharing resources may result in increased
access latency, we analyzed the sensitivity of the performance
and performance-per-Watt to the latency. Our results indicate
that resource sharing between big and small cores has the po-
tential to significantly enhance performance and performance-
per-Watt of the small core by as much as 54% and 23%,
respectively. For the big core a worst case performance loss
of 4% was observed while the performance-per-Watt increases
by 4%. On an average, the system level performance improve-
ment ranges between 7 and 1% and the performance-per-Watt
improvement ranges between 6 and 1% for shared resource

—_
w

B Small latency 0

O Small latency 2

B Big latency 0 O Big latency 2

watt

<
w

| - |im_|‘
0
o

o
» A8

Relative performance-per-

S < " 5 < [
5,036‘@ g‘o"\%\ﬁ 556“ w2 - < ‘ﬁ\fa“ “ o e ;&5‘ S P 391,\? . %\‘\6& (00‘\ o P-"la@%
@ sl g * 1\@(‘6/ o A g
3

oS

Fig. 8. Relative individual core performance-per-Watt of the big and small core in the shared resource configuration for various shared resource communication
latencies. In the plot, y = 1 is highlighted with a red dotted line for ease of analysis.

Relative performance/Watt

—_
==
— W

=)
S

.8

l IH

= =}
S x 2
W O W =
5
é .

P A S E S RECRO
SO FEFTSE P S
o & & § P e & o STET
Far © & s S PO v
\Zf"
S &

Fig. 9. The system level relative performance-per-Watt of the big and small
dual-core in the shared resource configuration for shared resource access
latencies of 0 and 2 cycles.

access latency ranging from 0 to 2 cycles. Resource sharing
also enhances performance-per-Watt-per-area by as much as
18%, further demonstrating the benefits of such an architecture.

(1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

REFERENCES

R. Dolbeau and A. Seznec, “Cash: Revisiting hardware sharing in
single-chip parallel processor,” Tech. Rep., 2002.

R. Kumar, N. P. Jouppi, and D. M. Tullsen, “Conjoined-core chip
multiprocessing,” in Proceedings of the 37th annual IEEE/ACM Intern.l
Symp. on Microarchitecture, ser. MICRO 37, 2004, pp. 195-206.

M. Butler, L. Barnes, D. Sarma, and B. Gelinas, “Bulldozer: An
approach to multithreaded compute performance,” vol. 31, no. 2, 2011,
pp. 6-15.

T. Sherwood et al., “Phase tracking and prediction,” in Proceedings of
the 30th annual international symposium on Computer architecture, ser.
ISCA 03, 2003.

R. Kumar er al., “Single-isa heterogeneous multi-core architectures: the
potential for processor power reduction,” in MICRO-36. Proceedings.
36th Annual IEEE/ACM Intern. Symp. on Microarchitecture, Dec. 2003.

E. Grochowski et al., “Best of both latency and throughput,” in
Computer Design: VLSI in Computers and Processors, 2004. ICCD
2004. Proceedings. IEEE International Conference on, Oct. 2004.

R. Rodrigues et al., “Improving performance per watt of asymmetric
multi-core processors via online program phase classification and adap-
tive core morphing,” ACM Trans. Des. Autom. Electron. Syst., vol. 18,
no. 1.

P. Greenhalgh, “Big.little processing with arm cortex-al5 and cortex-
a7, sep. 2011.

D. M. Tullsen et al., “Simultaneous multithreading: maximizing on-chip
parallelism,” SIGARCH Comput. Archit. News, vol. 23, no. 2.

V. Cakarevic et al., “Characterizing the resource-sharing levels in the
ultrasparc t2 processor,” in Microarchitecture, 2009. MICRO-42. 42nd
Annual IEEE/ACM International Symposium on, 2009, pp. 481-492.

209

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

(22]

H. Levy et al.,, “Exploiting choice: Instruction fetch and issue on an
implementable simultaneous multithreading processor,” in Computer
Architecture, 1996 23rd Annual Intern.l Symp. on, May 1996, p. 191.

Y. Watanabe er al., “Widget: Wisconsin decoupled grid execution
tiles,” in Proceedings of the 37th annual international symposium on
Computer architecture, ser. ISCA °10, 2010, pp. 2-13.

D. Borodin et al., “Functional unit sharing between stacked processors
in 3d integrated systems,” in Embedded Computer Systems (SAMOS),
2011 International Conference on, July 2011, pp. 311 -317.

H. Homayoun et al., “Dynamically heterogeneous cores through 3d
resource pooling,” in Proceedings of the 2012 IEEE 18th International
Symposium on High-Performance Computer Architecture, ser. HPCA
’12, 2012, pp. 1-12.

R. Rodrigues et al., “Performance per watt benefits of dynamic core
morphing in asymmetric multicores,” in Parallel Architectures and
Compilation Techniques (PACT), 2011 International Conference on,
Oct. 2011, pp. 121 —130.

S. Li et al., “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO-42.
42nd Annual IEEE/ACM Intern. Symp. on Microarchitecture, 2009, pp.
469-480.

R. Rodrigues et al., “Scalable thread scheduling in asymmetric mul-
ticores for power efficiency,” in Computer Architecture and High
Performance Computing (SBAC-PAD), 2012 IEEE 24th International
Symposium on, 2012, pp. 59-66.

J. Renau, “Sesc: Superescalar simulator,” 2005.

D. Brooks et al., “Wattch: a framework for architectural-level power
analysis and optimizations,” in Computer Architecture, 2000. Proceed-
ings of the 27th International Symposium on, June 2000.

P. Shivakumar et al., “Cacti 3.0: An integrated cache timing, power,
and area model,” Tech. Rep., 2001.

S. C. Woo et al., “The splash-2 programs: characterization and method-
ological considerations,” SIGARCH Comput. Archit. News, vol. 23,
no. 2.

SPEC2000, “The standard performance evaluation corporation (spec
¢cpi2000 suite).”

