
A Mechanism to Verify Cache Coherence

Transactions in Multicore Systems

Rance Rodrigues, Israel Koren and Sandip Kundu

Department of Electrical and Computer Engineering

University of Massachusetts, Amherst MA 01003, USA.

Email: {rodrigues, koren, kundu} @ecs.umass.edu

Abstract—The functional correctness of shared memory ap-
plications executing on multicores and multiprocessor systems is
supported by cache coherence protocols. The correct operation
of these applications thus depends on the correctness of the
cache coherence transactions. However, verifying the correctness
of these transactions is not trivial since even simple coherence
protocols have multiple states. Transitions among the states can
fail due to aging of devices or single event upsets. In this paper
we present a centralized mechanism for online verification of
cache coherence transactions in snoopy bus multicore systems.
We make use of an architecture that we previously proposed
for opportunistic Dual Modular Redundancy (DMR). This ar-
chitecture includes, in addition to the general-purpose cores, a
diminutive core called the Sentry Core (SC) that is small and
simple and thus, can be assumed to be fault-free. Like other
cores, the SC has access to the shared bus and is aware of the
cache coherence protocol. It monitors all bus transactions and by
observing the current state of the cache line being addressed and
the type of operation (e.g., read or write) it knows the expected
next state for that cache line. Deviation from expected behavior
will indicate a possibe error. Our preliminary experiments show
that a significant fraction of the coherence transactions can be
verified by our scheme.

Index Terms—Online error detection, cache coherence, verifi-
cation, centralized mechanism

I. INTRODUCTION

The relentless push in technology scaling has led to smaller

transistors and higher device densities but unfortunately, re-

sulted in an increase in error rates [2], [3], [6]. The complexity

of present day chips makes it almost impossible to detect all

logic bugs pre-silicon [5]. Furthermore, devices are expected

to experience errors during the operation in the field. Conse-

quently, there have been a number of proposals for post silicon

validation. Unfortunately, most of these schemes if applied

online lead to significant performance penalties.

Multicore and many core systems rely on inter-core com-

munication via shared memory. In such systems it is necessary

to make sure that data consumed by all the cores is up to date.

Cache coherence protocols help ensure this [20]. Functional

correctness of shared memory systems thus depends on the

correctness of the coherence hardware support. Ensuring cor-

rectness of the coherence hardware is difficult as even simple

protocols can have multiple states [18]. The state space further

increases when considering the state of a cache line shared

across cores. Thus, there is need for an online mechanism to

verify the operation of cache coherence transactions.

In this paper, we propose an online scheme to verify

the operation of the cache coherence hardware in a snoopy

� � � � �

� � � 	 �
 �

� � � � � � � �

� � � � �

� � � 	 �
 �

� �

� � � 	 �
 �

� � � � � �

Fig. 1. A Sentry Core (SC) in a shared memory multicore.

bus multicore. We leverage an architecture that we proposed

previously for opportunistic DMR in Chip Multi-Processors

(CMPs) [8]. That architecture includes, in addition to the

general-purpose cores, a small and simple core called the

Sentry Core (SC) that is assumed to be fault-free. This

assumption is akin to similar assumptions used in watchdog

processors [7], [9] and the DIVA checker [1]. The SC has

access to the shared bus, just like the other cores (see Figure

1). It monitors and logs all bus transactions, and is aware of the

cache coherence protocol being implemented in the system. By

observing the source and type of bus transaction, it can predict

the expected next coherence state of that line for the requesting

core and all other cores that share that line. Whenever the

same line appears on the bus again, the SC can verify that it

transitioned to the correct state. If not, an error is flagged. Our

experiments using the SPLASH-2 [13] benchmarks suggest

that a significant fraction of the transactions can be verified

by the SC by simply monitoring the shared bus.

The rest of the paper is organized as follows. In section II

we provide a literature survey on the existing cache coherence

verification mechanisms. In Section III we present details of

the architecture to enable cache coherence verication. The

experimental setup is discussed in Section IV followed by the

results and conclusions in Sections V and VI, respectively.

II. RELATED WORK

We present in this section, a brief summary of the literature

that closely relates to our proposal and point out the key

differences.

In [11], Cantin et al. presented a variation of the DIVA

checker [1] for cache coherence verification. Just like DIVA

does for functional correctness of the cores, cache coherence

transactions were verified using simpler logic. However, this

scheme requires the use of a separate network for global

verification of coherence states. In [12], Fernandez-Pascual

211978-1-4673-3044-2/12/$31.00 c© 2012 IEEE

et al. present a scheme for cache coherence verification in

the presence of network failures. This scheme cannot be used

to ensure correct transition of coherence states. A scheme to

verify cache coherence with token coherence was proposed by

Meixner et al. in [17]. The scheme requires implementation

of logical timestamps, signature generation and comparison

hardware. In [10], Borodin et al. present a distributed system to

verify cache coherence. In their solution, each cache that par-

ticipates in the coherence protocol is assigned a checker that

verifies its operation, which enables local verification. Global

verification is done by observing the shared bus. This scheme

is closest to ours, but its overhead increases linearly with the

number of cores in the CMP, unlike ours where a single SC

services a number of cores. Furthermore, as will be shown

later in the paper, this scheme may be too conservative. In [5],

DeOrio et al. present an algorithm to verify cache coherence

post-silicon. This algorithm, if implemented online, imposes a

26% performance penalty which is unacceptable. Verification

of the cache coherence protocol itself was introduced by Zhang

et al. in [18]. We next present our SC-based cache coherence

verification scheme.

III. THE PROPOSED SOLUTION

We propose the use of the SC for verifying the coherence

protocol in snooping bus multicores. General working of the

system and a possible implementation of the system in real

hardware are decribed next. In this paper, we assume the use

of the MESI protocol [20], but our approach can be applied to

any coherence protocol. We refer to the various MESI states as

M-Modified, E-Exclusive, S-Shared and I-Invalid throughout

this paper.

A. General working

The SC monitors all transactions on the shared bus and

makes decisions about the correctness of the transactions.

Three steps are involved in the process: (i) Transaction log-

ging, (ii) Verification, and (iii) Retirement.

1) Transaction logging: This is the first step of the cache

coherence verification mechanism. Whenever a cache line is

requested due to a read/write miss, it is logged into the L1

cache of the SC. The hardware mapping of each cache access

into the SC cache in described in the next sub-section. We

assume that along with the address of the memory line being

requested, its current coherence state in the sending core is also

broadcast. The same assumption has been made by Borodin et

al. [10]. The SC logs the address of the access, current state

of the line and, depending on the transaction, the expected

next state of the line. For a given cache line address, entries

are maintained for each core in the system. When the line is

shared among cores, the corresponding entries are updated,

whenever such information is observed on the bus.

2) Transaction verification: After a request is logged, it is

verified once the line appears on the bus again. There are two

types of verifications that need to take place, i.e., (i) Local

and (ii) Global. Local verification is conducted by computing

the expected next state of the transaction for the same core.

Whenever the same line appears on the bus, the SC can check

if the line transitioned to the expected state. For example, if a

core has a read miss and the line was not found in the L1 of

any other core, its expected next state should be E (Exclusive)

since it has exclusive access to the line. Global verification

happens by making sure that the state of this line is consistent

across cores. For example, a line existing in the S and M

states in the L1 caches of two cores is an invalid situation that

must be detected. This is done by the SC by comparing the

state of the line in each core, that is logged in its own cache.

Verification (local or global) happens whenever the line in

question appears on the bus. There are two ways in which

this happens. The first is when a core requests a line that is

present in the cache of another core. In this case, the owner

core will respond to the requesting core with a copy of the

line. This information is broadcast on the bus along with the

current coherence state of the line. Since this entry must have

been logged earlier along with the current state in the logging

stage, the SC now has access to the next state of that line.

Comparing the current state to the state predicted by the SC

enables local verification. If the line is shared by multiple

cores, global verification is done by assessing the state of the

line across cores. At this stage a new entry is created for the

requesting core and the relevant entries are updated in the SC

cache. The second verification opportunity arises when the

cache of a core is full and lines need to be evicted to make

space. If the line that is to be evicted is dirty (M state), a write

to memory is initiated so that the main memory is kept up to

date. When a write is initiated, the address of the line and its

current state are broadcast on the bus and the SC then checks

for local and global verification.

3) Entry retirement: If every line that was accessed is

logged but never retired, the SC would need an unlimited

cache size to log all the entries and the scheme would not

be practical. However, logged cache lines are not needed for

an unlimited period of time. Cache lines upon cache conflict

have to be evicted from the L1 cache. If the line is in the

dirty state, it is written to main memory. Since the cache line

is dirty (M), no other core can have a copy of the line and

once it has been evicted from the L1 cache, the corresponding

entry in the SC L1 cache is retired. Sometimes, cache lines

are in states other than M (S or E) and in this case, upon

cache conflict, these lines will be overwritten (since the line

is consistent with main memory in the S or E states and we do

not care about lines in the I state). Whenever this happens, our

scheme requires that the SC be notified via the shared bus. The

entry is then retired from the SC cache. This event is expected

to incur a small penalty, since it increases traffic on the bus.

However, we have observed this penalty to be negligible in our

experiments. Entries are also evicted from the SC cache when

they are invalidated (I). This also implies that any transaction

that appears on the bus with a state other than I, it must be

logged in the SC cache, otherwise, an error has occured.

B. Mapping cache access transactions in hardware

We have discussed how the SC logs, verifies and retires

transactions from its own cache. In this section we describe

212 2012 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)

� � � � � � � � �

	

 �
� � � � � � � � � � � �

� � � � � � �
� � � � �

� � � � � � � �
� � � � �

� � � � � � �
� � � � �

� � � � � � � �
� � � � �

� � � � � � �
� � � � �

� � � � � � � �
� � � � �

� ! " # $ %
& ' ($) & ' ($)

* + $,) $ + - % # + . / ' 0 $ # 1 # - ! + - # . + - % (2 # 3 ! ! " # , (3 #
/ 4 5 & , (3 #) + . 6 5 ' 0 $ #) # ! " 2 (, ' , # (3 6 5 7 8 9 � ! ! " # . + - $ - 3) ! $ (+ 3 , + % % (3 %

: � ; < � =
> ? � @ � � A > B

� C D E F G � H D I �

J

K

L L M N L N O P Q
 R S T T

U V U W U W X Y Z [\

] � ^ � � _ � < �
` a

b

c

d G E � e C D E F f �
g � � � � Fh I � C i E � G � � � �

Fig. 2. Mapping cache transactions for each core in the SC cache.

how each transaction is mapped into the SC cache in hardware.

In the considered system cache lines are assumed to be 32

bytes. The SC cache is assumed to be the same size as that

of the general-purpose cores. We have assumed a 32KB L1

cache size and hence the total number of lines available is

1024. The SC cache addressing is done using the same address

as that of the operation broadcast on the bus. Since we use

the MESI protocol, we assume 4 bits each (13 total states

along with transients) for current and expected next states of

each core. This requires 1 byte per core. There is also need

to log the current memory operation for each line and the

requestor ID. Depending on these fields and the current state,

the SC can compute the expected next state. Transactions

that appear on the bus are either due to a read/write miss,

memory push or invalidate. Hence, two bits are reserved for

the memory operation and 5 bits for the requestor ID, which

allows addressing up to 32 cores. The memory operation and

requestor ID fields together occupy a byte, leaving the other

31 bytes to store records for up to 31 cores in the system. The

SC cache is implemented as any general-purpose core cache,

i.e., with tags, sets and offset. Tags and sets are computed

using the address of the memory operation on the bus. Offset

is computed using the requestor core ID. Figure 2 depicts the

SC cache and its entries. Note that for lines exclusively held

by a single core, just one entry (1 byte of the available 31)

will be used and the rest will be wasted. Also if the number

of cores in the system is less than 31, many entries are never

used. Instead, if the SC cache was customized such that the

number of bytes per line is equal to the number of cores in

the multicore, not only would the SC cache be used more

effeciently, there would be more entries to store additional

cache transactions. However, this would complicate the design

of the multicore. To avoid this, we assume that the line size in

the SC cache is identical to that in the general-purpose core

caches, i.e., 32 bytes.

C. Putting it all together

An example summarizing the above description is presented

in Figure 3. For simplicity, the memory operation and re-

questor ID fields in the SC cache have not been shown, but

appear in the text in the figure. All state updates are indicated

in italic fonts in the caches and any state verifications are

indicated by a star alongside the line state. In the example,

two cores are considered. The contents of each core cache

and SC cache are shown in stages A through E. In stage A,

Core 1 has exclusive access to the line at address A. Its state

j

k

l

m

n

o p p q r s t s u t s t v w s x y p
z z z {

| } ~ �
� � � �

� � � � � � � � � � � �
o p p q r s t s u t s t v w s x y p

z z z {
� � � �
� � � �

� � � � � � � � � � � � � � q v � � t s t v � � q v � � t s t v
o p p q � � q q v � t v � � v � t v p � � q q v � t v � � v � t v p

| ~ � � �

� � � � � � � � �

� � � � � � � � � � � � � � � ¡ ¢ £ � ¤ ¢ � ¥ ¦ § § � ¦� � � � � ¨ © ª «
¬ ® ¯ ® ° ± ² ³ � � q v � ´ o ´ � t s t v µ

o p p q r s t s u t s t v w s x y p
z z z {

| } ~ �
� � � �

� � � � � � � � � � � �
o p p q r s t s u t s t v w s x y p

z z z {
� � � �
� � � �

� � � � � � � � � � � � � � q v � � t s t v � � q v � � t s t v
o p p q � � q q v � t v � � v � t v p � � q q v � t v � � v � t v p

| ¶ ¬ · ¬

� � � � ¸ � � � ¹ � £ § � � � � ¥ � � � � � � � � � � � ¥ �
¡ ¢ £ � º £ § º ¡ � � � � £ § � ¢ � � » � � � � £ � � � º � �� � � � � ¨ © ª «

¬ ® ¯ ® ° ± ² ³ � � q v � ´ o ´ � t s t v ¶

� � � � � � � � �

¼ ½ ½ ¾ ¿ À Á À Â Á À Á Ã Ä À Å Æ ½
Ç Ç Ç È

É Ê Ë Ì
Í Í Í Î

Ï Ð Ñ Ò Ó Ô Ó Õ Ö Õ × Ò
¼ ½ ½ ¾ ¿ À Á À Â Á À Á Ã Ä À Å Æ ½

Ç Ç Ç È
Ø Ù Ë Ú

Í Í Í Î

Ï Ð Ñ Ò Û Ô Ó Õ Ö Õ × Ò Ü Ý Þ ß à � � � � ß Ü Ý Þ ß � � � � � ß
� � � Þ Ü � Þ Þ ß � � ß � � ß � � ß � Ü � Þ Þ ß � � ß � � ß � � ß �

É � Ç � Ç

� � � 	
 � � � � � � 	 � � 	 � � � � 	 � � � � 	 � � � 	 � �
� � � � � � � � � � � ! " ! � # � � � $ �% & ' () * + , -

. Ï Ô Ó Õ Ö Õ × Ò

/ 0 0 1 2 3 4 3 5 4 3 4 6 7 3 8 9 0

: : : ;
/ 2 5 <

: : : ;

= > ? @ A B A C D C E @

/ 0 0 1 2 3 4 3 5 4 3 4 6 7 3 8 9 0

: : : ;
/ 2 5 <

: : : ;

= > ? @ F B A C D C E @ G H 1 6 < I 4 3 4 6 G H 1 6 J I 4 3 4 6

/ 0 0 1 G K 1 1 6 L 4 6 M N 6 O 4 6 0 G K 1 1 6 L 4 6 M N 6 O 4 6 0

/ P : 5 :

Q R S T U V W X Y R T Z [\ Y Y V T] [^ T _ ` T Y R \ W \ V T a [X X
b E D ? @ c d e f

b = B A C D C E @

g h h i j i k l m n o p q r s t u t v w x w r P

y z z { | } ~ } � ~ } ~ � � } � � z

� � � �
� � � �

� � � �

� � � � � � � � � � � �

y z z { | } ~ } � ~ } ~ � � } � � z

� � � �
y | � �

� � � �

� � � � � � � � � � � � � � { � � � ~ } ~ � � � { � � � ~ } ~ �

y z z { � � { { � � ~ � � � � � ~ � z � � { { � � ~ � � � � � ~ � z

y � � � �
� ¡ ¢

£ ¤ ¥ ¦ § ¨ © ª « ¬ ¦ ¬ ¦ § ¬ « ¬ ¦ ¤ ® ¬ ¦ ¯ ° ± ¦ ° ± ¬ ¦ ° ¥ ² « ² ¦ §
³ ´ µ ¶ · ¸ ¹ º »

¼ � � � � � � � �

Fig. 3. Working example of transaction logging and retirement. The state
verifications are indicated by a star alongside the state in the SC cache and
any new state updates are indicated by italics font.

is recorded in the L1 of Core 1 as well as in that of the SC.

Core 2 then requests a read for that line. This request is sent

on the bus and seen by Core 1 and the SC. The SC logs

this request and knows, based on the memory operation and

requestor ID, what are the expected next states for both cores.

The SC accordingly updates those fields for each core. In stage

B, Core 1 responds to the request from Core 2 and broadcasts

the state of the line in its cache. This helps the SC to verify

the expected state for Core 1. In stage C, a static snapshot of

the system with updated states is shown. In stage D, Core 1

has a cache miss and has to evict the line. This is observed on

the bus and the SC can once again verify its operation. Stage

E shows a static snapshot of the states in the system after the

memory eviction for Core 1 is complete and the new line with

address X having arrived.

D. Mathematical upper bound on the number of transactions

that may be logged and verified

The SC cache is used to log and verify transactions. Hence,

the size of the SC cache determines the upper bound on the

2012 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT) 213

TABLE I
CHOSEN CORE PARAMETERS

Parameter Value Parameter Value

Issue 6 INTREG 96

FPREG 80 INTISQ 36

FPISQ 24 Load/Store units 3

LSQ 32 ROB 128

L1(I/D) 32K L2 2M

L1 associativity 8 L1 Linesize 32 bytes

L2 associativity 8 L2 Linesize 32 bytes

L1 hit latency 2 cycles L1 miss latency 10 cycles

L2 hit latency 15 cycles L2 miss latency 200 cycles

Freq (GHz) 2.4 Operation Out of order

verification coverage that may be achieved. We now discuss

the desired SC cache size that will allow all transactions to be

verified. For simplicity, we assume a fully associative cache.

The minimum size of the SC cache required to log all

transactions is
∑

linesV alid, where linesV alid is the num-

ber of valid L1 cache lines, where no two lines have the

same address in memory. Note that for two cores sharing

a line, only a single entry will be maintained in the SC

cache (refer to Section III-B). The worst case arises, when

every L1 cache line in the multicore is valid and none are

shared. In that case, the minimum size of the SC cache is

then n ∗ lines where lines is the number of cache lines per

L1 cache. In other words, the SC cache must be equal to n

times the L1 cache size. It may be noted that this calculation

was done using fully associative caches which is not always

practical. Considering more realistic set-associative caches this

minimum requirement on the cache size may be larger than

that just calculated. However, as will be seen in the results, a

key observation enables us to keep the required SC cache size

realistic.

IV. EXPERIMENTAL SETUP

The shared memory multicore was simulated using the

SESC simulator [4] which was modified considerably to

enable cache coherence transaction verification via the SC.

We used the SPLASH-2 workloads [13] for our experiments

(cholesky, barnes, fft, fmm, lu, ocean, radix and water). Each

core in our multicore represents an Intel Nehalem processor.

The specifications of the core parameters that we have used

are shown in Table I. We consider 8 cores in the multicore

for all our simulations and we simulate the workloads for 10

million instructions.

V. RESULTS

We now present the results of using the SC for cache

coherence verification. The SC can verify transactions once

they appear on the shared bus and is unable to verify any

transaction until it is seen on the bus. Hence, we present the

fraction of cache coherence transactions that can be verified.

Note that any unverified transactions will be verified in the

near future when they will be seen on the bus, but after a

certain number of elapsed cycles. Cache line sharing is a

function of the benchmark used and thus, we analyzed the

required size of the SC cache for each benchmark. Following

this, results are presented when using a realistic SC cache size

� � �
� � � �

� � �
� � � �

� � �
� � � �

� � 	
� �
 �

� � �
� � � �

� �
��

�� �
��

� � �
��
��
��� �
��
�� �

��
� ��

� � � �
 � � � � � �

Fig. 4. Fraction of transactions verified for various cache sizes when using
unlimited SC cache size.

to evaluate the effectiveness of the system. sizes, the above

mentioned experiments are carried out for various cache sizes.

A. Unlimited SC cache size

We now present results showing the fraction of transactions

verified for unlimited SC cache size and also the upper

bound on the required SC cache size such that maximum

verification is possible for all benchmarks. The results are

plotted in Figures 4 and 5, respectively, for various general-

purpose core cache sizes and various benchmarks. Figure 4

shows that in general, a very high coverage is obtained for

smaller cache sizes and this reduces with increasing cache

size, for the 10 million instructions that we simulated. This

is intuitive since the smaller the cache, the larger is the

number of cache conflicts and evictions. Also with smaller

caches, a small proportion of the lines reside inside the L1

caches as compared to the total transactions seen on the bus.

This also increases the fraction of verified transactions. It can

be seen that other than radix and lu, all other workloads

show greater than 0.9 coverage even when using a cache

size of 32K. The reason for low coverage for radix is that it

comprises almost 90% floating-point operations and involves

very limited sharing of data. Most of the cache lines are

exclusive and reside in the local cache for long periods of

time. Cache miss rates were also observed to be small for

both workloads, leading to fewer transactions on the bus,

resulting in low coverage. It may be noted that the fraction of

verified transactions asymptotically tends to 1 as the number of

instructions executed increases. This is because the unverified

transactions are always dependent on the size of the general-

purpose caches for reasons just mentioned. But as the time

increases, the number of transactions occuring on the bus is

very high and the fraction of unverified transactions reduces

to zero. Hence, even though some of the values in the plot

suggest low verification ratio, it is due to the 10 million

instructions that we ran. Increasing this number will increase

the verification ratio. The number of cache lines required by

the SC to log all entries is shown in Figure 5. In the worst case,

no cores in the system will share lines and the cumulative sum

of the lines occupied by all cores may need to be stored. From

the figure, it can be seen that barring the workloads barnes,

lu, water, the amount of storage required is the cumulative

sum of all cache sizes and hence the capacity requirement is

214 2012 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)

�

�

�

�

� �

� �

� 	

� � �

�
 �

�

 �

�� �
�� ��
��
� �
�� �

�� �
��

� � 	 � � � � � � � � �

Fig. 5. Maximum size of the SC cache required such that all possible
transactions seen on the bus are verified.

very high (almost 256K for 32K cache sizes). This may imply

that in order to achieve high verification rates for larger cache

sizes, the SC cache size may needs to be prohibitively large.

Fortunately, a key insight makes sure that this is not the case.

1) Discussion: From the results so far, we have seen that for

verifying all possible transactions using the SC, the SC cache

size may have to be equal to the sum of the cache sizes of all

the cores in the system, for certain workloads. However, the

transactions considered so far include lines that are exclusively

held in the cache of a single core and those that are shared

amongst the cores. We have seen in Section III-B, that this

situation results in the worst storage efficiency for the proposed

scheme. However, if something goes wrong in computing the

cache line state while the line is held exclusively, it very

rarely results in error. For example, faulty change of state

of a line to M will result in write back when this line is

evicted from the cache, but the data will not be corrupted.

The unnecessary writeback will have a small performance

penalty, but may be worth it if the tradeoff allows all other

transactions to be verified. The more malicious case is when

a fault causes a line in M state to move to a different state.

Here, upon eviction the line will not be written to memory

and the memory will no longer be up to date. This situation

can be avoided by special encoding of the MESI states. For

example, one hot coding for the four MESI states will ensure

that no single bit error will ever go unnoticed. Thus, it may

not be necessary to verify exclusively held cache line states.

The more interesting but challenging case is the verification of

line states globally across cores. We have observed that when

the verification of the exclusive line states is excluded, the

cache size requirement of the SC to log all transactions drops

dramatically. Figure 6 shows the percentage of transactions

that are shared amongst cores for various cache sizes. It can

be seen that barring barnes, shared transactions for all other

workloads account for a very small percentage of the total

transactions. Hence, by dropping the verification of exclusive

states, the size requirement for the SC cache can be reduced

dramatically. In the next sub-section, we focus therefore, on

verifying only the transactions that involve lines shared among

cores.

B. Realistic SC cache size

We now present the results of our experiments to determine

the capability of the SC to verify memory transactions in a

� � � ! "

$ � � �

$ � �

� � "

�

!

�

�

�

� �

� �

	

��

� �
�

�� �

� �
�

��
� �
��
���
��

�
��
��

� ��
�
�

� � � � � � � � � � � �

Fig. 6. Percentage of transactions that involve sharing cache lines amongst
cores for each workload and various general-purpose core cache sizes.

more realistic scenario. Here the SC cache size is not unlimited

and its associativity is identical to that of the caches of other

cores in the multicore.

1) Percentage of transactions verified: We varied the size of

the SC cache as well as that of the general-purpose cores from

2K to 32K. In total, we ran experiments for each workload

for the 25 possible combinations of cache sizes of the SC

and the general-purpose cores. We show the results for the

workload which exhibited the worst case, i.e., barnes in Figure

7. For a small SC cache size, it is expected that the cache

conflicts in the SC cache during transaction logging will be

high and thus, the percentage of transactions verified will be

smaller. For a fixed general-purpose core size, it can be seen

that the percentage of unverified transactions drops drastically

with increasing SC cache size, which is expected. The worst

case of 59% transactions unverified is observed when the SC

cache size is set to 2K and that of the general-purpose cores to

32K. However, this is not a realistic scenario as in general, it is

expected that the SC cache size will be at least equal to that of

the general-purpose cores. Looking at the data points in Figure

7 that represent equal SC and general-purpose core cache

sizes, it can be seen that in almost all cases 100% transaction

verification is possible. The only combination where this is not

the case, is when the cache sizes are set to 32K for barnes,

where 1.3% unverified transactions were observed. This is a

very small fraction and this greatly increases our confidence

in the capability of the proposed scheme. The other workload

that showed missed transactions for same SC and general-

purpose cache size is ocean, where 5.6% of the transactions

were missed for a cache size of 8K. For the rest of the

workloads, setting the SC cache size to 16K is enough to

verify all transactions even when the general-purpose core

caches are set to 32K. In Table II, the minimum size of the

SC cache required for 100% verification of shared transactions

amongst the 8 cores with L1 cache set to 32K, is shown. For

a majority of the workloads, an SC cache of just 2K suffices.

By excluding the verification of the the exclusive cache states,

100% of the transactions can be verified using realistic SC

cache sizes. This result also shows that the proposal made

by Borodin et al. [10] where a replica is maintained for each

cache, is pessimistic, since there for 8 cores and 32K caches,

the total checker cache size is 256K, as compared to 32K in the

worst case for our scheme. Note that when using 32K cache

2012 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT) 215

� � � � � � � � � � � �
	� 	

 �
� �

� �
 	

� �

 � � � � �
� � � �
 �

� ��
� ��

� ���
�� ��
������ �� � � ��
�� �

�� ���

Fig. 7. Percentage of transactions unverified for the workload barnes for
various combinations of SC and general-purpose core cache sizes.

TABLE II
MINIMUM SC CACHE SIZE REQUIRED FOR ≈100% TRANSACTION

COVERAGE WHEN USING GENERAL-PURPOSE CORES WITH L1 CACHE 32K

Workload Min SC L1 Workload Min SC L1

cholesky 16K lu 2K

barnes 32K ocean 16K

fft 2K radix 2K

fmm 2K water 2K

size, only 1.3% transactions are missed in the worst case of

barnes.

2) Time to verification time and performance penalty: The

SC provides error detection. Error recovery is assumed to be in

place using a checkpointing scheme [19]. If the error detection

latency is larger than the checkpointing interval, the system

state will be corrupted. Thus, the latency to error detection

is important. In our experiments, we have observed that even

in the worst case, the transaction verification latency is a few

thousand cycles which is well within reasonable checkpointing

intervals. The proposed scheme also results in increased bus

traffic in the cases where cache lines in the general-purpose

cores are overwritten without write back. We observed a 20%

increase in bus traffic in the worst case, but this resulted in

performance loss of less than 2%.

VI. CONCLUSIONS

In this paper, we have presented and evaluated a new

centralized mechanism to verify the cache coherence trans-

actions in a shared memory snooping bus multicore. The

proposed scheme is based on the incorporation of a small

and simple Sentry Core that can be assumed to be fault-free.

The SC has access to the shared bus and it can log memory

requests seen on the bus, in its cache. Since it is aware of

the cache coherence protocol, based on the memory operation

and the current state of the line requested, the SC knows

the expected next state for the line. Whenever the same line

is seen again on the bus, the SC compares the state of the

line to what it computed and flags an error if a discrepancy

is found. As the scheme depends on logging of transactions

in a cache, its capabilities are determined by its cache size.

Results were presented on the upper bound of the scheme

for unlimited SC cache size. A realistic scenario was then

presented where the SC cache was assumed to be similar to

that of the general-purpose cores. Results were presented for

various combinations of SC and general-purpose core cache

sizes. These results indicate that in a realistic scenario of

equal SC and general-purpose core cache sizes, >94% of the

transactions can be verified. The performance penalty arising

from the scheme was found to be less than 2% in the worst

case. Our analysis also shows that using a centralized checker

for cache coherence may result in far lower hardware overhead

in terms of additional cache space required for checking.

REFERENCES

[1] Austin, T.M.; , ”DIVA: a reliable substrate for deep submicron microar-
chitecture design,” Microarchitecture, 1999. MICRO-32. Proceedings.
32nd Annual International Symposium on , pp.196-207, 1999.

[2] Srinivasan, J.; et al.; , ”The impact of technology scaling on lifetime
reliability,” Dependable Systems and Networks, 2004 International Con-
ference on , pp. 177- 186, 28 June-1 July 2004.

[3] Borkar, S.; , ”Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation,” Micro, IEEE ,
vol.25, no.6, pp. 10- 16, Nov.-Dec. 2005.

[4] Renau, J.; et al., SESC Simulator, January 2005.
http://sesc.sourceforge.net.

[5] DeOrio, A. et al.; , ”Post-silicon verification for cache coherence,”
Computer Design, 2008. ICCD 2008. IEEE International Conference
on , pp.348-355, 12-15 Oct. 2008.

[6] Ogawa, E.T. et al.; , ”Leakage, breakdown, and TDDB characteristics of
porous low-k silica-based interconnect dielectrics,” Reliability Physics
Symposium Proceedings, 2003. 41st Annual. 2003 IEEE International ,
pp. 166- 172, 30 March-4 April 2003.

[7] Benso, A. et al.; , ”A watchdog processor to detect data and control flow
errors,” On-Line Testing Symposium, 2003. IOLTS 2003. 9th IEEE , pp.
144- 148, 7-9 July 2003.

[8] Rodrigues, R. et al.; , ”An Architecture to Enable Life Cycle Testing
in CMPs,” Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2011 IEEE International Symposium on , pp.341-348,
3-5 Oct. 2011.

[9] Saxena, N.R.; McCluskey, E.J.; , ”Control-flow checking using watchdog
assists and extended-precision checksums,” Computers, IEEE Transac-
tions on , vol.39, no.4, pp.554-559, Apr 1990.

[10] Borodin, D.; Juurlink, B.H.H.; , ”A Low-Cost Cache Coherence Ver-
ification Method for Snooping Systems,” Digital System Design Ar-
chitectures, Methods and Tools, 2008. DSD ’08. 11th EUROMICRO
Conference on , pp.219-227, 3-5 Sept. 2008.

[11] Cantin, J. et al; ”Dynamic Verification of Cache Coherence Protocols”.
ISCA Workshop on Memory Performance Issues, 2001.

[12] Fernandez-Pascual, R. et al.; , ”A Low Overhead Fault Tolerant Co-
herence Protocol for CMP Architectures,” High Performance Computer
Architecture, 2007. HPCA 2007. IEEE 13th International Symposium
on , pp.157-168, 10-14 Feb. 2007.

[13] Woo, S.C. et al.; , ”The SPLASH-2 programs: characterization and
methodological considerations,” Computer Architecture, 1995. Proceed-
ings., 22nd Annual International Symposium on , pp.24-36, 22-24 June
1995.

[14] Borkar, S. et al. Platform 2015: Intel Processorand Platform Evolution
for the Next Decade. Technology@Intel Magazine, 2005.

[15] www.intel.com.
[16] www.AMD.com.
[17] Meixner, A.; Sorin, D.J.; , ”Error Detection via Online Checking of

Cache Coherence with Token Coherence Signatures,” High Performance
Computer Architecture, 2007. HPCA 2007. IEEE 13th International
Symposium on , pp.145-156, 10-14 Feb. 2007.

[18] Meng Zhang; et al.; , ”Fractal Coherence: Scalably Verifiable Cache
Coherence,” Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM
International Symposium on , pp.471-482, 4-8 Dec. 2010.

[19] Sorin, D.J.; et al.; , ”SafetyNet: improving the availability of shared
memory multiprocessors with global checkpoint/recovery,” Computer
Architecture, 2002. Proceedings. 29th Annual International Symposium
on , pp.123-134, 2002.

[20] Hennessy, J.; and Patterson, D.; , ”Computer Architecture: A Quantita-
tive Approach”, Morgan Kaufmann, 3 edition, 2003.

216 2012 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

