
39

Does the Sharing of Execution Units Improve Performance/Power of
Multicores?

RANCE RODRIGUES, ISRAEL KOREN AND SANDIP KUNDU, Department of Electrical and
Computer Engineering, University of Massachusetts, Amherst

Several studies and recent real world designs have promoted sharing of underutilized resources between
cores in a multicore processor to achieve better performance/power. It has been argued that when utilization
of such resources is low, sharing has negligible impact on performance, while offering considerable area
and power benefits . In this paper we investigate the performance and performance/Watt implications of
sharing large and underutilized resources between pairs of cores in a multicore. We first study sharing of
the entire floating-point datapath (including reservation stations and execution units) by two cores, similar
to AMD’s Bulldozer. We find that while this architecture results in power savings, for certain workload
combinations, it also results in significant performance loss of about 28%. Next, we study an alternative
sharing architecture where only the floating-point execution units are shared, while the individual cores
retain their reservation stations. This reduces the performance loss to 14%. We then extend the study to
include sharing of other large execution units that are used infrequently, namely the integer multiply and
divide units. Subsequently, we analyze the impact of sharing hardware resources in Simultaneously Multi-
Threaded (SMT) processors where multiple threads run concurrently on the same core. It is observed that
sharing improves performance/Watt at a negligible performance cost only if the shared units have high
throughput. Sharing low throughput units reduces both performance and performance/Watt. To increase
the throughput of the shared units we propose the use of Dynamic Voltage and Frequency Boosting (DVFB)
of only the shared units that can be placed on a separate voltage island. Our results indicate that the use of
DVFB improves both performance and performance/Watt by as much as 22% and 10%, respectively.

Categories and Subject Descriptors: C.1.3 [Other Architecture Styles]: Adaptable architectures

General Terms: Algorithms, Design, Experimentation, Management, Performance

Additional Key Words and Phrases: Multicore processors, resource sharing, Shared floating-point Execu-
tion Units (S FP X), Shared floating-point Queue and Execution Units (S FP QX), Shared Large Execution
Units (S FP INT), Voltage Frequency Islands (VFI), Nominal Mode (NM), High Frequency Mode (HFM),
High Voltage and Frequency Mode (HVFM), Dynamic Frequency Boosting (DFB), Dynamic Voltage and
Frequency Boosting (DVFB)

ACM Reference Format:
Rance Rodrigues, Israel Koren, Sandip Kundu, 2013. Does the Sharing of Execution Units Improve Perfor-
mance/Power of Multicores? ACM Trans. Embedd. Comput. Syst. 9, 4, Article 39 (March 2013), 24 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Several studies have promoted sharing of large but underutilized resources between
cores in a multicore processor [Dolbeau and Seznec 2002; Kumar et al. 2004; Butler

Submitted to Special Issue on Run-Time Management.
Author’s addresses: R.Rodrigues, I.Koren and S.Kundu are with the Department of Electrical and Com-
puter Engineering (Current address) 151 Holdsworth way, 306 Knowles Engineering Building, Amherst MA
01003.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1539-9087/2013/03-ART39 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:2 R. Rodrigues et al.

et al. 2011] to reduce the silicon area at a marginal loss of performance. For example,
AMD in its BullDozer architecture [Butler et al. 2011] has implemented sharing of the
entire floating-point unit including reservation stations and execution units. Several
research publications, e.g., [Dolbeau and Seznec 2002; Kumar et al. 2004], go beyond
FP units and also suggest sharing of caches, crossbars, branch predictors and large la-
tency units. Most previous work only explores the performance impact of such sharing
leaving the following questions unanswered.

(1) What is the impact of sharing on performance and performance/power? While shar-
ing clearly results in power savings, for certain workloads, performance loss may
be too large.

(2) What are the most important parameters influencing performance and perfor-
mance/power in sharing? We show that latency and throughput of the shared re-
sources are dominant determinants of performance and performance/power, but
most previous studies ignore them.

(3) How does sharing of resources play out for Big cores or Small cores? Mainstream
computing can be broadly classified into performance efficient (Big cores) and
power efficient (Small cores). It is thus necessary to study the impact of sharing
resources in both such architectures.

(4) What is the impact of sharing in Simultaneously Multi-Threaded (SMT) proces-
sors? In particular, does sharing in SMT make performance or performance/power
better or worse? Given that most mainstream cores are SMT capable1, studying
impact of increased resource utilization due to sharing is important.

In this paper, we investigate the performance and performance/Watt implications of
sharing large and underutilized resources between a pair of cores in a multicore pro-
cessor. At first, we study sharing of the entire floating-point datapath by two cores, sim-
ilar to AMD’s Bulldozer [Butler et al. 2011], where the issue queue (ISQ) and the FP
execution units are shared. Using combination of workloads from various benchmarks,
we study both the performance and performance/Watt when compared to the baseline
architecture that does not involve sharing. Our findings show that while sharing re-
sults in considerable power savings, the performance penalty may be high (∼28%) for
certain workload combinations.

To mitigate the impact on performance, while still retaining some of the power ben-
efits of sharing, we limit sharing to the underutilized execution units. For most work-
loads, FP instructions are not frequently encountered. Hence, we first explore shar-
ing of just the FP execution units, while the individual cores retain their reservation
stations. This modification yields higher performance compared to previous schemes.
Still, a worst case performance loss of 14% is observed. Integer divide and multiply
instructions are also encountered infrequently. Therefore, we extend our study to in-
clude the corresponding units. We find that sharing the integer divide and multiply
units has only a small impact on both performance and performance/Watt. A summary
of the resource sharing options explored in this paper is shown in Figure 1.

The utilization of the shared units depends on the width of the fetch and execution
path. Accordingly, we target cores at opposite ends of the power/performance spectrum.
On the higher end of the performance scale we consider a superscalar processor analo-
gous in resources to Intel Nehalem/AMD K10 architecture (Big core). At the lower end
of the power scale, we consider a processor similar in resources to Intel Atom/AMD
Bobcat architecture (Small core). Our study includes both single threaded and SMT
processor architectures. We also analyze the sensitivity to communication latency be-
tween the cores and the shared units. Our results show that while architectures that

1www.intel.com

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

Does the Sharing of Execution Units Improve Performance/Power of Multicores? 39:3

Fetch/Decode

Issue

Instruction

queue

INT ISQ

FP ISQ

Retire

FP ALU FP Mult FP DIV

Fetch/Decode

Issue

Instruction

queue

INT ISQ

INT units

Retire

Shared units

Core 1 Core 2

Arbiter

Arbiter

INT units

Fetch/Decode

Issue

Instruction

queue

INT ISQ FP ISQ

Retire

FP ALU FP Mult FP DIV

Fetch/Decode

Issue

Instruction

queue

INT ISQFP ISQ

Retire

Shared units

Core 1 Core 2

Arbiter

Arbiter

INT units INT units

Fetch/Decode

Issue

Instruction

queue

INT ISQ FP ISQ

ALU ALU

Retire

FP ALU FP Mult FP DIV

INT DIVINT Mult

Fetch/Decode

Issue

Instruction

queue

INT ISQFP ISQ

ALU ALU

Retire

Shared units

Core 1 Core 2

Arbiter

Arbiter

(a) Sharing the issue queue and FP execution units (b) Sharing the FP execution units (c) Sharing the FP and integer divide and multiply units

Fig. 1. Overview of the studied resource sharing. ISQ = issue queue, FP = floating-point, INT = integer.
share execution units do provide power benefits at a negligible performance penalty
(∼5% on average), such benefits hold only when the shared units have low latency and
are highly pipelined. Performance and performance/Watt loss are observed for work-
loads that exhibit high contention for the shared execution units. To reduce the per-
formance loss due to contention we propose to increase the throughput of the shared
resources via Dynamic Voltage and Frequency Boosting (DVFB) which is controlled
dynamically by the occupancy rate. Our results show that such dynamic boosting not
only overcomes losses due to contention, but also results in significant increases in
both performance (upto 13%) and performance/Watt (upto 14%), while realizing con-
siderable savings in area (∼ 7-10% per core).

The following are the key contributions of this paper:
(1) We present a study on the performance and performance/Watt implications of three

resource sharing alternatives for a dual-core processor.
(2) We study the performance and performance/Watt implications of resource sharing

in SMT cores.
(3) We analyze the sensitivity of resource-sharing architectures to latency and perfor-

mance of the shared resources.
(4) We show that while execution unit sharing has negligible impact on performance

and positive impact on performance/Watt for most benchmark combinations, there
are cases where resource contention results in a penalty as high as 22%.

(5) We present a Dynamic Voltage and Frequency Boosting (DVFB) scheme for the
shared resources to mitigate the impact of resource contention, that not only com-
pensates for the loss, but also increases the performance of most workload combi-
nations.

(6) Finally, we describe a novel hardware-based feedback control mechanism for DVFB
that automates the dynamic control process.

The rest of the paper is organized as follows. Recent work on shared resource architec-
tures is reviewed in Section 2. An overview of the studied architecture is described in
Section 3. The experimental set-up is presented in Section 4 which is followed by the
results on static execution unit sharing in Section ??. Results on the proposed DVFB
are presented in Section 7. Finally, we present conclusions in Section 10.

2. RELATED WORK
The idea of sharing resources for performance or performance/Watt in a multicore
has seen several manifestations. Simultaneous Multi-Threading (SMT) [Tullsen et al.
1995; Levy et al. 1996] was introduced more than a decade ago to improve the utiliza-
tion of resources in microprocessors. In SMT, multiple threads are run on the same

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:4 R. Rodrigues et al.

core and threads share and compete for core resources. Dynamic resource sharing oc-
curs naturally in SMT processors. [Dolbeau and Seznec 2002] explore intermediate de-
sign points between the CMP and SMT architectures where the sharing of the caches,
branch predictor and long latency execution units is explored. A similar study was
presented in [Kumar et al. 2004] where the caches, crossbar and floating-point units
were shared. Significant area savings at a minor loss of performance were reported.
Both these schemes only focus on performance and do not consider performance/Watt.
In addition, the impact of the shared resource access latency, or the effects on SMT
processors were not studied.

[Watanabe et al. 2010] explore flexible sharing of a pool of “execution engines” among
various processor cores. By ensuring that the producer and immediate consumers are
sent to the same engine, efficient usage of the shared units was made possible. Still,
each engine requires a queue and other data to keep track of producers and con-
sumers which result in a complex design. In [Borodin et al. 2011], authors propose the
sharing of functional units across cores in a 3D stacked die for online testing and/or
performance improvement. A similar approach to 3D resource sharing was proposed
in [Homayoun et al. 2012] where the Reorder Buffer (ROB), register file, instruction
queue and the load/store queues were shared.

Dynamic exchange of execution units between pairs of cores was investigated in
[Rodrigues et al. 2011; 2013]. Here, depending on the current workload characteristics,
the cores may exchange execution units to maximize performance/Watt. The major
advantage of such an architecture is that resource contention between the two cores
does not take place but the design of the two cores is complicated. Further, this scheme
will always incur the hardware and power overhead of two sets of execution units
compared to the single set in our scheme.

The first resource sharing architecture we study is similar to the AMD Bulldozer
design [Butler et al. 2011]. In AMD’s Bulldozer the fetch, decode and the entire FP
execution (reservation stations and execution units) are shared between pairs of cores
in a dual-core processor. In our study we also analyze a design that involves the sharing
of the FP execution only.

3. SHARED RESOURCE MULTICORE ARCHITECTURE
We now present an overview of the target of our study – the shared resource multicore
architecture. Hardware modifications necessary to support such an architecture are
also described. A high level view of the studied architectures is shown in Figure 1. We
consider the following three resource sharing alternatives.

3.1. Sharing the FP Issue Queue (ISQ) and execution unit (S FP QX)
Here the FP ISQ and FP execution units are shared between two cores. This archi-
tecture is depicted in Figure 1(a). This architecture is similar to AMD’s Bulldozer but
note that the Bulldozer design also shares the fetch and decode units. Sharing leads to
contention for resources and the first point of contention here (in S FP QX) is the FP
ISQ. Whenever FP instructions are ready to be scheduled, the control logic first checks
to see if there is a slot available in the shared ISQ. Since the ISQ is shared, the number
of entries available per core is reduced. Hence, whenever both the cores sharing the
ISQ run FP intensive applications, the ISQ is expected to become a bottleneck in the
design which may lead to pipeline stalls and performance loss. Another source of stalls
is the shared execution units. Just like the ISQ, the effective number of execution units
available is reduced in the dual-core architecture. Hence, a higher number of stalls is
expected when FP intensive applications are run on the two cores that share the FP
units.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

Does the Sharing of Execution Units Improve Performance/Power of Multicores? 39:5

Table I. Chosen core parameters

Parameter Small Big Parameter Small Big Parameter Small Big
Issue 2 4 INTREG 64 96 FPREG 64 80

INTISQ 16 36 FPISQ 16 24 LS units 1 3
LSQ 32 32 ROB 56 128 L1(I/D) 32K 32K
L2 512K 2M Freq (GHz) 1.5 2.4 Type OOO OOO

Table II. Execution unit specifications for the cores. (P - Pipelined, NP - Not pipelined, PP - Partially pipelined, cyc = cycles)

Core FP DIV FP MUL FP ALU INT DIV INT MUL INT ALU
Small 1 unit, 60 cyc, NP 1 unit, 4 cyc, PP 1 unit, 5 cyc, P 1 unit, 207 cyc, NP 1 unit, 10 cyc, P 2 unit, 1 cyc, P

Big 1 unit, 21 cyc, P 1 unit, 5 cyc, P 2 units, 3 cyc, P 1 unit, 23 cyc, P 1 unit, 8 cyc, P 4 units, 1 cyc, P

Table III. Workloads considered for the experiments where each core runs only a single thread.

barnes barnes cholesky cholesky fmm fmm lu lu radix radix raytrace raytrace
water water flops fbench equake art gzip ammp art ammp mcf gcc

3.2. Sharing the FP execution unit only (S FP X)
In this instantiation, sharing of FP execution units only is explored and this architec-
ture is shown in Figure 1(b). Unlike the previous case, the only source of contention
here is the availability of the FP execution units. Hence, we expect a lower performance
loss but also lower power savings compared to the previous scheme.

3.3. Sharing the FP execution units as well as the integer divide and multiply units (S FP INT)
In this instantiation, in addition to the FP execution unit, integer divide and multiply
units are also shared. This architecture is shown in Figure 1(c). The number of stalls
for this scheme is expected to be higher than for the S FP X architecture but greater
power savings is expected.

Since resources are shared in all three architectures, there is a need for a centralized
control mechanism that will grant access to the requester core. This is accomplished
by means of an arbiter shown in Figure 1. The arbiter accepts requests and depending
on the availability of the shared resource, grants access. Note that in all three cases,
accesses to the shared execution units are independent and hence multiple requests
may be sent to them at the same time. Once execution is complete, the execution re-
sult must be forwarded to the core that generated the request. This is accomplished
by another arbiter that forwards the result to the rightful owner. We do not provide
implementation details of the arbiter, which is fairly straightforward.

4. EXPERIMENTAL SETUP
To evaluate the idea of sharing infrequently used execution units for a wide variety of
architectures, we considered processor cores at the two ends of the performance/power
spectrum, i.e., a high-performance core (Big) and a low-power core (Small). These cores
are representative of the Intel Nehalem/AMD K10 and the Intel Atom/AMD Bobcat
architectures, respectively. In the rest of this paper, we will refer to them as Big and
Small. Note that Big/Small refers to homogeneous dual-core processors.

In Tables I and II we describe the resource sizes and execution resource characteris-
tics for the the two core types. The parameters were inspired by commercial architec-
tures [Fog 2012].

SESC was used for architectural performance simulation [Renau 2005]. We made
significant modifications to the simulator to enable shared resource execution with ar-
bitration. Power was estimated using Wattch [Brooks et al. 2000] and Cacti [Shivaku-
mar et al. 2001]. In the experiments we targeted 15 benchmarks: 7 from the SPLASH-
2 [Woo et al. 1995] (barnes, cholesky, fmm, lu, radix, raytrace, water) and 8 from the
SPEC 2000 benchmark suite [SPEC2000] (fbench, flops, art, equake, gzip, ammp, mcf,

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:6 R. Rodrigues et al.

Table IV. Workloads considered for the experiments where each core runs two threads. The + sign between workloads
indicates that they are run on the same core and the is used as separator to indicate what is run on cores 1 and 2.

barnes+barnes barnes+barnes cholesky+cholesky cholesky+cholesky fmm+fmm fmm+fmm
lu+lu lu+lu radix+radix radix+radix raytrace+raytrace raytrace+raytrace

water+water water+water equake+art flops+fbench mcf+gcc art+ammp
equake+art gzip+ammp mcf+gcc flops+fbench equake+flops art+fbench

mcf+art gcc+ammp equake+gzip art+ammp mcf+flops gcc+fbench

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Workloads

fpDiv

fpMult

fpALU

iStore

iLoad

iBJ

iDiv

iMult

iALU

Fig. 2. The instruction distribution of the various workloads when run for 500 million instructions. The
average over all workloads is also shown.
gcc). These workloads were chosen for their instruction distribution and performance
diversity. Several combinations of workloads were considered for the two cores running
single threads. We also considered the case of SMT, where each core runs two threads
from a set of four. Homogeneous workload combinations were created using multiple
threads from the SPLASH-2 workloads. We also created heterogeneous workloads by
combining threads from the SPEC 2000 suite. The created workload sets are summa-
rized in Tables III and IV for the single and SMT experiments, respectively. We thus
tried to evaluate the studied architectures over a broad spectrum of potential work-
loads. Each workload was run until the sum of the instructions retired on the two core
types equaled 500 million instructions. The instruction distribution of each individual
thread run is shown in Figure 2.

5. ANALYSIS OF RESOURCE SHARING IN SINGLE THREADED PROCESSORS
We first present results and analysis for processors running single threads per core.
Two cores share resources according to S FP QX, S FP X and S FP INT schemes de-
scribed in Section 3. The workloads run in these experiments are shown in Table III.
The performance and performance/Watt of the studied architectures relative to the

one where no sharing takes place are presented. Sensitivity to the shared resource
access latency is also analyzed. In the next section we study the effect of sharing in
SMT processors where more than one thread runs on the same core. To compare the
resource sharing architectures with the one that does not, three speedup metrics were
used including the weighted, geometric and harmonic speed-up metrics. For the sake
of brevity, only the results using the harmonic metric are presented. This metric also
happens to be the most conservative of the three.

The harmonic speed-up metric for performance is calculated as follows:
S0 = (IPCthread0)new/(IPCthread0)baseline
S1 = (IPCthread1)new/(IPCthread1)baseline

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

Does the Sharing of Execution Units Improve Performance/Power of Multicores? 39:7

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce

Latency 0 Latency 1 Latency 2

Big Small

Fig. 3. Performance of the Big and Small cores resulting from the sharing of the FP ISQ and execution units
(S FP QX) between the cores relative to a dual-core that does not share them for various communication
latencies (between zero to two cycles).

0.6
0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce
/W

a
tt

Latency 0 Latency 1 Latency 2

Big Small

Fig. 4. Performance/Watt of the Big and Small cores resulting from the sharing of the FP ISQ and execution
units (S FP QX) between the cores relative to a dual-core that does not share them for different (zero to two
cycles) communication latencies between the cores and the shared units.

Speedupharmonic = 2/(1/S0 + 1/S1)
Here, baseline refers to the case where the cores do not share any unit. The perfor-
mance/Watt speedup/slowdown is calculated similarly.

5.1. Sharing the FP ISQ and execution units (S FP QX)
5.1.1. Performance analysis. The performance of the Big and Small cores in the

S FP QX configuration relative to the non-sharing architecture is shown in Figure 3.
Shared resource access latencies of zero, one and two cycles were considered. The com-
munication latency of zero cycles represents the ideal case where the design has been
optimized to support sharing. It can be seen that even in this scenario, a significant
performance loss is observed for both core types. Specifically, a worst case performance
penalty of 28% and 18% (workload cholesky cholesky when run on both the cores) is
observed for the Big and Small cores, respectively. This architecture shares the FP
ISQ and the FP execution units. Thus, two potential bottlenecks exist in the system
yielding a large performance penalty. Increasing the communication latency results
in an even larger performance penalty, as expected. This clearly shows the sensitiv-
ity of such a resource sharing architecture to communication latency. On an average,
∼5-10% performance penalty is observed for both the core types which increases with
access latency. These results show that when sharing resources between cores, special
consideration must be given to the resource access latency. The workloads that do not
experience a slowdown are the ones with little or no FP instructions in the mix (e.g.,
equake, art, gzip, gcc). Interestingly, the Small core does not suffer as much as the Big

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:8 R. Rodrigues et al.

core with respect to performance. The Small core is moderately sized when compared
to the Big core and consequently, the experienced bottleneck has a greater effect in the
case of the Big core.

5.1.2. Performance/Watt analysis. The performance/Watt resulting from the sharing of
the FP ISQ and the FP execution units (S FP QX) relative to the non-sharing ar-
chitecture is shown in Figure 4 for both the core types. It can be seen that perfor-
mance/Watt improvements are achieved for most workloads on both the core types,
especially for the ones with no FP instructions. In general, FP instructions are not as
frequently encountered as integer ones and hence, for a majority of the workloads this
architecture will result in power savings. However, there are workloads where the per-
formance/Watt degrades by as much as 10% (e.g., cholesky cholesky when run on the
Big core) even with access latency of zero cycles. This indicates that even though, in
general, this architecture results in power savings, for workloads that contest for the
shared resources, the performance/Watt will degrade. On an average, a 2.5% improve-
ment for the Big core and a 3.5% improvement for the Small core were observed when
the access latency was set to zero cycles. Increased latency reduces this improvement.

Even though the S FP QX architecture results in power savings in general, the ex-
perienced performance penalty can be very large (∼28%). This results in poor perfor-
mance/Watt and hence, we explored alternative sharing schemes to help mitigate the
performance penalty.

5.2. Sharing only the FP units (S FP X)
5.2.1. Performance analysis. The performance of the S FP X architecture relative to the

one where each core has its own execution units for the Big and Small cores are shown
in Figure 5 for the various workloads considered. For zero cycle access latency, it can
be seen that for all the workloads, there is no notable performance penalty for the
Big core. Even for cases where both threads highly utilize the shared units, no perfor-
mance penalty was observed (e.g., cholesky cholesky, radix radix, flops fbench). This
is because the Big core has large and fast execution units that are fully pipelined and
unless contention takes place in the same cycle, no performance penalty will be experi-
enced. This indicates that for a high performance core, contention related performance
loss will rarely be a problem when the considered execution units are shared even
when running workloads that include a large proportion of instructions that need the
shared units. The worst case performance penalty has dropped to lower than 1% for
the Big core, which is a significant improvement when compared to the S FP QX archi-
tecture (∼28% performance loss in the worst case). This shows that in the Big core, the
major bottleneck is the FP ISQ. Increasing its size may help mitigate the performance
penalty but may result in power increase. However, such an analysis is out of the scope
of this paper and is not presented. With an increase in access latency, there is a no-
table drop in performance. Still, for small latencies (one to two cycles), the performance
penalty is well within reasonable limits (within 5% even for access latency of two cy-
cles). Note that access latency of zero to one cycles is realistic. A similar assumption
has been made in [Dolbeau and Seznec 2002; Kumar et al. 2004; Gupta et al. 2008].
Hence, for cores such as the Big core, for small shared resource communication laten-
cies, the performance loss is acceptable if FP execution units are shared between pairs
of cores. This is mainly attributed to the highly pipelined and low latency execution
units.

The results obtained for the Small core do show notable performance penalty, even
for the ideal case of zero access latency. This happens due to non-pipelined and rel-
atively higher latency execution units present in the Small core (see Table II). Since
not all the execution units are pipelined, there is greater chance for contention for the

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

Does the Sharing of Execution Units Improve Performance/Power of Multicores? 39:9

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce

Latency 0 Latency 1 Latency 2

Big Small

Fig. 5. Performance of the Big and Small cores due to sharing of the FP execution units (S FP X) relative to
a dual-core that does not share them, for different communication latencies. The different bars correspond
to various round-trip communication latencies (zero to two cycles) between the cores and the shared units.

0.6

0.7

0.8

0.9

1

1.1

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce
/W

a
tt

Latency 0 Latency 1 Latency 2

Big Small

Fig. 6. Performance/Watt of the Big and Small cores due to sharing of the FP execution units (S FP X)
relative to a dual-core that does not share them, for different communication latencies. The different bars
correspond to various round-trip communication latencies (zero to two cycles) between the cores and the
shared units.

shared units. For example, for a non-pipelined multiplier with latency of 10 cycles,
the execution unit cannot accept any more requests during the 10 cycles that follow
this request. If this unit was pipelined, the next request to the same unit would be
accepted one cycle later and hence there is a smaller chance for contention. In partic-
ular, the performance loss is the worst for barnes barnes and flops fbench (13-14%). In
both these cases, the workloads running on each core exhibit significant proportion of
FP instructions and as a result contention is very high for the shared resources. The
average performance loss is within 8% for a two cycle access latency. It is thus clear
that for cores with non-pipelined and large latency execution units, sharing may re-
sult in significant performance loss. When compared to the S FP QX architecture, for
the Small core the average performance loss drops from the observed 7% (for a zero
cycle communication latency) to around 3%. Hence, this architecture certainly results
in lower performance penalty.

5.2.2. Performance/Watt analysis. Sharing the large and infrequently used execution
units results in static power savings. This is expected to improve performance/Watt
especially for the cases where no notable performance penalty is observed. However,
power savings are not as large as that observed for the S FP QX architecture. The
performance/Watt results obtained for both core types are shown in Figure 6. We have
already seen that for the Big core there is no notable performance loss even for a
communication latency of two cycles between the core and the shared units. Perfor-
mance/Watt improvements of >1 were observed for the Big core with communication

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:10 R. Rodrigues et al.

latency of one cycle. It can be concluded that for the Big core, sharing of large execution
units results in performance/Watt gains when considering realistic shared resource ac-
cess latencies.

For the Small core, performance loss due to sharing even in idealized conditions
(access latency of zero cycles) results in significant performance loss for several work-
loads. As a result, performance/Watt gains if any, are very modest with a few workloads
experiencing performance/Watt loss. Still, on an average the performance/Watt gains
are >1 for zero cycle access latency. on an average. Just like the Big core, increasing
this latency to more than one cycle results in overall performance/Watt loss when com-
pared to the baseline architecture. It is important to note that apart from two work-
loads (barnes barnes, flops fbench) all other workloads show a small improvement in
performance/Watt. From Figure 5, it is observed that apart from those two workloads,
there were also others such as fmm fmm, raytrace raytrace that showed performance
loss but when considering performance/Watt, show improvements over the baseline.
Hence, execution unit sharing architectures do in general improve performance/Watt.

Based on the results presented in this section, we can conclude that for Big cores,
sharing FP execution units results in almost no performance loss but may result in
small performance/Watt gains. In contrast, for Small cores, even though there is a
small performance/Watt gain for low shared resource access latencies (between the
core and the shared units), performance and performance/Watt losses observed for a
few workload combinations, make the sharing of FP execution units between such
cores questionable. This architecture provides slightly lower performance/Watt than
the S FP QX architecture without considerable performance penalties which is a sig-
nificant advantage.

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce

S_FP_X

S_FP_INT

Big Small

(a) Performance

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce
/W

a
tt

S_FP_X

S_FP_INT

Big Small

(b) Performance/Watt
Fig. 7. Performance and performance/Watt of the Big core and Small core in S FP X and S FP INT config-
urations relative to a dual-core that does not share resources for various communication latencies.

5.3. Extending the sharing to include INT divide and multiply units (S FP INT)
Most prior work has explored the sharing of only the FP units between pairs of cores
[Dolbeau and Seznec 2002; Kumar et al. 2004]. However, from Figure 2, it can be seen
that apart from the workload lu lu, no other workload shows any notable INT divide
or multiply instructions. Thus, sharing these units in addition to the FP units, is a
natural extension. We call the resulting architecture the S FP INT sharing architec-
ture. We analyzed such additional sharing and the average results obtained over all
workloads when run on each core type modeled as the S FP X sharing and S FP INT
sharing architecture with respect to performance and performance/Watt are plotted
in Figures 7(a) and 7(b), respectively. All results are shown relative to the architec-
ture that does not share execution units. In general, it can be seen that for both the
core types, with respect to performance, S FP X sharing is slightly better than the
S FP INT sharing architecture and the opposite trend is observed with respect to per-
formance/Watt. However, the differences are too small to prefer one architecture over

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

Does the Sharing of Execution Units Improve Performance/Power of Multicores? 39:11

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce

Shared resource access latency in cycles

Average

Minimum

Big Small

S_FP_X S_FP_QX S_FP_INT S_FP_X S_FP_QX S_FP_INT

Fig. 8. Performance of the Big and Small cores in the S FP QX, S FP X, S FP INT configurations relative
to the baseline for various communication latencies. Two threads were run on each core.

the other. But since INT divide and multiply are relatively large execution units, shar-
ing them certainly yields area savings (details on area savings to soon follow). Hence,
we conclude that S FP INT sharing enhances the benefits of S FP X sharing architec-
tures.
6. ANALYSIS OF SHARING IN SMT PROCESSORS
We now present results on the effect of sharing resources in SMT processors. In these
experiments, each core runs two threads. The various workload combinations consid-
ered are shown in Table IV. For the sake of brevity, only average and minimum speed-
up over all the considered workloads for each of the three resource sharing architec-
tures relative to the baseline (where no sharing is implemented) are presented.

6.1. Performance analysis
The average and minimum performance achieved by the three resource sharing archi-
tectures relative to the one with no sharing is shown in Figure 8.

6.1.1. The S FP X and S FP INT architectures. In general, we found that the architectures
that only share execution units result in more or less the same level of performance for
both the Big and Small core types. Hence, we discuss both these architectures in this
sub-section.

For the Big core, ignoring communication latency, a 1% performance loss is observed
in the worst case and an even smaller penalty is seen on an average. This result is
similar to that observed when running only a single thread per core. This indicates
that even when up to four threads compete for the execution resources of the Big core,
limited performance penalty will be experienced, which is mainly attributed to the
large and fully pipelined execution units.

For the Small core, a larger performance penalty was observed when compared to
the Big core. The worst case of 22% performance loss was observed for the workload
barnes+barnes barnes+barnes which constitutes an increase of 8% over the observed
14% when running the workload barnes barnes in the earlier experiments. There were
also some low IPC workloads such as raytrace+raytrace raytrace+raytrace where per-
formance penalty was smaller than that obtained while running raytrace raytrace. For
such workload combinations, stalls in the execution core mitigates the impact on per-
formance of resource sharing. On an average, a 3% performance penalty was observed
for the Small core.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:12 R. Rodrigues et al.

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce
/W

a
tt

Shared resource access latency in cycles

Average

Minimum

Big Small

S_FP_X S_FP_QX S_FP_INT S_FP_X S_FP_QX S_FP_INT

Fig. 9. Performance/Watt of the Big and Small cores in the S FP QX, S FP X and S FP INT configurations
relative to a dual-core that does not share resources for various communication latencies. Two threads were
run on each core.

In summary, we find that even in SMT processors, sharing execution resources be-
tween cores is expected to result in negligible performance penalty in Big cores and
sometimes a notable performance penalty in Small cores.

6.1.2. S FP QX. From Figure 8 it is clear that the S FP QX architecture results in a
larger performance penalty than S FP X and S FP INT for both core types. Ignoring
access latency, we have observed that an average performance loss of 4% and 5% and a
worst case loss of 22% and 25% were observed for the Big and Small cores, respectively.
This performance loss increases with an increase in access latency as expected.

On the Big core, in the single threaded experiments, the workload cholesky cholesky
experienced the worst case of 28% performance loss. The loss was reduced to 16% when
running the workload cholesky+cholesky cholesky+cholesky in SMT mode. The reason
for this drop in penalty is that in SMT mode, a system IPC of 0.35 was observed,
which was a drop from the observed IPC of 0.5 in the single threaded experiments.
Thus, additional stalls due to resource sharing does not have a high impact on the
performance. A worst case performance loss of 25% was observed for the workload
water+water water+water. This constitutes a 8% increase in the observed 17% perfor-
mance penalty when running the workload water water. Hence, for the workload wa-
ter, increasing the number of thread contexts per core results in an increased penalty
for the Big cores. The performance loss is higher by 4% on average when compared to
the S FP X and S FP INT architectures for the Big core.

For the Small core, just as for the S FP X and S FP INT architectures, the worst case
was observed for the workload barnes+barnes barnes+barnes. Another workload that
exhibited a significant (17%) performance penalty was radix+radix radix+radix. No
performance penalty was observed for the same workload when running on the S FP X
and S FP INT architectures. This workload suffers mainly from stalls in acquiring
reservation station slots on the small core. Overall, the performance loss goes up by
2% on an average when compared to the S FP X and S FP INT for the Small core.

In summary, performance is expected to degrade for a few workloads in either of the
sharing architectures. For the Big core, performance penalty is expected only in the
S FP QX design. When compared to the experiments where only single threads were
run on each core, performance penalty may sometimes be lower for SMT processors.
The reason for this is that in SMT mode resource utilization is higher. Hence, if IPC is
low, performance penalty due to sharing is also low.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

Does the Sharing of Execution Units Improve Performance/Power of Multicores? 39:13

6.2. Performance/Watt analysis
The performance/Watt of the various resource sharing architectures relative to the one
with no sharing is shown in Figure 9.

6.2.1. S FP X and S FP INT. We have seen that for these architectures, little or no per-
formance penalty was observed on the Big core. Consequently, power savings that re-
sult from sharing resources lead to performance/Watt gains. Such gains drop with an
increase in the shared resource access latency. On an average, a performance/Watt
gain of 3.1% and 3.5% were observed for the S FP X and S FP INT designs on the
Big core. On the Small core we observed a significant performance penalty for some
workloads. A worst case performance/Watt loss of 8% was observed for the workload
barnes+barnes barnes+barnes. However, on an average, a small performance/Watt
gain of around 1.7% and 1.4% is observed for the S FP X and S FP INT architectures,
on Small cores. Note that the performance/Watt gain does not drop below 1 for either
configuration on both the Big and Small cores, even with a two cycle access latency.

6.2.2. S FP QX. In general, performance loss on this architecture was larger than for
the S FP X and S FP INT architectures. However, the power savings were far greater.
Hence, even though the worst case performance/Watt loss of 8% was observed on the
Big cores, an average gain of 5% and a maximum gain of 11% were observed for the
workload radix+radix radix+radix.

A similar result was observed on the Small core, where an average performance/Watt
gain of 3.5% and a maximum gain of 7% were observed for the workload ray-
trace+raytrace raytrace+raytrace.

In summary, this architecture results in better performance/Watt than the other two
on an average. However, certain workload combinations may suffer significantly.

7. MITIGATING THE PERFORMANCE IMPACT OF SHARING LOW THROUGHPUT
RESOURCES VIA DYNAMIC BOOSTING

So far, we have observed that some workload combinations experience a significant loss
in performance due to resource sharing in Small cores. As indicated earlier, there are
two reasons for this performance degradation. The first one is contention for the shared
resources and the second reason is access latency between the core and the shared re-
sources. Performance loss due to contention can be mitigated if the shared resources
run faster. This may be achieved by replacing the existing high latency execution units
by more powerful and small latency units [Dolbeau and Seznec 2002]. However, as was
observed in Figures 3 and 5, the performance of most workloads does not degrade by
sharing resources. Hence, increasing the strength of the execution units will result in
power inefficiency for these workloads. Therefore, we propose the use of Dynamic Fre-
quency Boosting (DFB) or Dynamic Voltage and Frequency Boosting (DVFB) where,
depending on the currently executing workload characteristics, the voltage and/or fre-
quency of only the shared execution units is increased. We only consider boosting of
the shared execution units and not the shared ISQ in the case of the S FP QX config-
uration as accelerating the ISQ is not expected to yield any benefit.

Selective boosting of the shared execution units is achieved via Voltage and Fre-
quency Islands (VFI) [Lackey et al. 2002; Garg et al. 2009; Jang et al. 2010; Semer-
aro et al. 2002]. In VFI designs, part of the processor core is operated at one voltage
and/or frequency, while another part may be operated at a different voltage and/or
frequency. For example, Ghosh et al. make use of voltage scalable hybrid arithmetic
units in [Ghosh et al. 2010] for power benefits. Most previous work makes use of this
concept for energy savings. Our objective is performance improvement of the shared
resources only during periods of resource contention. This may potentially also result

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:14 R. Rodrigues et al.

Table V. The voltage and frequency levels considered for the two cores.

High Voltage and Frequency Mode (HVFM) High Frequency Mode (HFM) Nominal Mode (NM)
Core Voltage Frequency Voltage Frequency Voltage Frequency
Big 1.35V 3.4 GHz 1.1V 3.4 GHz 1.1V 2.4 GHz

Small 1.35V 2.13 GHz 1.1V 2.13 GHz 1.1V 1.5 GHz

in performance/Watt improvement. Given that the shared execution units are already
separated from the cores (see Figure 1), placing them in an island is relatively simple.
We did not consider full-chip voltage and frequency boosting due to its inherent power
inefficiency.

Performance boosting may be achieved by increasing the frequency of the shared
units. Often, power is the limiting factor that governs operating frequency. The fre-
quency may be increased as long as package thermal limits are not exceeded and the
circuit timing margins are not violated. Since the execution units are shared, increas-
ing their operating frequency results in a much smaller power increase than full-chip
boosting. Hence, if the circuits allow increasing the frequency of operation on demand,
the implementation is simple. We call this mode the High Frequency Mode (HFM). For
some circuits, voltage may also need to be increased to meet the timing requirements.
We call this mode the High Voltage and Frequency Mode (HVFM) and this mode is
expected to incur a higher energy penalty. Note that these two modes are mutually
exclusive for a given design and are analyzed here for completeness of the evaluation.
Either the circuit allows for HFM and HVFM is not needed or vice-versa. Thus, in the
shared resource VFI, three modes are considered; the Nominal Mode (NM) with nomi-
nal voltage and frequency, the High Frequency Mode (HFM) and the High Voltage and
Frequency Mode (HVFM). The voltage and frequency levels used for both core types in
all the three modes are shown in Table V. These values were obtained from [Eyerman
and Eeckhout 2011] and from data available on Intel’s turbo boost technology23. The
high frequency modes can potentially mitigate the performance loss due to resource
sharing. On the other hand, power overhead is also expected. It is thus necessary to
limit the use of these modes to only those instances when the shared resources are
overwhelmed.

In order to model the high frequency modes in our experiments, the latency of the
shared execution units was reduced proportionally to the gains provided by the in-
crease in frequency. Latencies are set back to the usual values when the system re-
turns to the NM. Cycles are always measured in the units of the NM frequency. Hence,
we continue to use performance/Watt as the metric to measure relative speedup even
though the shared resource island may switch between NM and HFM/HVFM.

We first present results on performance and performance/Watt when operating the
Small cores in the HFM/HVFM throughout the execution. A dynamic scheme to switch
between operation modes is then presented. We do not explore boosting the perfor-
mance of the Big core since the shared execution units in such architectures are not
expected to be a bottleneck.

7.1. Static Voltage Frequency Scaling
In this experiment, the shared execution units are always operated in the boosted
mode (HFM/HVFM) irrespective of the workload characteristics. Such a scheme will
result in increased power dissipation but is an interesting case to study as a poten-
tial upper bound on the performance mitigation possible by frequency boosting. The
calculated harmonic performance and performance/Watt speedups for all the consid-

2http://www.intel.com/content/www/us/en/processors/core/core-i5-processor.html
3http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-
technology.html

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

Does the Sharing of Execution Units Improve Performance/Power of Multicores? 39:15

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce

Workloads

S_FP_X NM S_FP_X HFM S_FP_X HVFM
S_FP_QX NM S_FP_QX HFM S_FP_QX HVFM
S_FP_INT NM S_FP_INT HFM S_FP_INT HVFM

Fig. 10. The performance of the three resource sharing designs of the Small core relative to the design that
does not share resources, for various workloads when operated in the NM, HFM and HVFM. Latency of zero
cycles was considered.

0.9

0.95

1

1.05

1.1

1.15

1.2

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce
/W

a
tt

Workloads

S_FP_X NM S_FP_X HFM S_FP_X HVFM
S_FP_QX NM S_FP_QX HFM S_FP_QX HVFM
S_FP_INT NM S_FP_INT HFM S_FP_INT HVFM

Fig. 11. The performance/Watt of the three resource sharing designs of the Small core relative to the design
that does not share resources, for various workloads when operated in the NM, HFM and HVFM. Latency
of zero cycles was considered.
ered workloads when executed on small cores in SMT mode for the NM, HFM and
HVFM operating modes are shown in Figures 10 and 11, respectively. A shared re-
source communication latency of zero cycles was considered to get a representative
picture without loss of generality.

7.1.1. Performance analysis. It can be seen that the performance is significantly
improved in the boosted modes (HFM/HVFM) for several workloads. In particu-
lar, the workloads barnes+barnes barnes+barnes, radix+radix radix+radix and any
workload running flops and fbench, show a considerable performance gain (7-20%)
in the boosted modes of operation. There are also several workloads such as
cholesky+cholesky cholesky+cholesky, fmm+fmm fmm+fmm, equake+art gzip+ammp,
and mcf+gcc art+ammp where no notable improvement is observed. There is no dif-
ference between the HFM and HVFM modes with respect to performance as is evident
from the figures. The boosted modes achieve a 4-5% on an average and a maximum
of 20% improvement in performance over the NM mode. Clearly, from a performance
stand point operating in the boosted mode is the best option.

7.1.2. Performance/Watt analysis. With respect to performance/Watt, it can be
seen that there are workloads that benefit from the HFM/HVFM. Work-
loads such as barnes+barnes barnes+barnes, radix+radix radix+radix show a 6-
7% improvement in performance/Watt. However, there are several workloads
where performance/Watt in the NM mode is the highest. These workloads are
cholesky+cholesky cholesky+cholesky, fmm+fmm fmm+fmm and workloads contain-
ing the combination equake+art gzip+ammp and mcf+gcc art+ammp. These were the

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:16 R. Rodrigues et al.

workloads where no notable performance improvement was observed (see Figure 10).
Between the HFM and HVFM, the HVFM performs worse which is expected. This
mode requires a higher voltage and hence results in larger power penalty than the
HFM. These results clearly show that operating in the HFM or HVFM modes through-
out execution is not desirable with respect to performance/Watt for several workloads.
A dynamic scheme may yield better results.

7.2. Dynamic Voltage and Frequency / Frequency Boosting
A feedback control mechanism is needed in order to determine the best mode to operate
in as a function of currently executing workload characteristics. To that end we devel-
oped a simple hardware scheme to enable switching between the NM and HFM/HVFM
. The shared resources are expected to be a bottleneck whenever the contention for
any one of the shared units increases. Occupancy or utilization of the shared execu-
tion units can potentially provide a good estimate of whether the bottleneck exists.
Hence, we make use of this metric to switch between the NM and the boosted modes
of execution.

Performance monitoring counters are available in most modern microprocessors
[Contreras and Martonosi 2005; Singh et al. 2009]. For our purposes, we need as many
counters as there are shared units to count the number of busy cycles for each execu-
tion unit. Whenever the occupancy for any shared unit exceeds a threshold (upper),
the boosted mode is enabled. Switching back to the NM takes place when utilization
reduces below a threshold (lower). As the occupancy of the execution units changes
over time, it is necessary to keep checking for utilization within small intervals. At the
end of each interval, all the counters are reset to zero so that counting for the new in-
terval may begin afresh. Furthermore, to avoid too frequent voltage and/or frequency
changes, a switch is initiated only if the decision to switch was observed for atleast
90% of the last HisD windows, referred to as history depth. For example, considering
HisD = 10 a switch in operating mode is affected only of the decision to switch was
observed for atleast 9 of the 10 recent windows. In the rest of this paper, we refer
to the scheme that switches between NM and HFM as Dynamic Frequency Boosting
(DFB) and the the scheme that switches between NM and HVFM as Dynamic Voltage
Frequency Boosting (DVFB)

A simple illustration of the mechanism to con-
trol the mode switching is shown in Figure 12.

Voltage and

frequency

regulator

Voltage

frequency

Shared execution units

Utilization counters

Control

logic

interval Change mode? Upper and

lower

threshold
History depth

Counters for n

Shared units

Fig. 12. A high level view of the feedback control mechanism
that may be used to control the voltage and frequency of the VFI
containing the shared resources.

There is a utilization counter
for each shared execution unit.
Control logic monitors these
counters and accepts as input
certain parameters that we call
interval length, history depth,
threshold upper and lower
(soon to be introduced). The
utilization for that window is
then calculated and depending
on the current operating mode
of the VFI and the values of the
input parameters, a change in operating mode may be affected. Note that utilization
(proportion of busy cycles) is always measured with respect to the cycle time of NM.
Since the execution units are accelerated in the boosted modes, this effectively reduces
the utilization, potentially mitigating the bottleneck. The following four parameters
of the dynamic mechanism need to be determined:

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

Does the Sharing of Execution Units Improve Performance/Power of Multicores? 39:17

0.6

0.7

0.8

0.9

1

1.1

1.2

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce

Latency 0 Latency 1 Latency 2

S_FP_X

S_FP_QX
S_FP_INT

S_FP_X

S_FP_INT

S_FP_QX

Single threaded workloads SMT workloads

Fig. 13. Relative performance of the Small core in the S FP X, S FP QX and S FP INT configurations for
various communication latencies when run using DFB. Results presented are summarized over all work-
loads for both the single threaded and SMT workloads.
(1) The window or interval length (IntLen) in cycles after which the utilization

counters must be sampled. Choosing too small a value may result in noisy behavior,
while too large a value may result in missing potential opportunities.

(2) The number of intervals to wait until high confidence decisions may be made.
This is called the history depth (HisD). A switch in mode is initiated only if the
decision to switch was observed for 90% of the last HisD windows. Here as well,
choosing too small a depth may result in frequent mode switches while too large a
depth may result is missing opportunities to switch mode.

(3) The threshold to enter HFM/HVFM from NM. We call this Threshold Upper
(ThU). A mode switch takes place only when the utilization of one of the shared
execution units exceeds the ThU.

(4) The threshold to go back into NM from HFM/HVFM. We call this Threshold
Lower (ThL). This mode switch takes place only when the utilization of all shared
execution units goes below the ThL.

We carried an exploratory experiment to find the set of values for
the aforementioned parameters. In these experiments, we used the work-
loads barnes+barnes barnes+barnes, raytrace+raytrace raytrace+raytrace and
equake+art flops+fbench for offline training experiments. Based on these experi-
ments, the selected paramters are: IntLen = 20, HisD = 50, ThU = 85%, ThL =
50%.

7.3. Performance and performance/Watt analysis when using the proposed DFB/DVFB
schemes

We now present the performance and performance/Watt achieved by the resource shar-
ing architectures equipped with DFB and DVFB. Results for the Big core are not shown
as the shared execution units were not found to be a bottleneck.

7.3.1. Performance analysis. The average, maximum and minimum relative perfor-
mance of the DFB scheme over the baseline inwhich no sharing takes place in the
S FP X. S FP QX and S FP INT configurations are shown in Figure 13 for communi-
cation latencies of zero to two cycles. Results are shown for both single threaded and
SMT workloads. A comparison of the relative performance obtained in NM, DFB and
DVFB modes are presented in Figure 14.

Considering the single threaded workloads, the worst cases observed in the NM for
the S FP X and S FP INT configurations were for the workloads barnes barnes with

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:18 R. Rodrigues et al.

0.6

0.7

0.8

0.9

1

1.1

1.2

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce

NM DFB DVFB

S_FP_X
S_FP_QX

S_FP_INT

S_FP_X

S_FP_INT

S_FP_QX

Single threaded workloads SMT workloads

Fig. 14. Relative performance of the Small core in S FP X, S FP QX and S FP INT configurations in NM,
DFB and DVFB for communication latency of one cycle when run using DFB. Results presented are sum-
marized over all workloads for both the single threaded and SMT workloads.

relative performance of 0.86 and flops fbench with relative performance of 0.87. The
performance of these workloads was significantly increased by 13-15% with an ob-
served relative performance of 0.99 and 1.026 for these two workloads, respectively.
On an average, performance was boosted by 3% for the S FP X configuration and by
4.5% for the S FP INT configuration when compared to the NM. Maximum improve-
ment in performance of 3% and 13% were observed for the S FP X and S FP INT con-
figurations, respectively over the baseline. There were instances where integer divide
and multiply units were bottlenecks for a few workloads (containing raytrace or lu).
Boosting the performance of these units resulted in significant performance gains of
as high as 13% for lu lu. For the S FP QX configuration, the worst case was observed
for barnes barnes, cholesky cholesky, water water and flops fbench with relative perfor-
mance of 0.84, 0.82, 0.88 and 0.84, respectively. Using DFB, the relative performance
of these workloads was increased to 0.96, 0.83, 0.89 and 1.02, respectively, but not
all workloads showed such notable improvement. The reason for this is that these
workloads suffered more due to stalls in the ISQ and not the execution units. On an
average, performance improvement of 4% was observed for the S FP QX configuration
when compared to the NM. Increasing the latency of the shared resources results in a
2-3% drop in performance demonstrating the sensitivity of these architectures to the
shared resource access latency.

With respect to the SMT workloads, for all the three configurations, the workload
barnes+barnes barnes+barnes showed worst case relative performance of 0.78. This
was boosted to 0.96 in all three configurations representing a 23% improvement in per-
formance. On an average, performance was improved by 4%, 3% and 5% for the S FP X,
S FP QX and S FP INT configurations, respectively, relative to the NM. These archi-
tectures also compare well against the baseline architecture. The S FP X, S FP QX
and S FP INT configurations achieve performance of 1.01, 0.98 and 1.029, respectively,
relative to the baseline.

From Figure 14 we note that the benefits of the DFB and DVFB mechanisms are
very similar although they differ in the overhead to switch between operating modes
(DFB requiring 10 cycles vs. 20 cycles for DVFB).

7.3.2. Performance/Watt analysis. The performance/Watt results are summarized in Fig-
ures 15 for the DFB scheme, and in 16 for the NM, DFB and DVFB schemes. Just
as was the case with performance, the DFB scheme significantly improves the perfor-
mance/Watt.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

Does the Sharing of Execution Units Improve Performance/Power of Multicores? 39:19

0.6

0.7

0.8

0.9

1

1.1

1.2

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce
 p

er
 w

a
tt

Latency 0 Latency 1 Latency 2

S_FP_X S_FP_QX
S_FP_INT

S_FP_X

S_FP_INT

S_FP_QX

Single threaded workloads SMT workloads

Fig. 15. Relative performance/Watt of the Small core in S FP X, S FP QX and S FP INT configurations for
various communication latencies when run using DFB. Results presented are summarized over all work-
loads for both the single threaded and SMT workloads.

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

R
el

a
ti

v
e

p
er

fo
rm

a
n

ce
 p

er
 w

a
tt

NM DFB DVFB

S_FP_X
S_FP_QX S_FP_INT S_FP_X

S_FP_INT

S_FP_QX

Single threaded workloads SMT workloads

Fig. 16. Relative performance/Watt of the Small core in S FP X, S FP QX and S FP INT configurations in
NM, DFB and DVFB for communication latency of one cycle when run using DFB. Results presented are
summarized over all workloads for both the single threaded and SMT workloads.

For the single threaded workloads, the worst case workload combinations for the
S FP X and S FP INT configurations were barnes barnes and flops fbench with rel-
ative performance/Watt of 0.96. This loss was mitigated with a 5% improvement in
performance/Watt in the DFB mode. For the S FP QX configuration, the workloads
barnes barnes, cholesky cholesky and flops fbench have a relative performance/Watt of
around 0.98. Among these, the relative performance of barnes barnes and flops fbench
improved to 1.04 and 1.07, respectively, while that of cholesky cholesky was only im-
proved to 0.98. Once again, stalls in the ISQ was the reason for this. Maximum im-
provements of 5%, 11% and 12% and average improvements of 3%, 5% and 4.5% were
observed for the S FP X, S FP QX and S FP INT, respectively, over the baseline. The
corresponding average improvements were 2%, 2% and 3% for the S FP X, S FP QX
and S FP INT, respectively, over the NM.

For the SMT workloads, worst case relative performance/Watt of 0.91 was ob-
served when running the workload barnes+barnes barnes+barnes on both S FP X and
S FP INT configurations in the NM. This was improved to 1.01 and 1.005, respectively,
by the DFB scheme. The worst case for the S FP QX was a relative performance/Watt
of 0.94 running the same workload in NM. This was improved to 1.039 by running

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:20 R. Rodrigues et al.

0

0.2

0.4

0.6

0.8

1
P

er
ce

n
ta

g
e

o
f

ex
ec

u
ti

o
n

 s
p

en
t

in
 t

h
e

b
o

o
st

ed
 m

o
d

e

S_FP_X S_FP_QX S_FP_INT

Fig. 17. Proportion of total execution time spent in boosted mode for the S FP X, S FP QX and S FP INT
configurations running single threaded workloads. The Small core was run using DFB and communication
latency was set to one cycle. The average is also shown.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

P
er

ce
n

ta
g

e
o

f
ex

ec
u

ti
o

n
 s

p
en

t
in

th
e

b
o
o

st
ed

 m
o

d
e

S_FP_X S_FP_QX S_FP_INT

Fig. 18. Proportion of total execution time spent in boosted mode for the S FP X, S FP QX and S FP INT
configurations running SMT workloads. The Small core was run using DFB and communication latency was
set to one cycle. The average is also shown.
in DFB. A maximum improvement of 8%, 9% and 8.3% and average improvement of
3.1%, 4.7% and 4.3% in performance/Watt were observed for the S FP X, S FP QX and
S FP INT, respectively, over the baseline. This yields an average improvement of 2-3%
in performance/Watt when compared to the NM.

From Figure 16 we note that the benefits of the DFB and DVFB mechanisms are
similar with DFB doing a little better (1-2%) since it does not incur the voltage regu-
lator power overhead.

7.3.3. Percentage of execution time spent in the boosted modes. The boosted modes should
not be used all the time. If this is the case, the processor was not properly sized and
the results may be biased and misleading. In Figures 17 and 18 the percentage of
time spent in the boosted mode in the DFB scheme is shown for the single and SMT
workloads, respectively. Results are shown for all three sharing configurations for a
shared resource communication latency of one cycle.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

Does the Sharing of Execution Units Improve Performance/Power of Multicores? 39:21

For the single threaded workload flops fbench, all the three configurations run in
the boosted mode for 100% of the time. This shows that for this workload, the shared
execution unit was a severe bottleneck. Other workloads that were executed for most
of the time (75-80%) in the boosted mode were lu lu and raytrace raytrace when run
in the S FP INT configuration. These workloads resulted in contention for the integer
multiply and divide operations. The DFB scheme detected this and accordingly oper-
ated in the boosted mode. The remaining 9 workloads operate in the boosted mode for
0-40% of the time. On an average, the Small core was operated in the boosted mode for
17-25% of the time for all the three configurations. Similar results were obtained for
the DVFB mode.

For the SMT workloads, the number of workloads run in the boosted mode for all
three configurations is higher. Nearly 6 of the considered 15 workload combinations
run in the boosted mode for 70-100% of the time. In these experiments, contention
for the shared resources is higher than that observed when running single threaded
workloads. On an average, the Small core was operated in the boosted mode for 32-40%
of the time for all three schemes and 9 of the 15 workloads operated in the boosted
mode for less than 20% of the time. These results show that while some workloads
prefer to run in the boosted mode for longer duration than others, there are also several
workloads for which the NM suffices indicating that the target architecture was sized
appropriately.

8. IMPLEMENTING THE DYNAMIC BOOSTING MECHANISMS
The proposed DFB and DVFB schemes have shown significant potential to not only
mitigate performance loss, but in some cases result in both performance and per-
formance/Watt improvements over the baseline. However, implementing such mech-
anisms may result in hardware and performance overheads. We now discuss these
overheads and present the resulting area overhead in the next sub-section.
8.1. Power overheads
With respect to power, a negligible power overhead is expected for DFB but for DVFB,
power is lost during conversion. Assuming that the on-chip voltage regulator has a
conversion efficiency of 90% [Kim et al. 2008], 10% of the power is wasted. We have
found this power to be around 1% of the total power expended in the processor and
is constitutes therefore, a very small overhead. This should be compared to the 12.5%
power consumed by the execution units (measured during simulation) in conventional
processors where no sharing takes place. Clearly, the overheads are far lower than the
benefits provided by the boosting schemes.
8.2. Performance overheads
The dynamic boosting schemes affect a shift in voltage and/or frequency whenever
deemed necessary. Two issues arise when employing such a dynamic control: (i) Lost
cycles during the transition in voltage and/or frequency, and (ii) synchronization be-
tween the VFI’s.

8.2.1. Cycles lost during operating mode transition. For the DFB scheme, only few cycles
are lost during the frequency transition. IBM’s PowerTune technology [Lichtenau et al.
2004] generates multiple frequencies which are selected using multiplexers. The over-
head to switch between frequencies was reported to be one cycle. Even if a separate
PLL is used to generate the additional frequency, the overhead to transition between
the two frequencies is not expected to be significant. We have pessimistically assumed
an overhead of 10 cycles for the DFB mode. For the DVFB mode, in addition to fre-
quency transition, a voltage transition is also needed. In [Eyerman and Eeckhout
2011], it is reported that the dV/dT for on-chip voltage regulators is around 20mV /ns.
In our scheme, the cores transition between 1.1 and 1.35V. Hence, the time to tran-

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:22 R. Rodrigues et al.

sition between the two voltages is around 12.5ns. Considering that the Small core
operates at 1.5GHz, the overhead in cycles for voltage transition is about 20 cycles.
Note that during this period, the shared execution units are not accessible to avoid
loss of signal integrity. Hence, whenever switches in mode are made, this penalty is
always experienced.

8.2.2. Synchronization between the VFI’s. Since the VFIs may sometimes operate at dif-
ferent frequencies and/or voltages, this may lead to synchronization problems between
the islands possibly leading to loss of cycles. Note that synchronization problems will
be avoided if buffers are inserted at the boundary of the two VFI’s. In all the consid-
ered designs, buffers are already present in the design (ISQ). Furthermore, by making
use of certain types of FIFO buffers [Semeraro et al. 2002] any penalty due to synchro-
nization can be completely avoided. Hence, in our experiments, we do not consider any
overhead due to synchronization.

9. AREA SAVINGS
In the target architecture, large and infrequently used resources are shared between
cores. This certainly results in area savings. Kumar et al. in [Kumar et al. 2004]
report that the area savings of sharing just the FP units is around 6.1%. Hence,
the S FP X configuration is expected to result in around 6-7% savings in area per
core. In [Shivakumar et al. 2003], Shivakumar et al. specify that the area occu-
pied by the INT and FP execution units is approximately 12-13%. In Figure 19,
the floorplan of the Intel Nehalem processor is shown4. The approximate area oc-
cupied by the execution units and the OOO scheduling logic (integer/FP ISQ and
ROB) is also shown. The execution units occupy around 18% of the area of the
core. Considering that ALUs account for a very small portion of the 18% occupied
by the execution units, the S FP INT configuration is expected to yield around 8-
9% savings in area per core. The OOO logic occupies 14% of the core area and
assuming that half of that is occupied by the ROB and the other half by the

~18% of area

~14% of area

Fig. 19. Floorplan of the Intel Nehalem proces-
sor. Courtesy Andrew Semin, Intel Corporation.
http://www.notur.no/notur2009/files/semin.pdf.

integer and FP ISQ, the approximate
area savings per core for the S FP QX
configuration is around 9-10%. These
savings in area are certainly expected to
be considerably larger than the invest-
ment in real estate required for control-
ling access to the shared units.

Next, we estimate the area require-
ment for an on-die voltage converter.
[Hazucha et al. 2005] reports an area
of 0.008mm2 for an output power of 0.1
Watts in 90nm technology. We therefore,
estimate an area of 0.16mm2 (20X) for
an on-die voltage converter with 2 Watts of output power. Considering that the die
area of the Atom processor56 is around 24-26mm2, the area of the on-chip voltage reg-
ulator is negligible compared to the execution core area.

10. CONCLUSIONS
In this paper we have investigated the performance and performance/Watt of multi-
core processors that share infrequently accessed execution resources. Inspired by the

4http://www.notur.no/notur2009/files/semin.pdf
5http://vsevteme.ru/attachments/show?content=7591
6http://ark.intel.com/products/35635/Intel-Atom-Processor-230-512K-Cache-1 60-GHz-533-MHz-FSB

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

Does the Sharing of Execution Units Improve Performance/Power of Multicores? 39:23

AMD BullDozer architecture, we studied the impact of sharing the floating-point (FP)
execution unit and issue queue between two cores in a dual-core processor. We then
expanded the scope of the study by considering a Big core that is akin to Intel Ne-
halem processor and a Small core that is akin to Intel Atom processor. A variety of
multi-programmed and multi-threaded workload combinations were studied in single-
threaded and Simultaneously Multi-threaded (SMT) modes. We found that this archi-
tecture can sometimes result in significant loss in performance (∼ 28%). To mitigate
this performance loss we limited the sharing to just the execution units including FP
and integer divide and multiply units. This reduced the performance penalty to 14%.
Sensitivity of the performance and performance/Watt of such architectures to shared
resource access latency was also investigated. It was found that both performance and
performance/Watt are highly sensitive to the shared resource access latency. Our sen-
sitivity study has further indicated that as long as the cores share high throughput ex-
ecution units, for most of the workloads, a small gain in performance/Watt is achieved
at the expense of a small loss in performance. In order to mitigate such loss in perfor-
mance, a dynamic voltage and frequency boosting (DVFB) scheme has been presented
to accelerate execution in the shared resources. Such dynamic boosting was found to
completely negate the performance losses and resulted in significant performance/Watt
gains. The dynamic scheme improves the performance and performance/Watt of re-
source sharing architectures by as much as 22% and 10%, respectively. We also ob-
served a performance and performance/Watt improvement of 13% and 14%, respec-
tively, over non-sharing cores. Furthermore, the performance/Watt/area improves by
as much as 26.2%, increasing the attractiveness of sharing.

REFERENCES
BORODIN, D. ET AL. 2011. Functional unit sharing between stacked processors in 3d integrated systems. In

Embedded Computer Systems (SAMOS), 2011 International Conference on. 311 –317.
BROOKS, D. ET AL. 2000. Wattch: a framework for architectural-level power analysis and optimizations. In

Computer Architecture, 2000. Proceedings of the 27th International Symposium on.
BUTLER, M., BARNES, L., SARMA, D., AND GELINAS, B. 2011. Bulldozer: An approach to multithreaded

compute performance. Micro, IEEE 31, 2, 6–15.
CONTRERAS, G. AND MARTONOSI, M. 2005. Power prediction for intel xscale processors using performance

monitoring unit events. In Proceedings of the 2005 international symposium on Low power electronics
and design. ISLPED ’05. 221–226.

DOLBEAU, R. AND SEZNEC, A. 2002. Cash: Revisiting hardware sharing in single-chip parallel processor.
Tech. rep.

EYERMAN, S. AND EECKHOUT, L. 2011. Fine-grained dvfs using on-chip regulators. ACM Trans. Archit.
Code Optim. 8, 1, 1:1–1:24.

FOG, A. 2012. The microarchitecture of intel, amd and via cpu. Tech. rep., Copenhagen University College
of Engineering.

GARG, S. ET AL. 2009. Technology-driven limits on dvfs controllability of multiple voltage-frequency island
designs: A system-level perspective. In Design Automation Conference, 2009. DAC ’09. 46th ACM/IEEE.
818 –821.

GHOSH, S. ET AL. 2010. Voltage scalable high-speed robust hybrid arithmetic units using adaptive clocking.
IEEE Trans. Very Large Scale Integr. Syst. 18, 9, 1301–1309.

GUPTA, S. ET AL. 2008. The stagenet fabric for constructing resilient multicore systems. In Microarchitec-
ture, 2008. MICRO-41. 2008 41st IEEE/ACM International Symposium on. 141 –151.

HAZUCHA, P., KARNIK, T., BLOECHEL, B., PARSONS, C., FINAN, D., AND BORKAR, S. 2005. Area-efficient
linear regulator with ultra-fast load regulation. Solid-State Circuits, IEEE Journal of 40, 4, 933–940.

HOMAYOUN, H. ET AL. 2012. Dynamically heterogeneous cores through 3d resource pooling. In Proceedings
of the 2012 IEEE 18th International Symposium on High-Performance Computer Architecture. HPCA
’12. 1–12.

JANG, W. ET AL. 2010. Voltage and frequency island optimizations for many-core/networks-on-chip designs.
In Green Circuits and Systems (ICGCS), 2010 International Conference on. 217 –220.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:24 R. Rodrigues et al.

KIM, W., GUPTA, M., WEI, G.-Y., AND BROOKS, D. 2008. System level analysis of fast, per-core dvfs using
on-chip switching regulators. In High Performance Computer Architecture, 2008. HPCA 2008. IEEE 14th
International Symposium on. 123–134.

KUMAR, R., JOUPPI, N. P., AND TULLSEN, D. M. 2004. Conjoined-core chip multiprocessing. In Proceed-
ings of the 37th annual IEEE/ACM International Symposium on Microarchitecture. MICRO 37. IEEE
Computer Society, Washington, DC, USA, 195–206.

LACKEY, D. ET AL. 2002. Managing power and performance for system-on-chip designs using voltage is-
lands. In Computer Aided Design, 2002. ICCAD 2002. IEEE/ACM International Conference on. 195 –
202.

LEVY, H. ET AL. 1996. Exploiting choice: Instruction fetch and issue on an implementable simultaneous
multithreading processor. In Computer Architecture, 1996 23rd Annual International Symposium on.
191.

LICHTENAU, C., RINGLER, M., PFLUGER, T., GEISSLER, S., HILGENDORF, R., HEASLIP, J., WEISS, U.,
SANDON, P., ROHRER, N., COHEN, E., AND CANADA, M. 2004. Powertune: advanced frequency and
power scaling on 64b powerpc microprocessor. In Solid-State Circuits Conference, 2004. Digest of Tech-
nical Papers. ISSCC. 2004 IEEE International. 356–357 Vol.1.

RENAU, J. 2005. Sesc: Superescalar simulator.
RODRIGUES, R. ET AL. 2011. Performance per watt benefits of dynamic core morphing in asymmetric multi-

cores. In Parallel Architectures and Compilation Techniques (PACT), 2011 International Conference on.
121 –130.

RODRIGUES, R. ET AL. 2013. Improving performance per watt of asymmetric multi-core processors via
online program phase classification and adaptive core morphing. ACM Trans. Des. Autom. Electron.
Syst. 18, 1, 5:1–5:23.

SEMERARO, G. ET AL. 2002. Energy-efficient processor design using multiple clock domains with dynamic
voltage and frequency scaling. In Proceedings of the 8th International Symposium on High-Performance
Computer Architecture. HPCA ’02. 29–.

SHIVAKUMAR, P. ET AL. 2001. Cacti 3.0: An integrated cache timing, power, and area model. Tech. rep.
SHIVAKUMAR, P. ET AL. 2003. Exploiting microarchitectural redundancy for defect tolerance. In Computer

Design, 2003. Proceedings. 21st International Conference on. 481 – 488.
SINGH, K. ET AL. 2009. Real time power estimation and thread scheduling via performance counters.

SIGARCH Comput. Archit. News 37, 2, 46–55.
SPEC2000. The standard performance evaluation corporation (spec cpi2000 suite).
TULLSEN, D. M. ET AL. 1995. Simultaneous multithreading: maximizing on-chip parallelism. SIGARCH

Comput. Archit. News 23, 2, 392–403.
WATANABE, Y. ET AL. 2010. Widget: Wisconsin decoupled grid execution tiles. In Proceedings of the 37th

annual international symposium on Computer architecture. ISCA ’10. 2–13.
WOO, S. C. ET AL. 1995. The splash-2 programs: characterization and methodological considerations.

SIGARCH Comput. Archit. News 23, 2, 24–36.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

