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Abstract—With the advent of multicore processors the emphasis in
computation is moving from sequential to parallel processing. Still,
applications that require strong sequential performance do not achieve
their highest performance/power when executing on current multicore
systems. As the computational needs vary significantly across different
applications and with time, there is a need to dynamically allocate
appropriate computational resources on demand to suit the applications’
current needs, in order to minimize the energy consumption. The Energy
per Instruction (EPI) could be further decreased by dynamically adapting
the voltage and frequency to better fit the changing characteristics of
the workload. Not only can a core be forced to a low power mode
when its activity level is low, but the power saved by doing so could be
opportunistically re-budgeted to other cores to boost the overall system
throughput. To this end, we propose a holistic solution to energy efficiency
improvement by seamlessly combining heterogeneity, Dynamic Resource
Allocation (DRA) and Dynamic Voltage and Frequency Adaptation
(DVFA) capabilities to adapt the core resources to the changing demands
of applications. Our results show that the proposed scheme provides an
EPI reduction of about 17.9% when compared to the baseline hetero-
geneous multicore, 14% when compared to the baseline heterogeneous
multicore with DVFA only and about 16.5% when compared to the
baseline heterogeneous multicore with DRA only.

I. INTRODUCTION

Technology advancements allowed more transistors to be packed

in a smaller area while the improved performance helped in achieving

higher clock frequencies. This, unfortunately, led to a power density

problem, forcing processor industry to lower the clock frequency

and integrate multiple cores on the same die [1], [2]. Most current

multicores consist of many symmetric cores (SMP) with more modest

computational capabilities that are suited for thread level parallelism.

Hence, they lose out on performance when sequential or applications

with high instruction level parallelism (ILP) are encounterd [3].

High performance for such applications could be achieved either

by designing more powerful cores or by morphing the resources

of the existing cores on-demand to suit the applications’ current

needs. The former approach results in some hardware resources being

under-utilized, wasting static power when such applications are not

encountered. Hence, on-demand resource morphing may be a better

alternative.

It is well known that different workloads benefit from different

computational resources. Even during the execution of a given

workload, resource requirements may vary with time due to changes

in program phases [4], [5]. Asymmetric Multicore Processors (AMPs)

were introduced as a potential solution to this conundrum due to

their capability to cater to the diverse needs of the workloads. A

number of recent proposals have shown them to outperform their

symmetric counterparts within a given power and area budgets [6],

[7]. Hence, a heterogeneous multicore architecture with a dynamic

resource allocation (DRA) capability would help in increasing the

performance and utilizing the available resources more efficiently,

resulting in reduced power consumption.

Power consumption could be further reduced by employing the

widely used Dynamic Voltage and Frequency Scaling (DVFS) tech-

nique [8]. The voltage and frequency of a core can be lowered when

it is idle or is in a low activity mode. For example, a memory

bound application typically does not have sufficient ILP to keep the

core busy while waiting for the long-latency memory accesses to

complete [9]. Reducing the voltage and/or clock frequency of the

core in such a case may result in significant power reduction without

impacting the performance greatly [8].

We seamlessly combine the benefits of the above approaches and

propose a heterogeneous architecture that could dynamically allocate

execution resources (DRA) and adapt the frequency and voltage of

the cores (DVFA) at runtime to suit the time dependent behavior of

the workload. At a base level, we assume an AMP architecture with

each core resourced moderately in all areas, while featuring extra-

strength in a specific area (e.g., integer or floating-point operations).

The strength of the cores is non-overlapping and hence, each core is

suited for specific application characteristics. When a thread demands

strength in more than one area, the cores are morphed dynamically by

realigning their execution resources such that one core gains strength

in one or more additional area(s) by trading its moderate resources

for stronger resources of other core(s). Such morphing is not always

the best solution, if a mismatch between the thread needs and the

capabilities of the core executing it is discovered, a thread swap may

provide a better alternative. Thus, our AMP architecture supports

moving from the baseline mode of operation to the morphed mode,

returning to the baseline, and also supports thread swap. Hardware

monitors are used to determine the thread to core affinity during

runtime and estimate the Energy/Instruction in each configuration of

the multicore. Reconfiguration of the cores takes place at fine-grain

time slices to minimize EPI. Dynamic core morphing together with

dynamic thread swapping constitute the dynamic resource allocation

(DRA) mechanism of the proposed scheme. The benefits are further

increased with the added DVFA feature, where the frequency and

voltage of the individual cores are changed (decreased or increased)

dynamically in accordance with the workload behavior to minimize

EPI while staying within the defined Thermal Design Power (TDP)

limits. The key contributions of this paper are:

1) A holistic energy-efficient scheme that allows the AMP to

morph the execution resources and/or operating conditions of

the cores at runtime.

2) A novel hardware-based performance monitoring that triggers

the reconfigurations and voltage/frequency adaptation to mini-

mize EPI.
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II. RELATED WORK

Several reconfigurable multicore architectures have been recently

proposed. Ipek et al. [10] have presented the concept of core

fusion where the resources of several cores in a homogeneous chip

multiprocessor (CMP) are fused to form a single stronger core at

runtime. Kim et al. [11] presented another approach to fusion of

homogeneous cores where, for example, 32 dual-issue cores can be

fused into a 64-issue processor. Both schemes exhibit a high inter-

core global communication overhead impacting the potential benefits

of fusion. Salverda et al. [12] discuss the difficulties in achieving

good performance by fusing simple in-order cores into out-of-order

(OOO) cores.

Other references [3], [6] show that reconfigurable architectures

may improve the benefit of AMPs even further. Das et al. [13] have

proposed an asymmetric dual-core processor that could fuse a strong

integer and a strong floating-point core. Their scheme is static so

the cores are either fused or not for the entire program run. Static

morphing of the cores can not suit all the different phases in an

application. In [14], Rodrigues et al. presented dynamic morphing

of cores at runtime to maximize performance/Watt. In comparison,

our proposed scheme could both dynamically allocate resources and

scale/boost the voltage/frequency of the individual cores. The DVFA

capability of our scheme not only helps in reducing the energy

consumption but also in efficiently redistributing the saved power to

the other cores in order to increase the overall system’s throughput.

Moreover, improving performance and performance/Watt are targeted

in [13] and [14], respectively, while the objective of the proposed

scheme is to minimize EPI. Finally, we present an in-depth analysis

of the impact of reconfiguration overhead in this work.

Dynamically scaling the voltage and frequency of cores in CMPs

has been established as an efficient technique for power reduction [8].

Ghasemazer et al. [15] minimize energy consumption in CMPs by

selectively turning ON or OFF the cores and choosing the optimum

voltage and frequency for each core. Intel’s Turbo Boost technology

allows a core to run at a higher frequency automatically if the

multicore is operating below a given rated power and temperature

limits [16]. Similarly, AMD’s Accelerated Processing Units (APUs)

use the Turbo Core Technology to boost the frequency and perfor-

mance of the cores staying within the defined power envelope [17].

Keramidas et al. [8] predict the performance and power consumption

of cores and implement a DVFS scheme based on L2 stalls.

III. PROPOSED SCHEME

The proposed scheme implements Dynamic Resource Allocation

(DRA) and Dynamic Voltage and Frequency adaptation (DVFA) to

provide adequate execution resources and determine the appropriate

voltage and frequency of operation to suit the current needs of the

workload. To illustrate our approach, we consider two heterogeneous

cores (see Figure 1) per tile. A multicore system may consists

of as many such tiles as deemed appropriate making the scheme

scalable. The first core is a 2-way super-scalar INT core, with strong

integer execution units but with low performance for floating-point

operations while the second core (FP core) features strong floating-

point execution units but low performance integer execution units.

The reason for this example architecture is the diversity in the

instruction type distribution of the common benchmarks. By focusing

on the distinct strength of the integer and floating-point execution

units, we would be able to efficiently service a wide variety of non-

overlapping benchmarks in the baseline mode of operation.

In the baseline configuration (Figure 1), good performance is

achieved by the cores while executing parallel workloads with ap-
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Fig. 1. Baseline configuration for two heterogeneous cores.
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Fig. 2. Morphed configuration for two heterogeneous cores. The red dotted
lines/boxes indicate the connectivity for the strong morphed core configuration
and the black solid lines/boxes indicate connectivity for the weak core.

propriate resource requirements. However, when there is a need for

a strong sequential performance by an application, dynamic resource

morphing of the cores takes place. In the morphed mode, the INT core

takes control of the strong floating-point unit of the FP core to form

a strong “Morphed core” while relinquishing control of its own weak

floating-point unit to the FP core. The FP core thus becomes a “Weak

core.” The stronger Morphed core retains the front-end resources of

the INT core. In contrast, the front-end resources of the FP core are

appropriately sized down to suit the reduced needs of the application

running on the Weak Core in order to save power. Hence, morphing

results in two cores: (i) a strong morphed core capable of handling

both integer and floating-point intensive operations efficiently; and (ii)

a weak core with weak functional units consuming less power. The

proposed dynamic morphing of the cores is shown in Figure 2. When

the morphed mode is no longer beneficial, the system reconfigures

itself back to the baseline mode.

The behavior and characteristics of workloads tend to vary with

time. Some applications may be floating-point intensive to start with

and may have higher percentage of integer instructions after a certain

point. Hence, swapping of the threads between the two baseline

cores under such scenarios would help in reducing the execution

time significantly [18]. Therefore, in addition to the baseline and

morphed modes of operation, we also allow the two tightly coupled

heterogeneous cores to swap their execution contexts. The DRA

feature is a hardware-based scheme and is totally isolated from the

Operating System (OS) level scheduler. Only the initial scheduling

is assumed to be done by the OS and from then on, the thread to

core assignment is managed autonomously by the DRA feature to

minimize EPI at fine-grain time slices.

Furthermore, we leverage the DVFA feature to move each hetero-

437



TABLE I
EXECUTION UNIT SPECIFICATIONS FOR THE CORES [13] (P - PIPELINED,

NP - NOT PIPELINED)

Core FP DIV FP MUL FP ALU
FP 1 unit, 12 cyc, P 1 unit, 4 cyc, P 2 units, 4 cyc, P

INT 1 unit, 120 cyc, NP 1 unit, 30 cyc, NP 1 unit, 10 cyc, NP

Core INT DIV INT MUL INT ALU
FP 1 unit, 120 cyc, NP 1 unit, 30 cyc, NP 1 unit, 2 cyc, NP

INT 1 unit, 12 cyc, P 1 unit, 3 cyc, P 2 units, 1 cyc,P

geneous core individually to either the Low Power (LP) mode or

the High Performance (HPerf) mode by monitoring its performance

and the frequency of memory reference operations. When the In-

structions per Cycle (IPC) of the thread is consistently low (likely

due to memory intensive operations), the proposed scheme moves

the corresponding core to the LP mode. On the other hand, if the

performance of a thread is high, then the corresponding core is moved

to the HPerf mode if the other core is either already in the LP mode

or is ready to enter the LP mode. Hence, entering HPerf mode is

conditioned on the other core being in the LP mode. This is done to

ensure that the TDP limit of the multicore is not violated. Adding

the DVFA feature to the dynamic allocation of resources (through

morphing and thread swapping) further reduces EPI.

IV. METHODOLOGY

The size of the floating-point and integer core parameters were

taken from [14], as the proposed scheme is compared against their

heterogeneous baseline configuration with DRA-only capability. The

execution latencies for the cores were taken from [13] (see Table I).

Similar to Intel’s Turbo Boost technology, the frequency levels of

the cores are changed in steps of 133 MHz [19]. In the default

mode of operation, the cores operate at 1.1 V/2 GHz. The voltage

and frequency level when the core enters the HPerf mode is 1.2

V/2.133 GHz while the voltage and frequency level of the cores

in the LP mode is 0.9 V/1.734 GHz (frequency decreased by two

steps). To illustrate our proposal, we have considered only three

voltage/frequency levels, however, our scheme is scalable to many

such levels.

We used SESC as our architectural simulator [20], and power is

measured using Wattch [21] and CACTI [22] with modifications

to account for static power dissipation. For our experiments, we

have selected 38 benchmarks: 16 from the MiBench suite [23], 14

benchmarks from the SPEC suite [24], one benchmark from the

Mediabench suite [25], and 7 additional synthetic benchmarks.

V. DRA AND DVFA MECHANISMS

DRA and DVFA features of the proposed scheme are accomplished

using: (i) online monitors and, (ii) a performance predictor. The

online monitors continuously and non-invasively observe certain

aspects of the execution characteristics of the committed instructions

and the activity of the cores. The performance predictor collects the

observed application characteristics and determines whether to con-

tinue execution in the current configuration, or transition to another

configuration. The possible transitions include dynamic reallocation

of execution resources and/or DVFA.

A. Decision making at fine-grain time slices

Since prior knowledge about the computational needs of the

applications is normally not available, online monitors are used

to characterize the time dependent behavior of the workload. The

key program characteristics that impact the performance/power are

continuously monitored. Since power is not a property that can be

extracted during runtime, we use other application attributes as proxy

for power. We use hardware counters to monitor the instruction

compositions (integer, floating-point and load-store). In the morphed

mode, one thread executes on a stronger core, while the other thread

executes on a weaker core. Consequently, the IPC of the thread

that executes on a weaker core is limited. To avoid sacrificing the

performance of this thread greatly, we monitor the IPC of the threads

and assign a thread to the weak core only if its IPC is already low.

We exploit the ‘memory boundness’ of the program and when the

core is busy with memory intensive operations and the IPC is low, we

move the core to the Low Power (LP) mode where both the voltage

and frequency are lowered to values mentioned in Section IV. On

the other hand, if the IPC of the thread is high and the core is busy

servicing compute intensive operations, the voltage and frequency of

the core are boosted and the core enters the HPerf mode. However,

our scheme allows the core to enter the HPerf mode only if the other

core is either already in the LP mode or is ready to enter it. This

way we keep a check on the TDP limit. Our proposed scheme has

the capability to revert back to the default operating conditions when

these modes are no longer beneficial, by monitoring the IPC of the

threads.

The ‘memory boundness’ of the program is tracked through our

monitoring of the frequency of the load/store instructions and is

further strengthened by monitoring the LSQ occupancies of the cores.

The hardware counters required for the online monitoring are similar

to the ones used by Khan et al. [26] to keep track of instruction type

distribution and IPC.

B. Offline Profiling

Offline profiling experiments were done to arrive at the suitable

switching conditions for core reconfigurations and scaling conditions

for DVFA. For the profiling experiments, 10 benchmarks from the

suite of 38 were chosen such that they included some that (i) benefit

from morphing or swapping (e.g., fft, apsi, epic), and some that (ii)

did not benefit (e.g., art, applu, equake). The threads were then run

for 100 million instructions on each core and at different voltage-

frequency combinations. The instruction distribution, EPI, and LSQ

occupancy were noted for a fixed number of committed instructions

that we call a window (discussed later). To determine the switching

conditions for core reconfiguration, two threads from the pool (of 10)

were chosen and after every window the core configuration that yields

the lowest EPI was noted along with the instruction distribution of

both the threads during each window. For example, while running

a combination of apsi and applu, if it is noticed (at the end of

the window) that running apsi on the morphed core and applu on

the weak core is better in terms of EPI, then this is marked as a

potential switching point from baseline to morphed mode. Similarly,

favorable switching points to come out of morphed mode and thread
swap were also identified. These experiments were repeated for

60 random combinations of the benchmarks (out of 100 possible

assignments) and possible trigger points for morphing, swapping

and reverting to baseline mode were identified. Once the best core

configuration was determined, the experiment was extended to choose

the appropriate voltage-frequency level and the switching points to

revert back to default operating conditions. The best EPI along with

the corresponding instruction distribution and LSQ occupancy of the

cores were noted at the end of each window.

The percentage of floating-point instruction (%FP), integer instruc-

tions (%INT), and load-store instructions (%LS), the LSQ occupancy

and the IPC values obtained through these experiments were averaged

out and used to establish the rules for dynamic reconfiguration (for

both resource allocation and DVFA) shown in Figure 3.
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Fig. 3. Dynamic resource allocation and Voltage/Frequency adaptation
conditions for our scheme

C. Accounting for program phases

Based on the conditions mentioned in Figure 3, tentative decisions

regarding the core configuration and the appropriate voltage and

frequency levels are made at the end of every committed instruction

window. In order to avoid too many reconfigurations (and their

associated overhead), we prefer to wait until the new program

execution phase has stabilized. To accomplish this, we base our

reconfiguration decision on the most frequent tentative decision made

during the n most recent instruction windows referred to as history

depth.

We conducted a sensitivity study to quantify the impact of the

window size and history depth on the quality of reconfiguration

decisions. The best choice would be the combination that yields

better EPI reduction over the entire program execution over the static

baseline configuration (shown in Figure 1). To account for the fairness

of the system, we have considered geometric EPI reduction in all

our results in this paper. Different window sizes of 200, 250, 500

and 1000 committed instructions were considered and the history

depth n was varied from 3 to 20. For each combination of window
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Fig. 4. Sensitivity analysis for determining window size and history depth.
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Fig. 5. Impact of reconfiguration overhead on achieved EPI reduction benefits
over static baseline heterogeneous configuration.

size and history depth, about 100 random combinations of two-

thread workloads were run, assuming an overhead of 1000 cycles per

reconfiguration (as described in the next section). The EPI reduction

obtained for each individual experiment was then averaged to give

a single value that represents the entire set. From Figure 4, it could

be seen that window size of 250 instructions and history depth of

5 provides the maximum EPI reduction of about 17.9%. Hence, we

chose a window size of 250 instructions and history depth of 5 for

our experiments. Our proposed scheme thus relies on the behavior of

the threads during the last 1250 (250×5) committed instructions to

make the reconfiguration decision about the execution resources and

operating conditions.

D. Reconfiguration Overheads

In order to swap threads between the cores, we need to flush

the pipelines, exchange architecture states and warm the caches.

Similarly, if the frequency of the cores needs to be changed, the

platform specific registers should be updated [9]. It is mentioned

in [27] that with the use of on-chip voltage regulators, the voltage

transitioning time is reduced to few tens of nanoseconds.

To quantify the impact of the reconfiguration overhead, exper-

iments were run with 100 random combinations of benchmarks.

The percentage EPI reduction over the static baseline configuration

obtained with a overhead of 1K cycles was compared against those

obtained with 5K, 10K and 20K cycles. As could be seen from

Figure 5, the obtained EPI reduction benefits drop only by about

1.4% with a reconfiguration penalty of 5K cycles. Even when the

reconfiguration overhead is as high as 20K cycles (about 10 μs

for a 2 GHz processor), our proposed scheme was able to achieve

an average EPI reduction of about 11.1% over the static baseline

heterogeneous configuration. We observed that only with a penalty of

50K cycles per reconfiguration, the obtained EPI reduction benefits of

the proposed scheme are almost nullified. With dedicated support for

state swapping (e.g., Intel’s Sandy Bridge [16]), far lower overheads

can be expected and we used a reconfiguration overhead of 1000

cycles in our experiments.

VI. EVALUATION

To illustrate the efficiency of our proposed scheme, we compare

the EPI metric of our scheme against three baseline heterogeneous

configurations – static, with DVFA capability only and with DRA

feature only [14]. Besides the performance/power metric (EPI), we

also evaluate the stand-alone performance in terms of weighted

improvement in throughput using our scheme. From the pool of all

38 benchmarks, 100 random combinations of two benchmarks were

chosen and run on the dual-core until completion of 100 million

instructions. For the baseline configurations, the best thread to core
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Fig. 6. EPI reduction and throughput improvement due to the proposed
scheme over (a) the static baseline heterogeneous configuration, baseline
heterogeneous configuration with (b) DVFA, and (c) DRA for different
multiprogrammed workloads.

assignment was assumed to be known in advance while for the

proposed scheme, a random initial thread to core assignment was

made. The hope is that our scheme will detect the best assignment

shortly after the programs begin to run.

For the sake of clarity, only 35 combinations (out of the 100) are

shown in Figures 6(a), 6(b), and 6(c) which depict the geometric

reduction in EPI (in percentage) and weighted improvement in

throughput (in percentage) when using the proposed scheme against

each of the baseline configurations. The shown 35 combinations

include the 10 worse results (out of the 100), the 10 best results

and 15 that showed average benefits.

As shown in Figure 6(a), significant reduction in EPI was obtained

using the proposed scheme when compared to the static baseline

heterogeneous configuration which lacks the capability to adapt to

the time-varying behavior of the workload. The only scenario where

the static configuration was able to achieve lower EPI than the

proposed scheme was when no reconfiguration happened for the two-

benchmarks pairs (for example, {CRC32,bzip2}, {vpr,fft}). Consider-

ing the throughput metric, our scheme performs worse than the static

baseline for few combinations like {vpr,fft} (-19%), {swim,art} (-

12%) as one of the cores operate in LP mode for most part of the

execution to reduce EPI. Using the proposed scheme there was on

average (for all the 100 combinations) a 17.9% reduction in EPI and

10% improvement in throughput as compared to the static baseline

configuration.

As expected, relatively lower benefits were observed when com-

paring our scheme against the baseline configuration with either the

DVFA only or the DRA only capability. These reference baseline

configurations have some capability (either to change the volt-

age/frequency level or morph the execution resources) to adapt

to the time-varying behavior of the workload. It could be noted

that for few combinations like {cjpeg,towers}, {sha,mcf} in Figure

6(b) and {epic,cpu}, {vpr,fft} in Figure 6(c), the proposed scheme

performs worse than the two baseline configurations in terms of EPI.

There are three possible reasons for this: (i) The best thread-to-

core initial assignment is assumed for the baseline configurations

while it is random for the proposed scheme. This gives an added

advantage to the baseline configurations when either no or very late

reconfigurations happen using DRA. (ii) Due to the dual feature of

DVFA and DRA in the proposed scheme, in a few rare cases the

earlier transitions (either frequency/voltage adaptation or resource

morphing) made by our scheme prevents some useful reconfigurations

to happen in the future. For example, a decision to morph the cores

could have been turned down by our scheme as the second core had

been in the HPerf mode (and is about to come out of it) because of

which its performance is slightly better than the defined conditions

for a thread to be assigned to the weak core (refer to Figure 3).

(iii) The scheme mispredicts. This could happen occasionally for any

prediction scheme whose rules are determined by analysing a subset

of applications.

We also noticed many combinations that stressed the need for a

scheme to have the dual features of both DRA and DVFA. Consider

for example, the pair {basicmath,towers} for which voltage and

frequency were scaled twice during the program execution for both

the proposed scheme and the baseline configuration with DVFA.

Hence, no significant EPI reduction was seen for this benchmark

pair when compared against the baseline with only DVFA. How-

ever, the baseline configuration with DRA was able to perform

swapping of threads once for {basicmath,towers} while the two

threads executed without any reconfiguration in the static baseline

configuration. Hence, there was about 30.2% and 22.3% reduction

in Energy/Instruction for the mentioned workload pair compared

to the static baseline configuration and the one with DRA alone,

respectively. There were few other workload pairs like {sha, djpeg}
where the baseline configuration with DRA was able to follow the

proposed scheme closely while significant benefits were achieved

over the static baseline configuration and the one with DVFA alone.

These examples illustrate the capability of our scheme to satisfy

the diverse needs of different applications and enable a significant

reduction in EPI.

Considerable benefits are achieved by the proposed scheme against

both the non-static baseline configurations when workload pairs (like

{equake, fpStress}, {epic, bitcount}, {fft, sha}) that require both

DVFA and DRA to minimize EPI are encountered. Moreover, the

number of combinations that benefit from the proposed scheme and

result in a significant reduction in EPI is much higher than the number

of those that do not (only 11% of the 100 combinations showed

minor degradation compared to the baseline configuration with DVFA

while the number of combinations that were slightly degraded was

9% compared to the baseline configuration with DRA). On average,

for the considered 100 combinations, there was about 14% (15.5%)
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and 16.5% (8.4%) reduction (improvement) in EPI (throughput) using

the proposed scheme over the baseline heterogeneous configurations

with only DVFA capability and only DRA feature, respectively.

VII. CONCLUSIONS

We have presented a novel energy efficient scheme that dynami-

cally allocates computational resources and changes the voltage and

frequency levels of cores at runtime. For illustration, we considered a

dual-core: one core with support for strong integer code execution and

another core that could handle floating-point operations efficiently.

Aligning with the time-dependent behavior of the applications and

their computational demands, our proposed scheme dynamically

swaps the executing threads or morphs the cores at runtime by

realigning resources of the given baseline cores to form a strong

and a weak core. In addition, appropriate voltage and frequency

levels are chosen dynamically to decrease EPI. Our results show that

the proposed scheme with DRA and DVFA capabilities provides an

average EPI reduction of about 17.9% when compared to the baseline

heterogeneous multicore, 14% when compared to the baseline het-

erogeneous multicore with DVFA only and about 16.5% compared

to the baseline heterogeneous multicore with DRA only.
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