
A

Improving Performance per Watt of Asymmetric Multicore Processors
via Online Program Phase Classification and Adaptive Core Morphing

RANCE RODRIGUES, University of Massachusetts at Amherst
ARUNACHALAM ANNAMALAI, University of Massachusetts at Amherst
ISRAEL KOREN, University of Massachusetts at Amherst
SANDIP KUNDU, University of Massachusetts at Amherst

Asymmetric multicore processors (AMPs) have been shown to outperform symmetric ones in terms of per-
formance and performance/watt. The improved performance and power efficiency are achieved when the
program threads are matched to their most suitable cores. Since the computational needs of a program may
change during its execution, the best thread to core assignment will likely change with time. We have there-
fore, developed an online program phase classification scheme that allows swapping of threads when the
current needs of the threads justify a change in the assignment.

The architectural differences among the cores in an AMP can never match the diversity that exists among
different programs and even between different phases of the same program. Consider, for example, a pro-
gram (or a program phase) that has a high instruction level parallelism (ILP) and will exhibit high power
efficiency if executed on a powerful core. We can not however, include in the designed AMP, such powerful
cores since they will remain underutilized most of the time, and they are not power efficient when the pro-
grams do not exhibit high degree of ILP. Thus, we must expect to see program phases where the designed
cores will be unable to support the ILP that the program can exhibit. We therefore, propose in this paper a
dynamic morphing scheme. This scheme will allow a core to gain control of a functional unit that is ordinar-
ily under the control of a neighboring core, during periods of intense computation with high ILP. This way,
we dynamically adjust the hardware resources to the current needs of the application.

Our results show that combining online phase classification and dynamic core morphing can significantly
improve the performance/watt of most multi-threaded workloads.

Categories and Subject Descriptors: C.1.3 [Processor Architectures]: Adaptable architectures, Heteroge-
neous (hybrid) systems

General Terms: Design, Algorithms, Performance, Experimentation

Additional Key Words and Phrases: Asymmetric multicores, Dynamic Core Morphing (DCM), Hardware
assisted core reconfiguration and thread scheduling

1. INTRODUCTION
The semiconductor industry has been driven by Moore’s law for almost half a century.
Miniaturization of device size has allowed more transistors to be packed into a smaller
area while the improved transistor performance has resulted in a significant increase
in frequency. Increased density of devices and rising frequency led, unfortunately, to
a power density problem. The processor industry responded to this problem by lower-

This work has been submitted for consideration under the ”Adaptive Power Management for Energy and
Temperature Aware Computing Systems” special issue. It has been supported in part by a grant from SRC
(Grant no. 1985.001) and NSF (Grant no. 0903191).
Author’s addresses: R. Rodrigues, A. Annamalai, I. Koren and S. Kundu. Department of Electrical and
Computer Engineering, University of Massachusetts at Amherst.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1084-4309/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2

ing processor frequency and integrating multiple processor cores on a die [Held et al.
2006]. Still, a multicore die is limited by an overall power dissipation envelope that
stems from packaging and cooling constraints. Consequently, most current multicores
are composed of cores with relatively moderate capabilities as integration of high per-
formance cores will result in higher cost and possibly breaching of heat dissipation
limits.

For the majority of current applications, the capability of cores found in today’s mul-
ticore systems is adequate. However, multicore processors are focused more on sup-
porting Thread Level Parallelism (TLP) and hence sacrifice instruction throughput for
certain workloads [Pericas et al. 2007; Gibson and Wood 2010]. These workloads can
benefit from more powerful cores to support higher instruction throughput and better
performance per power. In order to achieve high performance/watt, applications should
have (i) low execution time which implies high performance, and (ii) low power. When
sequential applications are encountered, higher performance may be achieved by ei-
ther designing more powerful individual cores or by morphing the resources of a few
simpler cores when the need arises. Incorporating complex cores in a multicore system
goes against the basic premise of multicores, i.e., lowering the power density. Further-
more, resource and power are frequently wasted whenever such workloads are not
encountered. Hence, on-demand resource morphing may provide a better alternative.

In general, multicore processors may be symmetric (SMP) or asymmetric (AMP). It
is well known that different workloads require different processor resources for better
performance/watt. Even within a workload, the resource requirements may vary with
time due to changes in program phases [Kumar et al. 2003; Sherwood et al. 2003].
Within a given resource budget, when computing demands are matched with proces-
sor capabilities, AMPs tend to perform better than SMPs [Kumar et al. 2006; Hill and
Marty 2008; Winter et al. 2010]. However, matching resources to applications’ needs
has been recognized as a difficult problem [Balakrishnan et al. 2005]. Despite that,
AMPs are gaining traction from smart phones [van Berkel 2009] to integrated graph-
ics processors [Intel ; AMD] due to their power-performance benefits. In this paper,
we propose to adaptively match the processor capability to the computing needs of the
executing threads and as a result improve the efficiency of AMPs (in terms of perfor-
mance/watt). This is achieved by either swapping threads between cores (of different
capabilities) or by morphing core resources dynamically.

Instruction

fetch/decode ROB

Weak FPU

ISQ

Strong INT

ISQ

Weak FPU

units

Strong INT

units

 Strong Integer, Weak FP core

CDB

Instruction

fetch/decode ROB

Strong FPU

ISQ

Weak INT

ISQ

Strong FPU

units

Weak INT

units

Strong FP, Weak INT core

CDB

Core 1 - INT Core 2 - FP

Fig. 1. Baseline configuration of the two heterogeneous cores [Ro-
drigues et al. 2011].

We have previously ex-
plored the benefits of dy-
namic core morphing in
an AMP architecture [Ro-
drigues et al. 2011]. In that
paper, we studied a dual-
core AMP (see Figure 1),
where each core was re-
sourced moderately in all
areas, while featuring ex-
tra strength in either inte-
ger or floating-point oper-
ations. When a thread de-
manded strength in more
than one area, the cores
were morphed dynamically
by realigning their execu-
tion resources such that one core gains strength in one or more additional area(s)
by trading its moderate resources with stronger resources of other core(s) (see Fig-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:3

ure 2). Further details are provided in Section 3. Also, whenever deemed beneficial,
threads were swapped between cores. The rules for triggering reconfiguration or swap-
ping threads were determined by offline profiling [Rodrigues et al. 2011] and an online
mechanism to determine current power consumption was assumed to be in place. From
here on we refer to our previous core morphing scheme [Rodrigues et al. 2011] as Rule-
based Dynamic Core Morphing (RDCM).

Instruction

fetch/decode ROB

Weak INT

ISQ

Strong

FPU ISQ

Weak INT

units

Strong

FPU units

CDB

Weak FP, Weak INT

Instruction

fetch/decode ROB

Strong

INT ISQ

Weak FP

ISQ

Strong

INT units

Weak FP

ALU units

CDB

Strong INT, Strong FP

Logic to

enable

morphing

Logic

for

CDB

morph enable

Morphed Strong core Weak core

Fig. 2. Morphed configuration for the two heterogeneous cores.
The red dotted lines/boxes indicate the connectivity for the strong
morphed core configuration and the black solid lines/boxes indi-
cate connectivity for the weak core [Rodrigues et al. 2011].

In this paper, we extend our
prior work by adding a mech-
anism to trigger morphing or
thread swapping online with-
out offline learning. Online re-
configuration is made possible
by detecting phases in the exe-
cution of programs and record-
ing core performance and power
consumption for each phase on-
line. Whenever the same phase
is encountered again, a sim-
ple table lookup enables deter-
mination of the best thread to
core assignment with minimal
overhead. As in our previous
work, this functionality is pro-
vided by using hardware perfor-
mance monitors. The online power estimation is also made possible through the use of
performance event counters [Singh et al. 2009; Joseph and Martonosi 2001]. We call
our proposed new online core morphing scheme Phase Classification based Dynamic
Core Morphing (PCDCM).

2. RELATED WORK
Reconfigurable multicores have recently received considerable attention. Core fusion
was presented in [Ipek et al. 2007] where the cores of an SMP were reconfigured at
runtime into stronger cores by “fusing” resources from the available cores. Another
approach to fusion of homogeneous cores is presented in [Kim et al. 2007], where
32 dual-issue cores could be fused into a single 64-issue processor. Both schemes ex-
hibit a high inter-core communication overhead. In addition, the reconfiguration over-
head of critical units like the Reorder Buffer (ROB), issue queue and load/store queue
has adversely affected the potential benefits. The difficulty in achieving good perfor-
mance by fusing simple in-order cores into out-of-order (OOO) cores has been discussed
in [Salverda and Zilles 2008]. It was also noted that aggregating cores in an SMP of-
fers more of the same resources making it difficult to take full advantage of the high
Instruction Level Parallelism (ILP) that some programs offer [Ipek et al. 2007; Kim
et al. 2007].

There is significant variation in computational demand across applications. For ex-
ample, in the SPEC benchmark [SPEC2000], equake is floating-point intensive while
gcc is both integer and load-store intensive. Thus, to achieve acceptable performance
for both workloads, the homogeneous cores would have to be designed such that they
have a reasonably strong floating-point unit (FP), integer unit (INT) and load-store
queues (LSQ). When only a strong FP or strong INT performance is needed, resources
are idled. AMPs are better suited to handle such scenarios. Aggregating cores in an
AMP provides opportunity to draw from the strengths of each core, creating potential

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4

for achieving higher ILP than possible from aggregating SMPs. This motivates our
current work.

Kumar et al. in [Kumar et al. 2003] proposed an AMP consisting of cores of vari-
ous sizes, all running the same ISA. Whenever a new program is run or a new phase
[Sherwood et al. 2003] is detected, a sampling is initiated and the core which pro-
vides the best power efficiency is chosen. This work considered four cores but only
a single thread was considered running which greatly simplifies the AMP scheduling
problem. The authors later extended this work for performance maximization of multi-
threaded applications [Kumar et al. 2004]. A similar approach was proposed by Becchi
et al. [Becchi and Crowley 2006] in which the AMP consisted of two types of cores,
one small and one big. The thread to core assignment was determined by forcing a
swap between the big and small cores to find the performance ratio of the big to small
cores. Depending on the ratio, the threads were scheduled such that the overall sys-
tem performance is maximized. Kumar et al. [Kumar et al. 2006] address the design of
an AMP, targeting area and power efficiency. They use cores that match the resource
requirements of certain types of workloads. Annavaram et al. [Annavaram et al. 2005]
use an AMP such that the Energy Per Instruction (EPI), while running multithreaded
applications, is kept within a budget by having a big core execute the serial portions
and the small cores execute the parallel portion of the code. [Najaf-abadi et al. 2009]
propose core selectability where each “node” in the system consists of different types of
cores that share common resources. There has been a number of schemes proposed for
dynamic reconfiguration and thread migration in an AMP. Gibson et al. [Gibson and
Wood 2010] propose a forward flow architecture where the execution logic can be scaled
to meet the requirements of the incoming workloads. Li et al. [Li et al. 2007] schedule
threads in an AMP such that the thread-queue length of the cores is kept proportional
to the computing power of the cores. Chen et al. [Chen and John 2009] propose a thread
scheduling solution for AMPs by matching the resource requirements of the threads
to the available cores. They used cores that differ with respect to issue width, branch
predictor size and L1 caches. Using the proposed algorithm, they achieved Energy De-
lay Product (EDP), energy and throughput improvements. Winter et al. [Winter et al.
2010] discuss power management techniques in AMPs via thread scheduling. They
consider various algorithms and all of them require sampling on the core types to de-
termine the best thread to core mapping.

Shelepov et al. [Shelepov et al. 2009] avoid sampling to determine thread to core
mapping in an AMP by introducing what they call architectural signature. This signa-
ture is characterized by cache misses for the various core configurations and using this,
they schedule threads such that the overall runtime is reduced for the multithreaded
application. These signatures are determined offline via profiling and are fixed for the
lifetime of the program. Hence, this solution is unable to take advantage of program
phases. Khan et al. [Khan and Kundu 2010] propose regression analysis along with
phase classification to find thread to core affinity. Luo et al. [Luo et al. 2010] propose
the use of speculative threads in a same-ISA AMP to achieve performance improve-
ment with moderate energy increase. Saez et al. [Saez et al. 2010] propose a compre-
hensive schedule for AMPs consisting of small and big cores, that considers both single
threaded as well as multithreaded performance. They define a term called the utility
factor (UF) which is the ratio of the time it takes to complete the task on the base
(small cores) to that on the alternate configuration. This term is measured online us-
ing the last level cache miss rate to determine the thread to core assignment online.
Koufaty et al. [Koufaty et al.] determine thread to core mapping in an AMP consisting
of big and small cores using program to core bias. This bias is estimated online using
the number of external stalls (proportional to cache requests going to L2 and main
memory) and internal stalls (front end not delivering instructions to the back end).

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:5

Table I. Core configurations after the sizing
experiments

Param FP INT HMG Weak
DL1 4K 4K 4K 1K
IL1 4K 4K 4K 1K
L2 128K 128K 128K 64K
LSQ 32 32 32 32
ROB 128 128 128 64
INTREG 48 64 56 32
FPREG 64 32 48 32
INTISQ 32 32 32 16
FPISQ 32 16 24 8

Table II. Execution unit specifications for the cores (P - Pipelined, NP -
Not pipelined)

Core FP DIV FP MUL FP ALU
FP 1 unit, 12 cyc, P 1 unit, 4 cyc, P 2 units, 4 cyc, P
INT 1 unit, 120 cyc, NP 1 unit, 30 cyc, NP 1 unit, 10 cyc, NP

HMG 1 unit, 66 cyc, NP 1 unit, 17 cyc, P 2 units, 7 cyc, P
INT DIV INT MUL INT ALU

FP 1 unit, 120 cyc, NP 1 unit, 30 cyc, NP 1 unit, 2 cyc, NP
INT 1 unit, 12 cyc, P 1 unit, 3 cyc, P 2 units, 1 cyc, P

HMG 1 unit, 66 cyc, NP 1 unit, 16 cyc, P 2 units, 1 cyc, P

Using the bias they accordingly schedule threads in the AMP such that performance is
maximized. Srinivasan et al. [Srinivasan et al. 2011] propose thread to core scheduling
in an AMP by estimating the performance of the thread currently running on one core
type, on another, using a closed form expression. The proposed scheme comes to within
3% of the oracular model used by the authors.

3. PROPOSED ARCHITECTURE
In this section, we describe in detail the Dynamic Core Morphing (DCM) scheme. To
illustrate our approach, we consider a multicore processor constructed from tiles of
asymmetric processors, where each tile consist of two cores: a FP core and an INT
core (see Figure 1). The FP core features strong floating-point execution units but low
performance integer execution units, while the INT core features exactly the opposite.
Other differences between the cores include the number of virtual rename registers,
issue queue (ISQ) and Load/Store Queue (LSQ) entries. We ran core sizing experiments
(please refer to our earlier work [Rodrigues et al. 2011] for details) to determine these
parameters and the final sizes of the various core parameters are shown in Table I.
The details of the execution units for the two cores are shown in Table II. The HMG
core in Table I represents an area equivalent homogeneous core used for comparison
purposes where the area of the two HMG cores is approximately the sum of the areas
of the INT and FP cores. The parameters for this core were obtained by averaging the
size of the structures in the FP and INT cores.

In the baseline configuration (Figure 1) the cores operate independently providing
good performance for affine workloads. Whenever a higher sequential performance is
needed, a dynamic morphing of the cores takes place. In this configuration, the INT
core takes control of the strong floating-point unit of the FP core to form a strong
“morphed core” while relinquishing control of its own weak floating-point unit to the
FP core. The FP core thus becomes a “weak core.” Morphing results in two cores: (i)
a strong single-threaded core capable of handling both integer and floating-point in-
tensive applications efficiently, and (ii) a weak core which consumes less power and
does not provide high performance. Instead of retaining the front end of the FP core
as is, its resources are appropriately sized down (see the last column in Table I), to
suit the application running on it and further reduce power. The result of the proposed
dynamic morphing of the cores is shown in Figure 2. If the morphed mode is no longer
beneficial, the system reconfigures itself back to the baseline mode.

The behavior of many applications tends to vary with time. Some may be floating-
point intensive to start with and after a certain point may have higher percentage of
integer instructions and vice-versa. Hence, the ability to swap threads between the two
baseline cores could reduce the execution time significantly. Reduced execution time
would improve the performance/watt with less idling and thus more efficient utiliza-
tion of resources. Therefore, in addition to the baseline and morphed modes of opera-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BJ MEM INT FP

Fig. 3. Instruction distribution of the workloads when run for 5 billion instructions.
tion, we also allow the two tightly coupled heterogeneous cores to swap their execution
contexts.

The proposed DCM scheme is a hardware-assisted solution that is autonomous and
isolated from the Operating System (OS) level scheduler. We assume that only the
initial scheduling is done by the OS in the baseline configuration. From then on, the
thread to core assignment is managed autonomously by our scheme to optimize perfor-
mance/watt at fine-grain time slices. The overhead of the required hardware support
to enable swapping and core morphing at runtime is minimal, as they reuse the exist-
ing resources for task swaps and sleep states. The hardware overhead for the proposed
architecture has been previously estimated by us in an earlier work [Das et al. 2010]
to be approximately 1%.

4. PERFORMANCE/WATT AND PERFORMANCE EVALUATION
To evaluate our scheme, the SESC architectural simulator [Renau 2005] was used, and
power was measured using Wattch [Brooks et al. 2000] and CACTI [Shivakumar et al.
2001] with modifications to account for static power dissipation. For the experiments,
38 benchmarks were selected: 16 benchmarks from the SPEC suite [SPEC2000], 14
embedded benchmarks from the MiBench suite [Guthaus et al. 2001], one benchmark
from the mediabench suite [Lee et al. 1997], and 7 additional synthetic benchmarks.
These 38 benchmarks encompass most typical workloads, for example, scientific appli-
cations, media encoding/decoding and security applications. In this section, the perfor-
mance/watt and performance of each core is analyzed by running one application at a
time on the various core types, i.e., FP, INT, Morphed, HMG and Weak cores.

The 38 benchmarks were run on each core configuration for 5 billion instructions (in-
struction distribution shown in Figure 3.) and the performance/watt results are plotted
in Figure 4(a). We observe that 5 benchmarks (apsi, sixtrack, epic, pi, whetstone) in the
morphed mode show notable gains. Out of these, apsi shows 82% improvement over its
closest competitor, the FP core. This benefit is more modest for the benchmarks epic
(35%), whetstone (17%), pi (12%) and sixtrack (5%). The reason why apsi shows sub-
stantial benefits is related to the temporal distribution of the instruction mix in apsi.
We have observed that this happens due to the bursty nature of the instruction types
encountered when executing apsi. For additional details, please refer to our earlier
work [Das et al. 2010].

What is depicted in Figure 4(a) represents the average behavior over 5 billion in-
structions. However, many programs exhibit phases and each core configuration might
be beneficial for different phases in the program execution. Hence, running the bench-
mark statically on the same core configuration may miss opportunities to maximize
performance/watt. This is the reason why only 5 out of the 38 benchmarks show ben-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:7

(a) IPC/Watt for all benchmarks

(b) IPC for all benchmarks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

IP
C

FP INT Morphed Weak HMG

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

IP
C
/W
a
tt

FP INT Morphed Weak HMG

Fig. 4. IPC/Watt and IPC for the 38 benchmarks considered when run on each core configuration for 5
billion instructions.
efits when run on the morphed core throughout their execution. In the rest of the
33 cases, the power expended by the morphed core outweighs the obtained perfor-
mance benefits resulting in poor performance/watt. This is evident from Figure 4(b)
that shows the IPC for all benchmarks on the four types of cores. As can be seen from
this figure, the morphed core performs either equally well or better than the other
core configurations when only IPC is considered. Moreover, there is a bigger group of
benchmarks (ammp, wupwise, apsi, applu, sixtrack, FFT, FFTI, epic, unepic, fbench, pi,
whetstone) that show significant benefits from morphing and the gains are even higher
(>150% for apsi). As we have seen, such performance gain does not always result in a
higher power efficiency.

4.1. Impact of program phases
It was observed that over entire runs of 5 billion instructions, some benchmarks
benefit, some don’t, while some others even lose out upon morphing, when perfor-
mance/watt is considered. Evaluation over entire runs does not take into account the
changes in program behavior that is observed in most applications [Kumar et al. 2003;
Sherwood et al. 2003]. In order to demonstrate the effect of program phases on perfor-
mance/watt, a detailed study of the benchmark epic that shows benefit from morphing
is presented next. The objective is to investigate the effect that the varying instruction
distribution of a benchmark may have on performance/watt.

The benchmark epic was run for a few million instructions and the results are shown
in Figure 5. The performance/watt for each core type (FP, INT and Morphed) is rep-
resented by the blue, orange and red curves, marked with a ×, a dot and a triangle,
respectively. The distribution of instruction types at each time instant is represented
by the area in the increasingly darker shades (light grey - INT, dark grey - FP, black

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8

(a) Study of epic

(b) Study of FFT

0

0.01

0.02

0.03

0.04

0.05

0.06

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

IP
C

/W
at

t

P
er

ce
nt

ag
e

in
st

ru
ct

io
n

di
st

ri
bu

ti
on

Program interval in 100K cycles

INT FP Memory FP core INT core Morphed core

0

0.02

0.04

0.06

0.08

0.1

0.12

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

IP
C

/W
at

t

P
er

ce
nt

ag
e

in
st

ru
ct

io
n

di
st

ri
bu

ti
on

Program interval in 100K cycles

INT FP Memory FP core INT core Morphed core

Fig. 5. Zoomed view of variations in the performance/watt of epic when run on each core configuration [Ro-
drigues et al. 2011].

- memory). For the first 19 data points, the morphed core does not outperform either
the FP or the INT core and as a result, staying in the baseline mode of execution is
advisable. For the data points 20 to 37, the morphed core performs much better than
the other cores (35% on average when compared to the nearest competitor, the FP
core). Hence, there is a possibility of considerable performance/watt gains to be made
by morphing. During subsequent stages of execution, the baseline mode of execution
again proves beneficial. This shows that by monitoring the program behavior at a more
fine-grain level, there are more opportunities for improving the power efficiency by ei-
ther morphing or exiting the morphed mode. At the same time, even though gains are
made for epic, careful consideration must be given to the performance/watt of the sec-
ond thread running on the AMP which upon morphing gets assigned to the weak core,
potentially resulting in a drop in performance/watt for that thread.

A similar in-depth study was carried out for the benchmark FFT in our earlier
work [Rodrigues et al. 2011]. It was noticed that even though FFT can benefit from
running on the morphed core for the entire run, swapping the threads between the
two cores, instead of morphing, may provide even better results. The study of the above
two benchmarks infer that the decision to swap or morph should be based on the cur-
rent behavior (e.g., instruction mix) of the executing workloads. In the next section, we
describe in detail our dynamic decision making scheme.

5. DYNAMIC ONLINE RECONFIGURATION
We have seen that the performance/watt of an application running on one of the cores
in the AMP is directly related to its instruction distribution. In this section, we de-
scribe the mechanism used to detect changes in an application behavior and accord-
ingly trigger reconfiguration. We first give a brief overview of the Rule-based Dynamic
Core Morphing (RDCM) scheme we proposed in [Rodrigues et al. 2011] and then intro-
duce the new proposed Phase Classification based Dynamic Core Morphing (PCDCM)
scheme.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:9

5.1. Our previous Rule-based Dynamic Core Morphing scheme (RDCM)
In [Rodrigues et al. 2011], to detect the instantaneous affinity of an application to
a core, we used an approach based on offline profiling. There, we selected a sub-
set (12) of the workloads (training set) and ran profiling experiments on them.

Algorithm for dynamic reconfiguration:

1. Threads T1 and T2 assigned randomly to cores

2. Do Swap if:

i. (%INTFP >= 44) and (%INTINT <= 30)

 OR

ii. (%FPINT >= 26) and (%FPFP <=13)

3. Go from baseline to morphed mode if:

i. For T1 (T2)

a. %(FP + INT) >= 50 and

b. (17<=%FP<=30) and (26<=%INT<=44)

ii. And T2 (T1)

a. IPC <= 0.4 and

b. %(FP + INT) < 60

4. Come out of morphed to baseline mode if:

i. Thread currently on morphed core shows

a. %(FP + INT) < 50

b. Use swap rules for thread to core assignment

5. End

• %INTFP – Integer instruction percentage of thread on FP core

• %INTINT - Integer instruction percentage of thread on INT core

• %FPFP – FP instruction percentage of thread on FP core

• %FPINT – FP instruction percentage of thread on INT core

Fig. 6. The rules used for dynamic reconfiguration in the RDCM scheme

In these experiments,
the instruction dis-
tribution as well as
the performance/watt
for each workload on
each core type were
observed, for a fixed
window of committed
instructions (500 in-
structions). The thread
to core affinity as a
function of instruc-
tion distribution was
then established, us-
ing this information,
in the form of rules
(see Figure 6). These
rules were then used
to trigger morphing
of cores or swapping
of threads whenever
application behavior
changes are detected online. To evaluate the efficacy of these rules, experiments
were run on the entire set of workloads (including those that were not part of
the training set). The workloads were run for 40 million instructions and it was
observed that the offline rule based method performed on average 16% better
with respect to performance/watt over the baseline AMP with static thread to core
mapping. Since this scheme used profiling, whenever applications that were not
part of the training set were encountered, it is likely that not always were the
optimal decisions made. Furthermore, we considered only a single AMP baseline
for comparison. The thread to core assignment in that baseline stays the same
throughout the lifetime of the program. There have been a few proposals [Becchi and
Crowley 2006; Srinivasan et al. 2011] that allow swapping threads between cores.
As a result, we decided to explore a new dynamic decision making mechanism, one
that would be independent of training set workloads and would be compared to a more
sophisticated baseline.

5.2. The proposed Phase Classification based Dynamic Core Morphing (PCDCM) scheme

iALU

iMult

iDiv

iBJ

iLoad

iStore

fpALU

fpMult

fpDiv

i = integer

fp = floating point

Instructions

retired

Instruction

counters

Number of instructions =

interval n?

Capture

ITV

Classify

phase

Phase table

iMultiALU fpDivfpMult IPC

Fig. 7. Online recording of application behavior via hard-
ware counters and phase table as done by Khan et al. in
[Khan and Kundu 2011].

The desired dynamic decision
making mechanism should be
able to determine online, the
affinity of a program or pro-
gram phase to a core without any
prior knowledge of the workload.
In addition, the scheme’s overhead
should not outweigh its benefits. We
have seen above that the affinity of

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10

a program can be determined based
on its instruction distribution. This
distribution can be memorized in a
history table and provide the ba-
sis for a phase classification mech-
anism as described next.

5.2.1. ITV based phase classification.
Instruction type vectors (ITV) were introduced by Khan et al. in [Khan and Kundu
2011] for the purpose of program phase classification. We adopt this scheme and mod-
ify it to better suit our purposes. The ITVs are created using a circuit similar to that
shown in Figure 7 where hardware counters are used to count the number of commit-
ted instructions of certain types (9 types as shown in the figure) during a specified
interval. This interval corresponds to a fixed number n of committed instructions with
the value of n to be determined. Whenever an instruction is retired, the appropriate
instruction counter is incremented. After n instructions have committed the resulting
9-element vector is captured and compared to previously stored ITVs in the Phase Ta-
ble. The already stored ITVs correspond to previously encountered stable phases where
a phase is classified as stable when at least m consecutive intervals (of n committed
instructions each) had almost identical ITVs. The number m is another parameter
of the scheme that needs to be determined. The newly captured ITV is compared to
each stored ITV by calculating the sum of the absolute differences between their cor-
responding nine elements. If this sum is smaller than a pre-specified threshold ∆ (a
parameter that needs to be determined), then the newly encountered phase is assigned
the same phase ID as the one it was compared against. This signifies that we expect
the current behavior of the program to be very similar to its behavior during the previ-
ously encountered phase with likely the same performance and performance per watt.
If however, the sum exceeds the threshold value ∆, it becomes a potentially new phase
but it needs to repeat m times before being assigned a new stable phase ID. Every
program may exhibit during its execution several short-lived intermittent phases that
do not justify actions like thread swapping or core morphing. It is important therefore,
to distinguish between stable and unstable phases. The resulting algorithm to detect
and classify phases is shown in Figure 8. Experiments were carried out to determine
the phase classification parameters, i.e., n, m and ∆. Details on these experiments can
be found in Appendix ??. We found that in general, the phase classification mechanism
provides best benefits when the interval range n is between 50K - 200K instructions,
the %threshold is between 5 - 15% and the stable phase interval is between 2 - 8. For
the rest of our experiments, these parameters have been set as: n = 150K, %threshold
= 7.5 and the stable phase interval m=4.

Start

Programs begin

execution on

static AMP

Interval = n

Threshold = ∆

#Repeat intervals = m

phaseID = -1

#noPhases = 0

i = 0

tempID = -1

Execution

complete?

no

yes

End

Wait until n instructions

(interval) have committed

phaseID = -1?

Current phase

has repeated

itself

yes

Temporarily

store the

phase

information

associated

with this

phase

Temporary phase

information stored?

Calculate difference ∆

of this interval with that

of temporary phase

no

yes

Difference < ∆?

i == m?

no

Unstable phase detected.

Discard temporary phase

information. Retain current

phaseID as is

i = 0

yes

i= i+1

New phase

detected, enter

phase

information

into phase table

noPhases++

phaseID =

noPhases

i = 0
no

Calculate difference ∆

of this interval with that

of phaseID from table

Difference < ∆?

Current phase

has repeated

itself

yes

no

Calculate difference ∆ of

this interval with other

phaseIDs from table

Difference < ∆?
no

tempID == -1?

tempID = ID of phase

from table where

Difference < ∆

yes

yes

Calculate difference ∆ of this interval

with that of temporary phase

Difference < ∆?

no

i= i+1

i == m?
Phase change detected

phaseID = ID from

phase table

yes
no

yes
no

Unstable phase

detected. Retain

phaseID

tempID = -1

i = 0

no

yes

Fig. 8. Flowchart of Phase Classification algorithm.

5.2.2. Extending the
phase table to include
performance and power
entries. We made a
few changes to Khan’s
[Khan and Kundu
2011] phase classifica-
tion scheme as shown
in Figure 9. There are
two major differences.
(i) The number of in-
struction types in the
ITV vector has been re-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:11

duced from 9 to 4, and
(ii) there are additional
entries in the table to
indicate the estimated
IPC and power for
each core type in the
AMP. Since the cores
in the AMP mainly
differ with respect
to their capability of
processing integer and
floating-point instruc-
tions, we aggregate all
integer instructions
into a single entry and
all floating-point in-
structions into another
single entry. We also
aggregate load and
store instructions into a single entry called Mem. As is shown in Appendix B, such a
reduction does not compromise the benefits of the online mechanism. Further, to be
able to use effectively the information about already classified stable phases, there
is a need to collect per core type in the AMP, the performance and power for a given
phase. We do that by augmenting the phase table with 2 additional entries per core
type, one each for IPC and power. Since there are 4 core types in the considered AMP
(FP, INT, Morphed and Weak), there are 8 entries corresponding to the estimated IPC
and power for the given phase on each core type. Whenever a new stable phase is
identified, our scheme will store in the phase table the approximate values of the IPC
and the power consumed by each core during that phase.

INT

FP

iBJ

Mem

Instructions

retired

Instruction

counters

Number of instructions =

interval n?

Capture

ITV

Classify

phase

Phase table

INT Mem
ITV

IPCi = IPC for core i

PWi = Power for core i

IPC and power for cores
IPC1 PW1 PWNIPCN

Fig. 9. Extending the phase table with IPC and Power entries
for each core in the AMP. Note that the number of instruction
types in the ITV vector has been reduced from 9 to 4.

Online measurement of
IPC is straightforward, but
the same cannot be said
about power measurement. To
estimate power, we use perfor-
mance event counters, available
in almost every processor, as
a proxy for power. Computer
architects have used perfor-
mance monitoring counters as a
proxy for estimating the power
consumption, for example, IPC
and cache misses [Joseph and
Martonosi 2001; Contreras and Martonosi 2005; Singh et al. 2009]. The accuracy of
such estimates is not high, but still sufficient for comparing the power consumed
by different cores executing the same program. We adopted a similar approach to
estimate power online using performance counters.

If the approximate IPC and power consumption is available for each phase of an
application on each processor, a simple table lookup suffices to determine the best
thread to core mapping for future occurrences of the classified phase. In this paper, we
use a simple dynamic online learning approach and in the next sub-section we explain
it and discuss its associated overhead.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12

5.2.3. Online performance and power estimation. The phase classification mechanism
tracks the percentage of instructions in the most recently retired interval of n in-
structions. Whenever a new phase is detected, or when a previously classified phase
is encountered again, it indicates that there is a change in the composition of instruc-
tions being executed for the application.We have seen previously (Figure 5) that such
a change may indicate that the resource requirements of the program being executed
have changed and it may be better to run the current phase of the program on another
core in the AMP. In order to then determine the best thread to core assignment, perfor-
mance estimation of that phase on each core type in the AMP is needed. As mentioned
earlier, we achieve this by dynamic online learning where the newly detected phase is
run on each core in the AMP. A similar scheme has been used by Kumar et al. [Kumar
et al. 2003] and Becchi et al. [Becchi and Crowley 2006]. However, Kumar et al. sample
the program on each core type in the AMP, each time a new phase is detected even if
it has been previously encountered. Becchi et al. force a thread swap between cores
whenever a new phase is detected to estimate performance of the phase on each core
type. Sampling is clearly needed when new phases are detected, but not when a pre-
viously encountered phase is detected again, if the information related to the phase is
available. Hence, during the proposed online learning process, the program is executed
once on each core type and the observed IPC and power information are stored in the
phase table. Since the AMP has 4 possible core types, this process must be repeated 4
times.

The overheads of the online scheme stem from the online learning mechanism and
context switch on thread swap. We quantify the details of this overhead and its effect
on the benefits of our scheme in Section 6.

Start

Threads begin execution on cores. Initial

thread to core assignment is randomly chosen

Execution complete? End

Classify phases

Phase change detected?
No

No

Yes

New phase detected?

Sample the new phase on all

cores and measure

performance and power.

Store observed values in the

phase table

Yes

Yes

Lookup phase

table to determine

best thread to core

assignment

No

MICROVISOR

Fig. 10. Elements of the proposed PCDCM
working together. The part of the algorithm con-
trolled by the software layer (Microvisor) is indi-
cated by the dotted red rectangle.

5.2.4. Putting it all together. So far, individual
components of the system (the online phase
detection, performance and power estima-
tion techniques) have been described. We
now describe how each of these autonomous
mechanisms work together (as shown in Fig-
ure 10). A software called the microvisor
[Khan and Kundu 2011] is used to initialize
and manage the phase classification mecha-
nism as well as the performance and power
estimation mechanisms. This software is in-
visible to the OS and is resident in between
the OS and hardware. It collects informa-
tion from the phase table and makes the best
thread to core assignment. This functions the
same way as that proposed by Khan et al.
[Khan and Kundu 2011] or IBM’s millicode
[Heller and Farrell 2004].

The microvisor. The microvisor monitors
the operation of the AMP. It has control
and access to the phase table of each core type. It also generates the triggers to
morph/unmorph the cores. It is invoked whenever there is a new phase detected or
a previously detected phase is encountered (phase change). If a new phase is detected,
the microvisor controls the process of the sampling mechanism to estimate the IPC
and it also collects the counter values that are used to estimate power. The phase ta-
ble is then updated with the IPC and power information for each core type. If a phase
change is detected, phase tables are looked up to fetch the IPC and power values for

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:13

that phase which are then used to make thread scheduling decisions. Since the micro-
visor does some computation whenever phases are detected or repeated, it incurs an
overhead. We discuss this overhead in detail in Section 6.3.

Determining the best thread to core assignment. Whenever a phase change is de-
tected or a new phase is classified, a different thread to core assignment may be needed
to optimize performance per watt of the applications being executed. This thread to
core assignment is determined by the microvisor that receives inputs from the various
elements of the PCDCM scheme. The various thread to core assignments for the pro-
posed AMP are: (i) thread0 running on the FP core and thread1 on the INT core ([FP,
INT]) or vice versa ([INT, FP]) (ii) thread0 running on the morphed core and thread1
on the weak core ([MR, WK]) or vice versa ([WK, MR]). Whenever the thread to core
assignment in the AMP needs to be reassessed (whenever there is a phase change or
a new phase is detected in any of the two applications being executed on the AMP),
the microvisor looks up the phase table for each application being run and estimates
the gain in performance per watt that a change in thread to core assignment may
have. To do this, either the weighted, geometric or harmonic speedup metrics (defined
in Section 6.2) may be used to calculate the gain in performance per watt of the new
potential thread to core assignment over the current one. We use the weighted metric
in our experiments, but other metrics may be used. Whenever threads are swapped
between cores, the phase tables are also moved accordingly.

6. EVALUATION
In this section, the proposed online PCDCM scheme is evaluated. In these experi-
ments, multi-programmed workloads were run on the AMP. Execution stops when 5
billion instructions of either thread are retired. The phase classification parameters
were set to: Interval n = 150K, %threshold ∆ = 7.5 and stable phase interval m = 4
based on our search described in Appendix ??.

We now describe the baselines that will be used for comparison. The perfor-
mance/watt improvement achieved by PCDCM scheme over each baseline is then eval-
uated. Since the proposed scheme relies on dynamic online learning in order to deter-
mine the affinity of a newly detected phase to a core in the AMP, we present a study
on the effect of this overhead on the benefits.

6.1. Baseline modes considered
We compare the proposed PCDCM scheme to the following baseline configurations:

(1) Static: This is the same baseline that we used in [Rodrigues et al. 2011]. Here the
AMP does not feature morphing or swapping of threads, but the thread to core
assignment is based on oracular knowledge of the best assignment.

(2) Swap: Here threads are allowed to swap between the cores. The decision to swap
is made in the same way as the proposed dynamic online scheme using the ITV
phase detection. The only difference is that the cores are not allowed to morph.

(3) HMG: This baseline consists of two homogeneous cores with parameters as de-
scribed in Section 3. This dual-core processor is symmetric and occupies the same
area as the FP and INT core AMP.

(4) RDCM: This is the offline profiling-based DCM scheme that we proposed in [Ro-
drigues et al. 2011]. As described earlier, core reconfiguration in this scheme relies
on rules derived offline by profiling a subset of the workloads considered. These
rules are then applied to trigger either morphing or thread swapping whenever
deemed beneficial.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14

6.2. Performance per watt analysis over the baselines
We considered three speedup metrics for comparing the proposed scheme to the
baselines. We define the following terms:

S0 = (IPC/Wattthread0)dynamic/(IPC/Wattthread0)baseline
S1 = (IPC/Wattthread1)dynamic/(IPC/Wattthread1)baseline

The various speedups considered are:

(1) Weighted:
Speedupweighted = (S0 + S1)/2

(2) Geometric:
Speedupgeometric = 2

√
S0 × S1

(3) Harmonic:
Speedupharmonic = 2/(1/S0 + 1/S1)

From the set of 38 workloads, we randomly selected 100 combinations of two
threaded workloads and executed those on the proposed PCDCM scheme as well as
on each of the baselines. We have plotted a subset (40 of the 100) of those results in
Figures 11 and 12. We have sorted the 100 results from smallest to largest values of
the weighted IPC/Watt improvements. Of the 40 shown in the plot, 10 were the worst
cases, 10 best cases and 20 cases in between. It is clear that in general (see Figures 11
and 12), a significant IPC/Watt improvement is observed when compared to any base-
line. Also, amongst the worst cases for the baselines (static and HMG), it can be see
that the IPC/Watt degradation is not very high (0.86 in the worst case against HMG).
Even when compared against the dynamic baselines (Swap and RDCM), it can be seen
that significant IPC/Watt improvement is achieved on average.

6.2.1. Analysis of results. We now provide detailed analysis and reasons on why the
PCDCM scheme performs better on average than both the static as well as the dynamic
baselines.

Static. In this baseline, thread to core assignment is kept the same from start to
end of the run. However, the assignment is assumed to be done by an oracle and as
such, can not be done in practice. It can be seen that significant IPC/Watt improve-
ment is achieved by PCDCM over this baseline. This scheme never takes advantage of
phase changes or changes in resource demands. Even if over the entire run, a thread
has an affinity for a certain core (as determined by the oracle), there may be peri-
ods where this thread would be more affine to another core. The PCDCM scheme is
equipped with the phase classification mechanism and hence is able to react during
such periods by rescheduling the threads. For example, over an entire run of 5 billion
instructions, the workload equake shows an affinity to the FP core (see Figure 3). How-
ever, during the experimental run, 11 phases were detected for equake and affinity
for the INT, Morphed or even the Weak core was observed during those phases. The
PCDCM scheme detects these phases, re-evaluates the thread to core mapping and
hence optimizes IPC/Watt. Hence, the PCDCM scheme achieves significant improve-
ment in IPC/Watt over the static baseline. Still, there are a few workload combinations
(3 out of of 100) where the PCDCM scheme performs slightly worse than this baseline
(see Figure 11(a)). For these workloads, even though phases are detected and classi-
fied, at no point did PCDCM trigger a reconfiguration, but phases were detected and
the sampling overhead increased the runtime. As a result, the IPC/Watt improvement
is less than 1. However, on an average, for all the 100 combinations (see Figure 13

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:15

0
.8

0
.9 1

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

IPC/Watt improvement

W
eig

h
ted

G
eo

m
etric

H
a
rm

o
n
ic

0
.8

0
.9 1

1
.1

1
.2

1
.3

1
.4

IPC/Watt improvement

W
eig

h
ted

G
eo

m
etric

H
a
rm

o
n
ic

(a) V
s th

e S
tatic b

aselin
e

(b
) V

s th
e S

w
ap

 o
n
ly

 d
y
n
am

ic b
aselin

e

Fig. 11. IPC/Watt improvement over the various baselines for a subset of the workload combinations.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16

(a) V
s th

e H
M

G
 b

aselin
e

(b
) V

s th
e R

D
C

M
 d

y
n
am

ic b
aselin

e

0
.8 1

1
.2

1
.4

1
.6

1
.8 2

IPC/Watt improvement

W
eig

h
ted

G
eo

m
etric

H
a
rm

o
n
ic

0
.8

0
.9 1

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

IPC/Watt improvement

W
eig

h
ted

G
eo

m
etric

H
a
rm

o
n
ic

Fig. 12. IPC/Watt improvement over the various baselines for a subset of the workload combinations.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:17

where average, maximum and minimum improvements over all baselines are plot-
ted), a significant improvement of 16% is observed with respect to weighted IPC/Watt,
which more than justifies the rare cases where no reconfigurations take place.

Swap. This is one of the two baselines that are dynamic. Here, whenever deemed
beneficial, the threads are swapped between cores. The decision to trigger swapping
is determined by the same mechanism that is used by the PCDCM scheme, but,
this baseline is unable to morph core resources. Although this scheme is dynamic,
it can be seen that the IPC/Watt improvements are significant on average (see Fig-
ure 13(a)). Also, there are only four cases where IPC/Watt improvement is < 1 (the
leftmost workload combinations in Figure 11(b)). By allowing cores to morph, the ex-
ecution of the thread on the Morphed core is accelerated, while that on the Weak
core is slowed down. As a result, the phase combinations that are encountered be-
tween the two workloads, when the cores have morphing capability and when they
do not, are very different. This results in sometimes, different reconfiguration de-
cisions made by the PCDCM and swap-only schemes. For example, when running
the workload combination mgrid,twolf (leftmost combination in Figure 11(b)) where
a speedup of 0.97 was observed, the PCDCM scheme performed morphing 10 times,
while the swap scheme made no reconfiguration. Since the proposed scheme is greedy
in its decision making, thread re-scheduling decisions are made even for the short
lived phases. Hence sometimes, the overheads outweigh the benefits which is what
led to the PCDCM scheme performing slightly worse. This however, is not a fre-
quent occurrence and it happens only in 4 out of the 100 combinations of workloads.

(a) Average IPC/Watt improvement

(b) Maximum IPC/Watt improvement

(c) Minimum IPC/Watt improvement

1

1.05

1.1

1.15

1.2

1.25

1.3

Static Swap HMG RDCM

IP
C

/W
a

tt
 i

m
p

ro
v

em
en

t Weighted

Geometric

Harmonic

1

1.2

1.4

1.6

1.8

2

Static Swap HMG RDCM

IP
C

/W
a

tt
 i
m

p
r
o

v
e
m

e
n

t Weighted

Geometric

Harmonic

0.7

0.75

0.8

0.85

0.9

0.95

1

Static Swap HMG RDCM

IP
C

/W
a

tt
 i

m
p

ro
v

em
en

t

Weighted

Geometric

Harmonic

Fig. 13. Average, maximum and minimum IPC/Watt
improvement of the proposed scheme over the various
baselines.

There are also fourteen workload com-
binations where the IPC/Watt improve-
ment is 1, which suggests that both
schemes make the same decisions. How-
ever, in the rest of the 82 of 100 work-
load combinations, the PCDCM scheme
significantly outperforms the swapping
only dynamic baseline. This happens
as there are some workloads that have
phases that have a good mix of FP and
INT instructions. In such cases the swap
only scheme must arrive at a compro-
mise, while the PCDCM scheme detects
these phases, and accelerates them by
mapping those phases on the Morphed
core. Even though the other thread must
now be mapped onto the Weak core, the
benefits achieved by morphing results
in an overall IPC/Watt improvement in
the system. The workload combination
wupwise,pi is an example of such an
occurence. Sometimes, the thread that
will be mapped onto the Weak core may
be affine to it. For example, consider
the worklod combination gcc,apsi in Fig-
ure 11(b). The workload apsi shows sig-
nificant IPC/Watt improvement (>200%)
for a couple of its phases when mapped
onto the Morphed core and the workload

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18

gcc is memory intensive (see Figure 3).
Thus, apsi is naturally affine to the Morphed core and gcc, to the Weak core most of
the time. Hence, when running the workload apsi,gcc, the PCDCM scheme achieves
almost a 20% improvement over the swap only baseline which is unable to take advan-
tage of such scenarios. The average IPC/Watt improvement over 100 combinations of
workloads was found to be 9% (see Figure 13(a)).

It may be noted that the phase classification based “swap” scheme achieves a
weighted IPC/Watt improvement of about 8% over the static baseline. Hence, such
a dynamic swap scheme may be beneficial for architectures that do not include the
hardware support for morphing.

HMG. This baseline is an area-equivalent symmetric multicore. In general,
IPC/Watt is significantly improved by the PCDCM scheme, when compared to this
baseline. On the other hand, the number of cases where PCDCM performs worse is
on the higher side (9 out of the 100 combinations). Moreover, the worst case weighted
IPC/Watt improvement of 0.86 is one of the worst when compared to all other base-
lines. This happens because the HMG baseline is well suited to running certain homo-
geneous workload combinations. For example, the left most workload combinations in
Figure 12(a), i.e. CRC32, gcc, dijkstra, gzip and bzip2, bzip2 are all INT intensive. In
such cases, having a homogeneous multicore may be a better option as both the threads
are affine to the same core type in the AMP, the thread assigned to the other core type
will suffer with respect to performance. This is evident from Figure 12(a). If however,
one of the workloads being executed has FP instructions, PCDCM may perform better
even if those workloads are similar. As an example, consider the symmetric workload
combination FFTI, FFTI in Figure 12(a) which shows a weighted IPC/Watt improve-
ment of 25% when run on the PCDCM scheme. This happens as FFTI shows phases
which are FP/INT intensive or have both. Phases that have a reasonable proportion
of INT and FP instructions are naturally affine to the Morphed core. PCDCM detects
those and makes intelligent thread mapping decisions to improve IPC/Watt. On an av-
erage for the 100 combinations, PCDCM scheme achieves 26% IPC/Watt improvement
over the HMG baseline (see Figure 13(a)).

RDCM. This is our earlier published work [Rodrigues et al. 2011]. Here decisions to
morph or trigger thread swapping are governed by rules obtained offline through pro-
filing a subset of 12 workloads (apsi, applu, art, swim, equake, epic, fft, twolf, ammp,
gcc, mcf, bzip2). Even though a considerable IPC/Watt improvement was achieved over
the static baseline by this scheme, there is still room for further improvement. The
PCDCM achieves IPC/Watt improvements even over this scheme. Since PCDCM de-
termines reconfiguration decisions online, it is not dependent on the training set. As
a result, it makes better decisions as compared to the RDCM scheme when workloads
that are not part of the training set, are encountered. For example, consider the work-
load combination of patricia,bitcount which is toward the right extreme in Figure 12(b).
Here, a weighted IPC/Watt improvement of 40% was observed. None of the two were
part of the training set. Still, there are workload combinations where the IPC/Watt im-
provement of PCDCM over RDCM is < 1. This happens as the RDCM scheme makes
thread scheduling decisions at smaller granularities on instruction window (500 in-
structions as compared to 150K by the PCDCM scheme). Hence, the RDCM scheme
is better equipped to detect and take advantage of short lived program phases, some
of which may never even be seen by the PCDCM scheme due to its large instruction
window. Such short lived phases that showed benefits from Morphing were observed
for the workloads epic, FFT and whetstone. From Figure 12(b), it can be seen that the
majority of the workload combinations where IPC/Watt improvement was less than
1, had one of these workloads. Still, on an average, PCDCM achieves 6% IPC/Watt

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:19

improvement over RDCM as seen in Figure 13(a). One of the major benefits of the
proposed PCDCM scheme is that it will always make intelligent scheduling decisions
irrespective of the incoming workloads, unlike the RDCM scheme, the benefits of which
depends on the training set used. Further, the RDCM schemes rules are only valid for
the architecture considered in this paper. For different architectures, a different set of
rules may have to be determined. This is not the case for the proposed scheme which
will work just fine for any core types. The PCDCM scheme is therefore, more scalable
than the RDCM scheme.

6.3. Overheads vs. benefits
The PCDCM scheme uses online dynamic learning and phase tables, controlled by the
microvisor to provide performance per watt benefits. In this subsection, we quantify
the software and hardware overheads of the scheme and also present the effect of the
overheads on its benefits.

6.3.1. Software overheads. The proposed PCDCM scheme relies on a dynamic online
learning mechanism to make thread to core decisions online. This mechanism has an
overhead, as indicated earlier. The overheads arise due to microvisor function, sam-
pling to determine IPC and power information and the times when cores need to swap
thread contexts.

As described earlier, the microvisor is invoked whenever a new phase or phase
change is detected. Table lookup is then performed and the information is used to de-
termine the weighted speedup metric which is then used to determine the best thread
to core mapping based on the newly detected phase. We estimate the overhead of this
procedure to be a few hundred cycles every time it happens. We set this number con-
servatively, as 500 cycles for our experiments. It was observed in our experiments
(consisting of 100 combinations) that there were around 5 phases detected on an aver-
age and, the maximum number of phases detected was 17. Also, phase changes were
detected around 800 times on average and the maximum number of phase changes
detected was 2020. Hence, the overhead due to microvisor invocation was found to be
(3 + 800) times 500 cycles which equals 401K cycles on average and, (17 + 2020) times
500 cycles which equals around 1M cycles overhead for the worst case.

The second source of overhead is that of the IPC and power sampling. When a new
phase is detected, it is sampled on each core type for the defined interval length n
(150K instructions) and stable phase interval m of 4. Hence, a total of 600K instruc-
tions is executed on each core type during the sampling phase. On an average, we
estimated that it would take around 2.5M cycles to execute this. During this dynamic
online learning process, the system continues with one of the core types and hence only
75% of the 2.5M cycles is the actual overhead of sampling. Thus, a significant portion
of the overhead is due to online learning. In our experiments, as described earlier, av-
erage/maximum phases detected were 5/17 and the corresponding average/maximum
overhead due to sampling were 12.5/42.5 million cycles. Considering that each experi-
ment runs for a few billion cycles, this overhead in cycles comes to be around 0.2% on
an average and, 0.8% in the worst case. It is worth noting that since we use the phase
table, we avoid the sampling process whenever the same phase is detected again. If
that were not the case, sampling would have to be done 2020 times in the worst case,
for every phase change and this would have significantly increased the overheads.

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

Weighted Geometric Harmonic

IP
C

/W
a

tt
 i

m
p

ro
v

em
en

t

Speedup metric

2.5M 5M 7.5M 10M

Fig. 14. Weighted, geometric and harmonic IPC/Watt
improvement over the static baseline for increasing
overhead for dynamic online learning.

The third source of overhead stems from
the context switch whenever the micro-
visor determines that the cores must
swap their contexts or morphing of re-
sources must take place to maximize

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20

performance per watt. It was observed
in our experiments that the thread
swaps and hardware reconfigurations
happened around 90 times on average
and around 1000 times in the worst case.
Again this overhead can vary from one
architecture to the other. Architectures
with support for thread swapping may
incur up to a thousand cycles overhead while it may be significantly larger for those
without such support. We have assumed this overhead to be 1K cycles and hence the
overhead due to thread swapping/morphing may be estimated to be 90K and 1M cycles
on an average and in the worst case, respectively. Both of these are negligible con-
sidering that we execute the benchmarks for billions of cycles. We experimented with
various context switch overheads of 10K, 50K, 100K and 1M cycles and found those to
have negligible effect on the benefits of the proposed scheme.

Of the three sources of overhead, the overhead due to sampling dominates the others.
To quantify the effect of these overheads on IPC/Watt improvement of our approach,
we increased the sampling overhead from 2.5 to 10 million cycles. The result is plotted
in Figure 14. It can be seen that even with a pessimistic overhead of 10 million cycles
per sampling process, the scheme still achieves benefits of 14% over the static baseline
(a drop of 2%), with respect to all three speedup metrics. Hence, we can conclude that
the proposed scheme has a low sensitivity to the sampling overhead.

6.3.2. Hardware overhead. As mentioned earlier, in our experiments we noticed the av-
erage number of phases detected to be about 5. For the worst case scenario, this num-
ber went up to 17. Therefore, about 20 phase table entries may be sufficient for most
cases. Each entry in the phase table captures the ITV, the performance and power in-
formation of the phase on each core types. Hence, an entry in the table consists of 12
fields, totaling to about 240 fields (12 fields/entry × 20 entries) for the entire phase
table. Even if each field requires 32 bits, the size of the phase table would be less than
1 KB. Clearly, this is a small overhead considering the total gate count of the processor.

7. CONCLUSIONS
In this paper we presented an online program phase classification based thread to core
assignment scheme to improve performance per watt of an asymmetric multiproces-
sor system. The studied AMP architecture features two cores: one with strength in
floating-point computation and the other in integer intensive workload. By morphing
the two cores, we obtained a core that is strong in both integer and floating-point com-
putations, but this has resulted in the second core becoming much weaker. We deployed
adaptive core morphing alongside thread swapping, at runtime, to reassign threads to
cores using the above program phase classification. Whenever a new phase is detected,
the phase is sampled on each core configuration to obtain an estimate of the perfor-
mance/watt using performance monitors. This information is then stored in a table for
future reference. When an already classified phase is detected again, a simple table
lookup is performed to determine the best thread to core assignment. To evaluate the
scheme, several static and dynamic reconfiguration alternatives were considered. Us-
ing the proposed dynamic reconfiguration scheme, substantial performance/watt gains
are achieved. Our results show that the proposed PCDCM scheme, on an average, out-
performs the static heterogeneous baseline by about 16%, the homogeneous baseline
by 26% and the best dynamic baseline by 6%, with respect to weighted IPC/Watt. Since
the proposed scheme is based on online learning with no prior knowledge regarding the

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:21

individual capabilities of the individual cores, it is not limited to the considered INT,
FP dual-core but is applicable to any heterogeneous AMP.

REFERENCES
AMD. www.amd.com.
ANNAVARAM, M., GROCHOWSKI, E., AND SHEN, J. 2005. Mitigating amdahl’s law through epi throttling.

In Proceedings of the 32nd annual international symposium on Computer Architecture. ISCA ’05.
BALAKRISHNAN, S., RAJWAR, R., UPTON, M., AND LAI, K. 2005. The impact of performance asymmetry

in emerging multicore architectures. In Proceedings of the 32nd annual international symposium on
Computer Architecture. ISCA ’05. IEEE Computer Society, Washington, DC, USA, 506–517.

BECCHI, M. AND CROWLEY, P. 2006. Dynamic thread assignment on heterogeneous multiprocessor archi-
tectures. In Proceedings of the 3rd conference on Computing frontiers. CF ’06.

BROOKS, D., TIWARI, V., AND MARTONOSI, M. 2000. Wattch: a framework for architectural-level power
analysis and optimizations. In Computer Architecture, 2000. Proceedings of the 27th International Sym-
posium on.

CHEN, J. AND JOHN, L. K. 2009. Efficient program scheduling for heterogeneous multi-core processors. In
Proceedings of the 46th Annual Design Automation Conference. DAC ’09.

CONTRERAS, G. AND MARTONOSI, M. 2005. Power prediction for intel xscale® processors using per-
formance monitoring unit events. In Proceedings of the 2005 international symposium on Low power
electronics and design. ISLPED ’05. ACM, New York, NY, USA, 221–226.

DAS, A., RODRIGUES, R., KOREN, I., AND KUNDU, S. 2010. A study on performance benefits of core mor-
phing in an asymmetric multicore processor. In Computer Design (ICCD), 2010 IEEE International
Conference on.

GIBSON, D. AND WOOD, D. A. 2010. Forwardflow: a scalable core for power-constrained cmps. In Proceed-
ings of the 37th annual international symposium on Computer architecture. ISCA ’10. ACM, New York,
NY, USA, 14–25.

GUTHAUS, M., RINGENBERG, J., ERNST, D., AUSTIN, T., MUDGE, T., AND BROWN, R. 2001. Mibench:
A free, commercially representative embedded benchmark suite. In Workload Characterization, 2001.
WWC-4. 2001 IEEE International Workshop on.

HELD, J., BAUTISTA, J., AND KOEHL, S. 2006. White paper from a few cores to many: A tera-scale computing
research review.

HELLER, L. C. AND FARRELL, M. S. 2004. Millicode in an ibm zseries processor. IBM Journal of Research
and Development 48, 3.4, 425 –434.

HILL, M. AND MARTY, M. 2008. Amdahl’s law in the multicore era. Computer 41, 7, 33 –38.
INTEL. www.intel.com.
IPEK, E., KIRMAN, M., KIRMAN, N., AND MARTINEZ, J. F. 2007. Core fusion: accommodating software

diversity in chip multiprocessors. SIGARCH Comput. Archit. News 35, 186–197.
JOSEPH, R. AND MARTONOSI, M. 2001. Run-time power estimation in high performance microprocessors.

In Proceedings of the 2001 international symposium on Low power electronics and design. ISLPED ’01.
ACM, New York, NY, USA, 135–140.

KHAN, O. AND KUNDU, S. 2010. A self-adaptive scheduler for asymmetric multi-cores. In Proceedings of the
20th symposium on Great lakes symposium on VLSI. GLSVLSI ’10.

KHAN, O. AND KUNDU, S. 2011. Microvisor: A runtime architecture for thermal management in chip mul-
tiprocessors. T. HiPEAC 4, 84–110.

KIM, C., SETHUMADHAVAN, S., GOVINDAN, M. S., RANGANATHAN, N., GULATI, D., BURGER, D.,
AND KECKLER, S. W. 2007. Composable lightweight processors. In Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture. MICRO 40. IEEE Computer Society, Wash-
ington, DC, USA, 381–394.

KOUFATY, D., REDDY, D., AND HAHN, S. Bias scheduling in heterogeneous multi-core architectures. In
Proceedings of the 5th European conference on Computer systems. EuroSys ’10.

KUMAR, R., FARKAS, K., JOUPPI, N., RANGANATHAN, P., AND TULLSEN, D. 2003. Single-isa heteroge-
neous multi-core architectures: the potential for processor power reduction. In Microarchitecture, 2003.
MICRO-36. Proceedings. 36th Annual IEEE/ACM International Symposium on.

KUMAR, R., TULLSEN, D., RANGANATHAN, P., JOUPPI, N., AND FARKAS, K. 2004. Single-isa heterogeneous
multi-core architectures for multithreaded workload performance. In Computer Architecture, 2004. Pro-
ceedings. 31st Annual International Symposium on.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22

KUMAR, R., TULLSEN, D. M., AND JOUPPI, N. P. 2006. Core architecture optimization for heterogeneous
chip multiprocessors. In Proceedings of the 15th international conference on Parallel architectures and
compilation techniques. PACT ’06.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. H. 1997. Mediabench: a tool for evaluating and
synthesizing multimedia and communicatons systems. In Proceedings of the 30th annual ACM/IEEE
international symposium on Microarchitecture. MICRO 30.

LI, T., BAUMBERGER, D., KOUFATY, D. A., AND HAHN, S. 2007. Efficient operating system scheduling for
performance-asymmetric multi-core architectures. In Proceedings of the 2007 ACM/IEEE conference on
Supercomputing. SC ’07.

LUO, Y., PACKIRISAMY, V., HSU, W.-C., AND ZHAI, A. 2010. Energy efficient speculative threads: dynamic
thread allocation in same-isa heterogeneous multicore systems. In Proceedings of the 19th international
conference on Parallel architectures and compilation techniques. PACT ’10.

NAJAF-ABADI, H., CHOUDHARY, N., AND ROTENBERG, E. 2009. Core-selectability in chip multiprocessors.
In Parallel Architectures and Compilation Techniques, 2009. PACT ’09. 18th International Conference
on. 113 –122.

PERICAS, M., CRISTAL, A., CAZORLA, F. J., GONZALEZ, R., JIMENEZ, D. A., AND VALERO, M. 2007. A flexi-
ble heterogeneous multi-core architecture. In Proceedings of the 16th International Conference fmdahlon
Parallel Architecture and Compilation Techniques. PACT ’07. IEEE Computer Society, Washington, DC,
USA, 13–24.

RENAU, J. 2005. Sesc: Superescalar simulator.
RODRIGUES, R., ANNAMALAI, A., KOREN, I., KUNDU, S., AND KHAN, O. 2011. Performance per watt ben-

efits of dynamic core morphing in asymmetric multicores. In Parallel Architectures and Compilation
Techniques (PACT), 2011 International Conference on. 121 –130.

SAEZ, J. C., PRIETO, M., FEDOROVA, A., AND BLAGODUROV, S. 2010. A comprehensive scheduler for asym-
metric multicore systems. In Proceedings of the 5th European conference on Computer systems. EuroSys
’10.

SALVERDA, P. AND ZILLES, C. 2008. Fundamental performance constraints in horizontal fusion of in-order
cores. In High Performance Computer Architecture, 2008. HPCA 2008. IEEE 14th International Sympo-
sium on. 252 –263.

SHELEPOV, D., SAEZ ALCAIDE, J. C., JEFFERY, S., FEDOROVA, A., PEREZ, N., HUANG, Z. F., BLAGODUROV,
S., AND KUMAR, V. 2009. Hass: a scheduler for heterogeneous multicore systems. SIGOPS Oper. Syst.
Rev. 43.

SHERWOOD, T., SAIR, S., AND CALDER, B. 2003. Phase tracking and prediction. In Proceedings of the 30th
annual international symposium on Computer architecture. ISCA ’03.

SHIVAKUMAR, P., JOUPPI, N. P., AND SHIVAKUMAR, P. 2001. Cacti 3.0: An integrated cache timing, power,
and area model. Tech. rep.

SINGH, K., BHADAURIA, M., AND MCKEE, S. A. 2009. Real time power estimation and thread scheduling
via performance counters. SIGARCH Comput. Archit. News 37, 46–55.

SPEC2000. The standard performance evaluation corporation (spec cpi2000 suite).
SRINIVASAN, S., ZHAO, L., ILLIKKAL, R., AND IYER, R. 2011. Efficient interaction between os and archi-

tecture in heterogeneous platforms. SIGOPS Oper. Syst. Rev. 45, 62–72.
VAN BERKEL, C. 2009. Multi-core for mobile phones. In Design, Automation Test in Europe Conference

Exhibition, 2009. DATE ’09. 1260 –1265.
WINTER, J. A., ALBONESI, D. H., AND SHOEMAKER, C. A. 2010. Scalable thread scheduling and global

power management for heterogeneous many-core architectures. In Proceedings of the 19th international
conference on Parallel architectures and compilation techniques. PACT ’10.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Online Appendix to:
Improving Performance per Watt of Asymmetric Multicore Processors
via Online Program Phase Classification and Adaptive Core Morphing

RANCE RODRIGUES, University of Massachusetts at Amherst
ARUNACHALAM ANNAMALAI, University of Massachusetts at Amherst
ISRAEL KOREN, University of Massachusetts at Amherst
SANDIP KUNDU, University of Massachusetts at Amherst

A. DETERMINATION OF PHASE CLASSIFICATION PARAMETERS
Khan et al. in [Khan and Kundu 2011] have observed that the value of n (the number
of committed instructions in the fixed interval) is an important factor in phase classi-
fication, as choosing too small an interval may result in too many phase changes. On
the other hand, a very large interval may not classify any phases at all.

Experiments were conducted by Khan et al. to determine the parameters of the
phase classification mechanism namely: (i) interval length (n) (ii) phase detection
threshold (∆) and (iii) stable phase interval (m). We reran these experiments with an
eye to (a) simplify the phase detection hardware and (b) improve accuracy of prediction
against a much larger and diverse set of benchmarks. Based on these experiments, we
reduced the ITV vector length from 9 to just 4, which cuts down the size of phase de-
tection hardware by nearly half. As will be seen in Appendix B, such a reduction has
little or no effect on the benefits of the phase chassification mechanism.

In order to determine the parameters for the phase classification mechanism, a num-
ber of interval lengths n were experimented with between 1K to 1M instructions. The
threshold ∆ was varied between 2.5 and 25% and the stable phase interval m was
varied between 1 to 16. In order to measure the quality of the phase classification
mechanism, we define the following two quality metrics (i) percentage of the program
that can be classified into stable phases and (ii) standard deviation of the IPC between
intervals classified under the same phase ID. Reconfiguration decisions can only be
made if the thread under consideration is in a stable phase of execution. However, if
the standard deviation of IPC between phases classified under the same phase is too
high, there may be a large disparity between the estimated IPC/Watt improvement
and reality. Hence, in general it is desirable that most of the program is classified as
stable, and at the same time the standard deviation in IPC between phases classified
under the same ID is as low as possible.

In general, we found that smaller intervals result in a high proportion of unstable
phases and higher standard deviation in IPC between intervals classified under the
same phase. Increasing the interval size results in a reduction of unstable phases and
standard deviation in IPC between phases. This happens due to the averaging effect
that takes place with an increasing interval size. However, too large an interval size
may result in the entire program being classified into single phase. The phase classi-
fication mechanism will then not be able to detect changes in program behavior and
hence adapt the architecture such that IPC/Watt is maximized. Hence the interval size
must be small enough to detect small changes in program behavior, but at the same
time, the two quality metrics described must be optimized. Thus, as the first step in
optimization space exploration, we only considered those combinations of phase clas-
sification parameters that yielded % unstable phases and % standard deviation in IPC

c© YYYY ACM 1084-4309/YYYY/01-ARTA $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

App–2

(a) %Program unclassified Vs Interval length (b) %Standard deviation in IPC Vs Interval length

8.5

9

9.5

10

10.5

11

11.5

50K 100K 150K 200K 500K 1M

Interval length

%Program unclassified

0

2

4

6

8

10

12

14

50K 100K 150K 200K 500K 1M

Interval length

%Standard deviation in IPC

Fig. 15. Sensitivity of the phase classification quality metrics to increasing interval length (n). Note that
the results for combinations of phase classification parameters with the same interval length have been
averaged.

1.11

1.12

1.13

1.14

1.15

1.16

1.17

50K 100K 150K 200K 500K 1M
Interval length

IPC/Watt improvement

Fig. 16. IPC/Watt improvement for various interval sizes. Note that the results for combinations of phase
classification parameters with the same interval length have been averaged.

to be below 12% (12% chosen as this resulted in greater than 65% reduction in the op-
timization space). The various combinations of phase classification parameters hence
shortlisted fall within the pool where the interval n varies from 50K to 1M instruc-
tions, the threshold ∆ is between 7.5 and 15% and the stable phase interval m varies
from 2 to 8. The general trends observed in % program classified as unstable and %
standard deviation in IPC for increasing interval size is shown in Figure 15. Note that
we have averaged results obtained for combinations of phase classification parameters
with the same interval size, in order to show the results in a single plot.

The ultimate purpose of phase classification is objective maximization, which in our
case is IPC/Watt. Hence, for each shortlisted combination of phase classification pa-
rameters, we ran 100 random combinations of two threaded workloads from the the
set of 38 and calculated the weighted IPC/Watt improvement over the static baseline
with oracular thread to core assignment. Once again, to show the results in a single
plot, we averaged results observed for the same interval size. The results are plotted in
Figure 16. It can be seen that IPC/Watt improvement is the best for the interval size of
150K. From the considered combinations of phase classification parameters that had
interval length as 150K, we found the largest speedup when using %threshold (∆) as
7.5% and stable phase interval (m) as 4, which is what we used for our experiments in
this paper.

B. ITV VECTOR LENGTH VS. PERFORMANCE/WATT BENEFITS
As mentioned earlier, the proposed scheme may not need the details of all the nine
types of instructions. To illustrate the effect on the quality of phase classification going

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

App–3

0

2

4

6

8

10

12

14

%Program unclassified %Standard deviation in IPC

9 entry ITV 4 entry ITV

Fig. 17. %Program unclassified and % standard deviation in IPC when using a 9 entry and 4 entry ITV. It
can be seen that quality degrades a little with respect to standard deviation in IPC, going from 9 to 4 entries
which is expected.
from a 9 to a 4 entry ITV, we measured both the quality defining factors for both and
the results are plotted in Figure 17. In this experiment, interval length n was kept at
150K instructions, %threshold ∆ was kept at 7.5% and the stable phase interval m
was kept at 4.

It can be seen that there is only a small quality degradation with respect to standard
deviation of the IPC which is expected. This reduction in ITV length made a difference
of less than 1% in the achieved IPC/watt benefits. Hence, we use a 4 entry ITV to save
hardware.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

