
IEEE TRANSACTIONS ON CIRCUIT AND SYSTEMS-II, VOL. X, NO. Y, JANUARY XXXX 1

A Study on the use of Performance Counters to
Estimate Power in Microprocessors

Rance Rodrigues, Member, IEEE, Arunachalam Annamalai, Member, IEEE, Israel Koren, Fellow, IEEE,
and Sandip Kundu, Fellow, IEEE

Abstract—We present a study on estimating the dynamic power
consumption of a processor based on performance counters.
Today’s processors feature a large number of such counters
to monitor various CPU and memory parameters such as
utilization, occupancy, bandwidth and, page, cache and branch
buffer hit rates. The use of various sets of performance counters
to estimate the power consumed by the processor has been
demonstrated in the past. Our goal is to find out whether there
exists a subset of counters that can be used to estimate, with
sufficient accuracy, the dynamic power consumption of processors
with varying microarchitecture. To this end we consider two
recent processor configurations representing two extremes of the
performance spectrum, one targeting low power, while the other
high performance. Our results indicate that only three counters
measuring (i) the number of fetched instructions, (ii) level 1 cache
hits and (iii) dispatch stalls, are sufficient to achieve adequate
precision. These counters are shown to be effective in predicting
the dynamic power consumption across processors of varying
resource sizes achieving a prediction accuracy of 95%.

Index Terms—Power estimation, performance counters, low
power core (LP), high performance core (HPerf).

I. INTRODUCTION

MONITORING power consumption of a microprocessor
is important for power management to reduce power

usage, improve battery life, and in meeting package thermal
dissipation power limits. Power monitoring is also important
in thread scheduling in Asymmetric Multicore Processors
(AMPs) [1]. Dynamic power management requires online
monitoring of the consumed power. Since direct online mea-
surement of power at high frequencies is impractical, proxies
must be used to estimate it [2], [3], [4].

Performance counters have been widely used as proxies
to estimate processor power online [2], [3], [4]. Often, the
selected counters and the expressions used for power estima-
tion (based on these counters) differ from one architecture to
another. There are two reasons for this: (i) differences in the
accessibility and availability of counters in each architecture
type [2], and (ii) a different set of counters may minimize
power estimation error for a given architecture. We are in-
terested in searching for a universal subset of performance
counters that may be used to estimate power (with low error)
on any architecture. The motivation behind this is the growing
presence of AMPs [5] that consist of cores of different types.
Having a single set of performance counters that can be used
to estimate the power on each core would (i) greatly reduce the
complexity of power estimation across architectures, (ii) guide
chip designers in making the decision as to which performance

The authors are with the Department of Electrical and Computer En-
gineering, University of Masschusetts, Amherst, MA, 01002 USA e-mail:
{rodrigues, annamalai, koren, kundu}@ecs.umass.edu

This work was partially supported by an NSF-SRC grant number 1985.001.

counters should be accessible for accurate power estimation
and (iii) help in making informed thread scheduling decisions.

For our study we consider two recent processor
configurations at the opposite ends of the spectrum; a
processor targeting low power (representative of an Intel
Atom) and a high performance processor (representative of
Intel Nehalem). Various performance counters are considered
and shortlisted based on their correlation to power. Detailed
analysis is presented for each core type on the possible choice
of counters so that low (power) estimation error is achieved
while using the smallest possible number of counters.
Expressions for estimating the power are then derived and
their sensitivity to the architecture type is analyzed. Our
results indicate that although for different architectures,
different sets of counters achieve minimum error (3%), there
exists a subset of counters that can be used to estimate power
for either architecture with adequate accuracy (average error
of 5%). This error is considerably lower than that achievable
by previously proposed schemes (9% [4] and 11.5% [3]).
We also show that for small differences in architecture type,
if the right counters are chosen, the expression obtained
for one architecture may also be used to estimate power on
the other with only a small increase in estimation error (∼3%).

II. RELATED WORK
Most of the prior work on power estimation of processors

is based on formulating expressions using performance coun-
ters [2]. This approach is easy to implement and requires
no knowledge of the power consumption of the individual
units, but the estimation accuracy greatly depends on the
choice of the counters and the representative benchmarks
used to obtain the expressions. Contreras et al. [2] employ
hardware counters to estimate processor and memory power
consumption. Instead of using a static power model for all
components, Bansal et al. in [6] proposed a framework of
heterogeneous power models. Li et al. [4] characterize the
power behavior of a commercial Operating System (OS) for a
wide range of applications using Instructions Per Cycle (IPC).
Singh et al. [3] propose a power model using counters for a
AMD Phenom processor. In [7], Bircher et al. explore the use
of counters to predict power consumed by subsystems outside
the processor. In all these schemes, the analysis is based on
a single microarchitecture. No studies have been presented
on using the same set of counters for different architectures
or using expressions derived for one architecture, to estimate
power on another. In this paper, we present such a study and
compare the proposed scheme to prior work.

III. METHODOLOGY

To explore the possibility of microarchitecture-independent
performance counters for estimating power, we consider two

IEEE TRANSACTIONS ON CIRCUIT AND SYSTEMS-II, VOL. X, NO. Y, JANUARY XXXX 2

very different cores. One core is suited for low power appli-
cations while the other for high performance applications, and
we refer to these as LP core and HPerf core, respectively.
These two cores are representative of Intel Atom and Intel
Nehalem processors, respectively. Having two cores at oppo-
site ends of the performance/power spectrum would clearly
impact the accuracy of the scheme. The core parameters used
for both core types were obtained from [8]. We used SESC
as the architectural performance simulator [9] and employed
Wattch [10] to calculate power. Since our experiments are run
in a simulation environment, Wattch is used as the “golden”
reference. We are aware that Wattch has an estimation error
of almost 10% when compared to layout-level power esti-
mation tools. Our focus here is on estimating instantaneous
power and we are mainly interested in detecting changes in
the power profile (which may trigger dynamic management
schemes). Hence, comparing the estimated power to the power
calculated by Wattch is satisfactory. For our experiments, we
have selected a total of 38 benchmarks from SPEC [11],
MiBench [12], and mediabench suites [13].

IV. PERFORMANCE COUNTERS

Performance monitoring counters reveal considerable
amount of information about power consumption. These
counters monitor different events that take place when a
processor executes instructions (e.g., branch mispredictions,
cache misses and TLB misses). We would like to confine
our search to a small set of events and associated counters
that would have the most impact on power consumption. In
this study, we do not restrict ourselves to the counters that
are available in current microprocessors. Our objective is to
explore the possible choices, and if a high correlation to power
is observed, we could make a strong proposition for including
the corresponding counter. The counters studied by us include:
• Instructions per Cycle (IPC): Power consumption of a pro-
cessor is dependent on its activity. If the IPC is high, the
processor will very likely consume more power.
• Fetch counters: IPC considers only the retired instructions,
but processors execute many instructions speculatively. These
are flushed due to branch mispredictions but consume power.
Hence, we keep track of # Fetched instructions, Branch correct
predictions (BCP) and, Branch mispredictions (BMP).
• Miss/Hit counters: Upon cache misses, the processor stalls.
Thus, the events: L1 hit, L1 miss, L2 hit, L2 miss, page hit
and, TLB miss may impact the power consumed.
• Retired instructions counters: Depending on the type of the
retired instructions (Integer (INT), Floating-point (FP), Mem-
ory, Branch), different functional units are being exercised. If
some of these are power-hungry (say FP), then, by monitoring
the type of retired instructions, we would be able to estimate
power more accurately.
• Stalls: Processors stall due to dependencies (data or resource
conflicts). The Dispatch Stalls used by Singh et al. [3] (referred
to as Dispatch Stalls∗ in Fig. 1) includes stalls due to reser-
vation stations, Reorder Buffer (ROB) and load/store queues
(LSQ). In addition, we consider stalls due to register renaming
and RAT (Register Alias Table). This counter is referred to as
Dispatch Stalls.

-0.85

-0.65

-0.45

-0.25

-0.05

0.15

0.35

0.55

0.75

0.95

C
o

r
r
e
la

ti
o

n
 t
o

 P
o

w
e
r

LP core HPerf core

Fig. 1. Correlation of various performance counters to power consumed.

A. Power Modeling

Once the candidate counters are identified, the next step
is to analyze the correlation of each one of them to power.
To this end, we have selected the following 8 representative
benchmarks (out of 38): INT intensive (intStress,bitcount),
FP intensive (fpStress,equake), load/store intensive (gcc), have
high IPC (apsi) and low IPC (mcf,ammp). These 8 benchmarks
were run on both the LP and HPerf cores for 1 billion
instructions, after skipping the initial 5 billion instructions
to avoid simulating program initialization. The values of the
counters were collected in intervals of 100K cycles along
with power consumption from Wattch. We then computed
the correlation between the normalized (with respect to the
number of elapsed cycles) counter values and the power
consumption (see Figure 1). The correlation was computed
using the standard expression:

Correl(x, y) =

∑
(x−x̄)(y−ȳ)

2
√∑

(x−x̄)2
∑

(y−ȳ)2

A high correlation is observed between the power and the
Fetched instructions, L1 hits, IPC, Dispatch Stalls and
retired memory instructions counters. An estimation scheme
involving a small number of counters is always desirable as
it will save hardware and reduce the number of counters that
have to be monitored simultaneously. In current processors
the same counters are used for monitoring multiple events
and it is not possible to simultaneously obtain the count for
two different events from the same hardware counter [2]. To
reduce the number of required counters, we investigated the
mutual correlation between the performance counters. If two
counters are highly correlated, only one of them is needed.
For example # Fetched instructions is observed to have a high
correlation with Dispatch Stalls*, L2 misses, IPC, retired INT
and BCP. To select a specific counter from an equivalence
set, a sensitivity analysis was performed by substituting
one counter with another from the set and comparing the
estimation accuracy. This process of elimination lead to a
reduced set of just 3 counters: # Fetched instructions, L1
hits and Dispatch Stalls. This choice of counters is also
intuitive. Processor power consumption depends on the
activity in the L1 instruction/data caches and the stalls due to
resource conflicts in the core. Fetched instructions indicates
the amount of work done to get instructions from the L1
cache, the number of branch predictions performed etc. If
there are misses in the L1 instruction cache, the processor
will stall and power consumption will reduce. On the other

IEEE TRANSACTIONS ON CIRCUIT AND SYSTEMS-II, VOL. X, NO. Y, JANUARY XXXX 3

TABLE I
POWER MODELING PARAMETERS. IN THE TABLE, F- FETCHED INSTRUCTIONS, L1H - L1 HITS, L2M - L2 MISSES, BCP - CORRECTLY PREDICTED

BRANCHES, IPC - INSTRUCTIONS PER CYCLE, FP - FLOATING-POINT INSTRUCTIONS, D∗ - DISPATCH STALLS∗ , D - DISPATCH STALLS.

Name Expression for LP core: Power = Expression for HPerf core: Power =
1 Ref.Exp1 8.07×IPC + 0.22 13.16×IPC + 1.57
2 Ref.Exp2 50.22×L2m + 10.68×IPC - 1.62×FP - 0.96×D∗ - 0.04 16.5×L2m + 23.3×IPC - 1.71×FP - 9.3×D∗ + 9.65
3 Exp1 8.53×F + 0.09 12.42×F + 1.49
4 Exp2 5.11×F + 4.6×L1h + 0.049 14.8×F - 2.51×L1h + 0.146
5 Exp3 5.22×F + 4.65×L1h - 0.207×D + 0.25 7.45×F + 6.45×L1h + 3.61×D - 3.19
6 Exp4 4.82×F + 5.07×L1h + 1.25×D + 38.3×L2m - 1.41 7.64×F + 6.28×L1h + 3.59×D + 17.6×L2m - 3.3
7 Exp5 6.13×F + 4.06×L1h - 0.47×D - 4.42×BCP + 0.5 9.19×F + 4.73×L1h + 3.02×D - 5.57×BCP - 2.7
8 Exp6 5.7×F + 4.5×L1h + 0.92×D + 35.3×L2m 9.53×F + 4.4×L1h + 2.98×D + 25.3×L2m

- 4.03×BCP - 1.06 - 5.81×BCP - 2.83

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

2

4

6

8

10

12

14

S
ta

n
d

a
r
d

 d
e
v

ia
ti

o
n

 f
ro

m
 t

h
e

a
v

e
r
a

g
e
 i

n
 W

a
tt

s

%
A

v
e
r
a
g

e
 e

r
ro

r

%Average error LP core
%Average error HPerf core
Standard deviation LP core
Standard deviation HPerf core

Fig. 2. Average error and standard deviation for all expressions.

hand, hits will result in increased activity and thus increased
power. Similar behavior holds true for hits and misses in the
L1 data cache. Dispatch Stalls measures the number of stalls
in the processor due to resource conflicts. This counter thus
measures the processor activity. The 3 counters selected are
thus expected to yield expressions that provide fairly accurate
power estimation. Additional counters may further increase
the accuracy and they were considered in our study (see Table
I). A multi-dimensional curve fitting and regression analysis
was performed to obtain an expression for the estimated
power for both the core types using various counters. This
was conducted using the commercial tool Datafit 9.0 [14] that
takes as input the counters and power values and outputs the
coefficients of the expression used to estimate power. Curve
fitting was done using the above mentioned 8 representative
benchmarks. The expressions obtained for our scheme using
each set of performance counters are referred to as Exp1 to
Exp6. Similar expressions (Ref.Exp1 and Ref.Exp2) were
derived for the reference schemes, proposed by Li et al. [4]
(uses only IPC) and by Singh et al. [3] (4 counters used),
respectively. The expressions obtained for our scheme and
the reference schemes are shown in Table II.

V. RESULTS AND COMPARISON
In this section we evaluate the accuracy of each of the power

expressions against the values obtained from Wattch. We first
present the average error obtained for each expression over all
the 38 benchmarks when run for 1 billion instructions. De-
tailed results including the frequency distribution of error are
then presented for selected expressions. Since the effectiveness
of the schemes used to manage power and temperature online
rely on the accuracy of the instantaneous power estimated, we
show the variance in error as a function of time. We conclude
this section by evaluating the effect of changes in architecture
type on the power estimation accuracy.
A. Average error over all workloads

The eight expressions were used to estimate the power of
both core types for all the 38 workloads considered.

1) Average for all expressions: The average error (in %)
and standard deviation for each expression is plotted in Figure
2. It can be seen that the average error for Ref.Exp1 is
larger than 10% for both core types indicating that using
IPC alone is insufficient. The error observed for Ref.Exp2 is
high for LP (13%), but not for HPerf core (only 5.2%). This
low error is due to the similarities between the HPerf core
and the platform that Singh et al. [3] have used (an AMD
Phenom core). Note that the error when using this expression
to estimate power on the LP core is even higher than that when
using the simple IPC metric (Ref.Exp1) demonstrating the
platform dependence of the chosen counters. This error may
also depend on the workloads used for training that expression.
The workloads that will be executed on a core are generally
unknown and hence, expressions based on training will always
have limitations. When using the expressions studied by us
(indicated by the Exp prefix in the figure), it can be seen
that in general, an increase in the number of variables in the
expression (indicated by the increasing postfix,1-6) results in
an increasingly smaller power estimation error for both cores.
An exception is the slight increase in error when using Exp5
to estimate power on the LP core. A probable reason is the fact
that Exp5 is a function of correctly predicted branches which
did not show high correlation to power on the LP core (see
Figure 1). It can also be observed that if up to five counters
are used (Exp6), a very low average error of 3% and 3.9% is
observed for the HPerf and LP cores, respectively. However,
going beyond Exp3, which is a function of three counters (F,
L1h and D), does not yield notable benefits (4% for HPerf
core and 6.1% for the LP core). A similar trend is observed
with respect to the standard deviation. Hence, we conclude
that Exp3 estimates power in both cores with a reasonably
good accuracy.

2) Frequency distribution of error for selected expressions:
In this subsection, we show the error frequency distribution
for Exp3 as well as Exp6 when used to estimate power for
the HPerf core. We also include Ref.Exp1 and Ref.Exp2 in
the plot, for comparison purposes. Figure 3 shows that the
error frequency distribution for Exp3, Exp6 and Ref.Exp2 is
concentrated around zero while Ref.Exp1 has a longer tail.
Comparing Exp3 and Exp6, we cannot justify the use of five
counters as opposed to three. When considering the LP core,
a similar trend was observed when evaluating Exp3 and Exp6.
However, we have observed that Ref.Exp2 has a distribution
that is worse than that of Ref.Exp1 for that core, which exhibits
its platform dependence.

3) The confidence intervals of correlation coefficient: To
test our confidence in the power estimation expressions that

IEEE TRANSACTIONS ON CIRCUIT AND SYSTEMS-II, VOL. X, NO. Y, JANUARY XXXX 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

N
o

rm
a

li
ze

d
 f

re
q

u
en

cy

% Error

Ref.Exp1

Ref.Exp2

Exp3

Exp6

Fig. 3. Normalized frequency distribution of the error of selected expressions
for the HPerf core. Points connected by dotted lines to show the trend.

0.97

0.975

0.98

0.985

0.99

0.995

1 Correlation Lower Upper

HPerf LP

Fig. 4. The correlation and upper and lower levels of the confidence interval
for a confidence level of 99%. Results are shown for selected expressions
obtained for the HPerf and LP cores.

were deirved using curve fitting, we computed the confidence
intervals of the correlation coefficient (R) [15] between the
estimated and actual power (measured using Wattch) for
selected expressions. The tool accepts as inputs the sample size
and R and calculates the corresponding confidence interval.
The results obtained for selected expressions on both the HPerf
and LP cores for a confidence level of 99% are shown in Figure
4. Apart from Ref.Exp1 on the HPerf core, the lower and upper
limits of the confidence interval for all other expressions were
almost identical. This is due to the large sample size that we
used in our experiments, e.g., 38K for the LP core and 7K for
the HPerf core.
B. Error as a function of time

In addition to the average error, the instantaneous error
of the estimated power is important as most online schemes
rely on real-time information to make their decisions. Figure

0

20

40

60

%
E

rr
o
r Ref.Exp2

0

20

40

60

%
E

rr
o
r Exp3

0

20

40

60

%
E

rr
o
r Ref.Exp1

Fig. 5. Error as a function of time for various expressions evaluated on the
LP core.

TABLE II
CONSIDERED VARIATIONS IN ARCHITECTURE OF THE HPERF CORE

Variation 1 Fetch width 2 and caches reduced by 50%
Variation 2 Fetch width 2, caches reduced by 50% and

ROB, RAT and ISQ reduced by 25%
Variation 3 Fetch width 2, caches reduced by 50% and

ROB, RAT and ISQ reduced by 50%

5 shows the error in the estimated power of the LP core
(vs. the power obtained from Wattch) as a function of time
for Ref.Exp1, Ref.Exp2 and Exp3. It can be seen that the
error does not show as much deviation from zero for Exp3
as that exhibited by the two reference expressions. Hence,
we claim that Exp3 will provide better results when used
to make decisions that depend on estimating instantaneous
power. We have also observed that Ref.Exp2 shows a better
time dependent behavior when estimating power for the HPerf
core, compared to the Ref.Exp1, but do not show this figure
due to space constraints.
C. Evaluating the effect of changes in architecture on the
power estimation error

We also conducted experiments to study the effect of
changes in architecture type on the power estimation error
when the expression derived for one architecture is used to
estimate power on the other. Such an estimation may be useful
in order to predict power in dynamically resizable architectures
[16] or AMPs [5]. Our first step was to try the expression
obtained for the LP core, to estimate the power on the HPerf
core and vice-versa. We found this error to be very large.
We then explored the impact on the error if there is only a
limited difference between the two architectures. To that end,
we considered three variations in the HPerf architecture, each
increasingly different from the original architecture (Table I).
Table III details the changes in architectural configuration of
each variation considered. All the 38 workloads were run for
1 billion instructions on each variation of the HPerf core. The
resulting errors between estimated and calculated power when
using the expressions that were derived for the original HPerf
core are shown in Figure 6. In general, using an expression
derived on one architecture to measure power on another is
expected to result in larger error. Still, some expressions are
more sensitive to the change in architecture than others with
Ref.Exp2 showing the highest sensitivity. Even for Variation
1, an error increase of 300% was observed. This increase
was far larger than that observed for expressions using fewer
counters for power estimation (Ref.Exp1, Exp1, Exp2, Exp3).
The main reason for this is that not all the counters used
in Ref.Exp2 were found to be architecturally independent in
our analysis. From the various expressions proposed in this
paper (Exp1 - Exp6), the error increases with an increasing
variation in architecture, but it can be seen that for small to
medium changes (Variation 1 and Variation 2), error increases
of 3% and 8% were observed, respectively. This shows the
relative architectural independence of the chosen performance
counters. However, varying architecture even more (Variation
3) results in significant error (>20%) for all the proposed
expressions.

In summary, these experiments show that for a small to
medium variation in architecture, the expressions derived for
one architecture may be directly used to estimate power on the

IEEE TRANSACTIONS ON CIRCUIT AND SYSTEMS-II, VOL. X, NO. Y, JANUARY XXXX 5

0

10

20

30

40

50

60

70
%

 A
v

er
a

g
e

er
ro

r
in

 p
o

w
er

 e
st

im
a

ti
o

n
Original Architecture

Variation 1

Variation 2

Variation 3

Fig. 6. Average error between estimated and calculated power (using Wattch)
when the expression derived for the HPerf core is used to estimate power on
a variation of that architecture. Variation 1, 2 and 3 are defined in Table III.

other, if the right counters are chosen. The power expression
obtained for one architecture can thus be used as a first order
estimate for the power on a small variation of that architecture.

D. Error as a function of window size

Choosing too small an interval may result in larger power
estimation error as noisy behavior is expected in smaller
intervals. Large intervals may lead to more accurate power
estimation, but this will result in missing out on certain op-
portunities for energy or performance/power gains that may be
made at smaller intervals [1]. Hence, it is important to arrive at
a compromise between estimation error and interval length. It
would be useful to also find an interval length that may be used
across architectures. To this end, experiments were conducted
on both HPerf and LP cores to determine a suitable interval
length. Only Exp3 was considered in these experiments as
it was observed that going beyond three counters does not
yield notable benefits (see Figure 2). In these experiments,
the expressions were recalculated for on each core type and
every interval length. Each workload was then run on the two
core types and the counters were sampled at intervals varying
from 100K to 10M cycles. The average error obtained for each
core type using various interval lengths is shown in Figure
7. It can be seen that increasing the interval length results in
increasingly smaller error in power estimation for both the core
types. However, for the HPerf core, going beyond a 100K-
cycle interval does not result in appreciably smaller errors.
For the LP core, this trend is observed at around 200K cycles
interval length. We chose 100K cycle interval length since it
seems to work reasonably well for both architectures. Even
though the estimation error reduces when going from 100K
to 200K cycles for the LP core, the reduction in error is only
around 0.6%.

VI. CONCLUSIONS
We have presented a systematic study on the use of per-

formance counters to estimate power online. We found a
subset of counters (# Fetched instructions, L1 hit and Dispatch
Stalls) that are suitable for estimating power across multiple
architecture types within an error of 5%. This was illustrated
using an OOO high performance (HPerf) and an in-order
low power (LP) core. At 5% average error, the proposed
estimator improves upon prior estimators with error of 9% [3]
and 11.5% [4]. We have shown that for small to medium
variations in architecture, the same power estimator may be

3

3.5

4

4.5

5

5.5

6

6.5

7

50K 100K 200K 500K 1M 10M

%
A

v
er

a
g

e
er

ro
r

HPerf

LP

Fig. 7. Error as a function of interval length for the HPerf and LP cores.

used across architectures at a small loss of accuracy (3%).
Such an estimator is useful for dynamic resource sizing of
processors.

REFERENCES

[1] R. Rodrigues et al., “Improving performance per watt of asymmetric
multi-core processors via online program phase classification and adap-
tive core morphing,” ACM Trans. Des. Autom. Electron. Syst., Jan. 2013.

[2] G. Contreras and M. Martonosi, “Power prediction for intel xscale reg;
processors using performance monitoring unit events,” in Low Power
Electronics and Design, 2005. ISLPED ’05., 2005.

[3] K. Singh et al., “Real time power estimation and thread scheduling via
performance counters,” SIGARCH Comput. Archit. News, vol. 37, no. 2,
Jul. 2009.

[4] T. Li and L. K. John, “Run-time modeling and estimation of operating
system power consumption,” in Proc of the 2003 ACM SIGMETRICS
international conference on Measurement and modeling of computer
systems, ser. SIGMETRICS ’03, 2003.

[5] P. Greenhalgh, “Big.little processing with arm cortex-a15 and cortex-a7,”
sep. 2011.

[6] N. Bansal et al., “Power monitors: a framework for system-level power
estimation using heterogeneous power models,” in VLSI Design, 2005.
18th International Conference on, 2005.

[7] W. L. Bircher and L. K. John, “Complete system power estimation using
processor performance events,” IEEE Trans. Comput., Apr. 2012.

[8] A. Annamalai et al., “An opportunistic prediction-based thread schedul-
ing to maximize throughput/watt in amps,” in Parallel Architectures and
Compilation Techniques (PACT), 2013.

[9] J. Renau, “Sesc: Superescalar simulator,” 2005.
[10] D. Brooks et al., “Wattch: a framework for architectural-level power

analysis and optimizations,” in Proc of the 27th annual international
symposium on Computer architecture, ser. ISCA ’00, 2000.

[11] SPEC2000, “The standard performance evaluation corporation (spec
cpi2000 suite).”

[12] M. Guthaus et al., “Mibench: A free, commercially representative em-
bedded benchmark suite,” in Workload Characterization, 2001. WWC-4.
2001 IEEE International Workshop on, dec. 2001.

[13] C. Lee et al., “Mediabench: a tool for evaluating and synthesizing
multimedia and communicatons systems,” in Proc of the 30th annual
ACM/IEEE international symposium on Microarchitecture, 1997.

[14] “Datafit 9.0 curve fitting software.” [Online]. Available:
http://www.oakdaleengr.com/

[15] Z. Lu, “Computation of correlation coefficient and
its confidence interval in sas.” [Online]. Available:
http://www2.sas.com/proceedings/sugi31/170-31.pdf

[16] O. Khan and S. Kundu, “A model to exploit power-performance effi-
ciency in superscalar processors via structure resizing,” in Proc of the
20th symposium on Great lakes symposium on VLSI, 2010.

