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Abstract—The emergence of asymmetric multicore processors
(AMPs) has elevated the problem of thread scheduling in such
systems. The computing needs of a thread often vary during
its execution (phases) and hence, reassigning threads to cores
(thread swapping) upon detection of such a change, can sig-
nificantly improve the AMP’s power efficiency. Even though
identifying a change in the resource requirements of a workload
is straightforward, determining the thread reassignment is a
challenge. Traditional online learning schemes rely on sampling
to determine the best thread to core in AMPs. However, as
the number of cores in the multicore increases, the sampling
overhead may be too large. In this paper, we propose a novel
technique to dynamically assess the current thread to core assign-
ment and determine whether swapping the threads between the
cores will be beneficial and achieve a higher performance/Watt.
This decision is based on estimating the expected performance
and power of the current program phase on other cores. This
estimation is done using the values of selected performance
counters in the host core. By estimating the expected performance
and power on each core type, informed thread scheduling
decisions can be made while avoiding the overhead associated
with sampling. We illustrate our approach using an 8-core high-
performance/low-power AMP and show the performance/Watt
benefits of the proposed dynamic thread scheduling technique.
We compare our proposed scheme against previously published
schemes based on online learning and two schemes based on the
use of an oracle, one static and the other dynamic. Our results
show that significant performance/Watt gains can be achieved
through informed thread scheduling decisions in AMPs.

I. INTRODUCTION

Power density concerns in processor ICs led to the multicore

era [1] where a single and very powerful processor has been

replaced by several smaller cores with more modest computa-

tional capabilities. As long as the cores are identical, incoming

program threads can be assigned to cores arbitrarily by the

Operating System (OS). However, for a given power budget,

Symmetric Multicore Processors (SMPs) have been shown to

be outperformed by Asymmetric Multicore Processors (AMPs)

that can cater to the needs of diverse workloads [2]–[4].

This however, is highly dependent on the way threads are

assigned to the individual asymmetric cores and a non-optimal

assignment may nullify the expected benefits of an AMP.

There have been a number of proposed thread scheduling

schemes for AMPs [5]–[7]. Some of them rely on offline

workload profiling [7], [8], while others rely on online learning

via program sampling [9], [10]. Offline profiling is not a

practical approach in general, since it relies on the availability

of prior knowledge regarding all the applications that may

execute on the AMP. An alternative to this approach is to learn

program performance online via sampling. Here, whenever a

new program phase is detected, the system is halted and the

newly detected phase is sampled on each core type in the

system. The information obtained is then used to reassess the

thread to core assignment in the multicore. Thus, unlike offline

profiling schemes, this approach does not require prior infor-

mation about the workloads that will be run on the multicore.

On the other hand, the number of samplings required increases

with the number of core types in the AMP. Hence, this scheme

will not scale well with the number of cores. Therefore, there is

a need for a technique that will both scale with the number of

cores in the AMP and will not rely on an oracular knowledge

of the workloads.

In this paper, we propose a novel technique to schedule

threads in an AMP such that performance/Watt is maximized.

The key idea is the online estimation of both the performance

and power of an application on all the other cores in the AMP,

while it is being executed on the current core. This is made

possible by using the performance counters of the current

core. A relationship is established between the values of these

counters in the core executing the application and the expected

performance and power of this application if it would run on

the other cores in the AMP. By estimating the performance

and power on other core types, informed thread scheduling

decisions can be made without any of the drawbacks of offline

profiling and online learning. To illustrate our approach, we

consider an 8-core AMP comprising of two high performance

cores (HPerf core) with similar characteristics to an Intel

Nehalem or AMD K10 processor, and six low power cores (LP

core) similar to an Intel Atom or AMD Bobcat. This choice is

in line with recent studies [5], [6], [9]. We present an extensive

analysis to determine which hardware performance counters

(HPCs) should be used to predict both performance and power.

We then formulate expressions using the selected counters

for estimating the performance and power on other cores

in the AMP. These expressions are used to make real-time

thread scheduling decisions in the AMP when dual threaded

workloads are run. The proposed scheme is compared against

the static baseline AMP (the same dual core type AMP with

no thread swapping capability) with oracular knowledge of

the best thread to core mapping and a previously proposed

online learning scheme [9]. We also compare the proposed

scheme to a greedy oracle scheduler. Our results indicate that

the proposed scheme achieves significant performance/Watt

improvements over all the baselines. In particular, on an
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average, 2X gains are observed when comparing the proposed

scheme to that based on online learning.

II. RELATED WORK

With AMPs becoming more common, a number of thread

scheduling techniques have been recently proposed. We briefly

overview the prior schemes which can be broadly classified

into those that employ offline profiling, online learning via

sampling and online estimation.

There has been a number of solutions based on offline

profiling to determine the best thread to core scheduling in

AMPs. Khan et al. [11] propose regression analysis along

with phase classification to identify thread to core affinity.

Shelepov et al. [7] profile applications to determine what they

call architectural signature of the application. This signature

(characterized by L2 cache misses) is unique for each core

type and is used to determine the thread scheduling online. In

[12], Chen et al. use cores in an AMP that differ with respect

to issue width, branch predictor size and L1 caches. They use

multi-dimensional curve fitting to determine the optimal thread

to core assignment offline. All these approaches rely on offline

profiling and are not practical, since they require knowledge

of the workloads that will be run on the multicore.

Online learning based schemes offer a more practical so-

lution to the AMP scheduling problem. Kumar et al. [10]

proposed an AMP consisting of cores of various sizes, all

running the same ISA. Whenever a new program is run or

a new phase [13] is detected, sampling is initiated and the

core which provides the best power efficiency is chosen.

A similar approach was proposed by Becchi et al. [9] for

performance maximization of an AMP consisting of two types

of cores. Optimal thread scheduling was determined by forcing

a thread swap between cores upon detection of phase change.

Winter et al. [4] study power management techniques in AMPs

via thread scheduling. They consider several algorithms, all

based on program sampling. Even though these schemes are

a practical alternative to the offline profiling based schemes,

it is clear that with an increase in the number of cores in

the system, the number of samples for each phase detected

will be large and hence these schemes will experience a high

overhead.

Online estimation based schemes are an improvement over

the online learning schemes since they avoid sampling and the

resulting overhead. Here, based on the current characteristics

of a workload being executed, its performance on other core

types of the system is estimated. However, the benefits of the

scheme will be determined by the accuracy of the estimation.

Saez et al. [6] propose a comprehensive scheduler for AMPs

consisting of small and big cores using last level miss rates

of an application to estimate its performance on each core

type. It is, however, unclear whether using L2 misses alone

is sufficient to make thread to core assignment decisions

such that performance/Watt is optimized. The work closest

to ours is that proposed by Srinivasan et al. [14], [15] and

Koufaty et al. [5]. In [14], Srinivasan et al. estimate the

performance of the thread currently running on one core

type, on another core, using a closed form expression. These

expressions were developed for specific cores and a general

approach was not provided. Koufaty et al. [5] determine thread

to core mapping in an AMP consisting of big and small cores,

using program to core bias which is estimated online using

the number of external stalls (proportional to cache requests

going to L2 and main memory) and internal stalls (front end

not delivering instructions to the back end). In both of these

works, the objective is performance and not performance/Watt.

Extending the above techniques to include power estimation

is not straightforward. Rodrigues et al. [8] considered thread

scheduling in an AMP by using predetermined rules but the

cores that they consider are very specific and the extension to

other types of cores is unclear.

Of the currently available scheduling schemes, the

estimation-based ones offer the most practical and scalable

solution, but they mostly focus on performance and not per-

formance/Watt. In this paper, we propose an estimation based

scheme for performance/Watt. The objective is to estimate not

only performance but also the power of other cores in the

AMP using counters in the host core.

III. METHODOLOGY

To evaluate our approach (detailed in the next two sections),

we selected an 8-core AMP consisting of two core types at

the two ends of the performance/power spectrum - a high-

performance core (HPerf) and a low-power core (LP). This

is one of the worst cases for a scheme for estimating the

performance and power of the second core based on the

activities observed in the first core. In the considered 8-core

AMP, two cores are HPerf cores and 6 are LP cores. The list of

core parameters and execution latencies used for both the core

types are shown in Tables 1 and 2, respectively. Most of the

core parameters and latencies were taken from [16]. It can be

seen from Table 1 that the two cores are significantly different.

We used SESC as our architectural performance simulator [17]

and employed CACTI [18] and Wattch [19] to calculate power

with modifications to account for static power. We are aware

that Wattch has an error percentage of within 10% when

compared to layout-level power estimation tools. Our focus

is on estimating instantaneous power and we are mainly in-

terested in detecting changes in the power profile (which may

trigger dynamic thread re-scheduling). Hence, comparison of

the estimated power (by using different counters) to the power

calculated by Wattch is satisfactory. For our experiments, we

have selected 38 benchmarks: 16 benchmarks from the SPEC

suite [20], 14 from the embedded benchmarks in the MiBench

suite [21], one benchmark from the Mediabench suite [22],

and 7 additional synthetic benchmarks. These 38 benchmarks

encompass most typical workloads, for example, scientific

applications, media encoding and decoding and security appli-

cations. The instruction distribution of each of the considered

workload is plotted in Figure 1.

IV. PERFORMANCE/WATT ANALYSIS OF

THE TWO CORE TYPES

The two core types that comprise our AMP have very dif-

ferent characteristics with one designed for high performance,
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Fig. 1. Instruction distribution and IPC/Watt for the 38 benchmarks considered when run on each core type for 1 billion instructions.

TABLE I
CHOSEN CORE PARAMETERS

Param LP HPerf Param LP HPerf

Issue 2 6 INTREG 64 96
FPREG 64 80 INTISQ NA 36
FPISQ NA 24 LS units 1 3
LSQ NA 32 ROB NA 128

L1(I/D) 32K 32K L2 512K 2M
Freq (GHz) 2.4 2.4 Type In-order OOO

TABLE II
EXECUTION UNIT SPECIFICATIONS FOR THE CORES. (P - PIPELINED, NP -

NOT PIPELINED, PP - PARTIALLY PIPELINED)

Core FP DIV FP MUL FP ALU
LP 1 unit, 60 cyc, NP 1 unit, 4 cyc, PP 1 unit, 5 cyc, P

HPerf 1 unit, 21 cyc, P 1 unit, 5 cyc, P 2 units, 3 cyc, P

INT DIV INT MUL INT ALU
LP 1 unit, 207 cyc, NP 1 unit, 10 cyc, P 2 unit, 1 cyc, P

HPerf 1 unit, 23 cyc, P 1 unit, 8 cyc, P 8 units, 1 cyc, P

while the other for low power. To quantify the difference in

the capabilities of the cores, we ran all the 38 benchmarks

on both the core types (LP and HPerf cores) for 1 billion

instructions, after skipping the initial 5 billion that include

the program initialization. The performance/Watt results are

shown in Figure 1. It can be seen that for some workloads, the

HPerf core performs better than the LP core (ammp, CRC32,
pi) while it is vice-versa for certain other workloads (equake,
bitcount, sha). The performance per watt is a function of

the resource utilization. Efficient resource utilization leads to

better figures. In general, for benchmarks which are branch

or memory intensive, HPerf core resource utilization is not

optimal and hence the performance per watt is lower than that

of the LP core. Clearly, for eight threaded workloads, a correct

thread to core scheduling will yield significant benefits, while

an incorrect one, will have a much lower performance/Watt.

Figure 1 depicts the average behavior over 1 billion instruc-

tions and as such only indicates the achieved IPC/Watt due

to a fixed thread to core assignment. Many programs exhibit

phases with varying computational demands and each core in

the AMP may be beneficial for different phases during the

program execution. A dynamic thread to core assignment will

be able to adapt to the time-dependent program behavior.

V. DYNAMIC THREAD SCHEDULING

Determining the affinity of a program phase to a core in the

AMP is crucial for establishing a dynamic thread scheduling

scheme. Since prior knowledge about the computational needs

of the different workload phases is generally unavailable, there

is a need to determine them online. Moreover, the dynamic

thread scheduling scheme should consider reassignment of

a thread only when that thread has moved to a new and

stable phase otherwise the scheme’s overhead will become

prohibitive. Even before determining the affinity of a phase

to a core, there is a need to detect and successfully classify

stable phases of execution in a program. Only stable phases

should be considered since short-lived (unstable) phases do

not justify thread reassignment. We present the scheme that

we adopt for phase classification next. This is followed by

the online mechanism used to determine the program phase to

core affinity.

A. Phase classification mechanism
A number of schemes have been proposed for phase clas-

sification, e.g., [23], [24]. We adopt here (after some modifi-

cations) the Instruction Type Vector (ITV) scheme presented

by Khan et al. [11] due to its simplicity, but other phase

classification schemes can also be used. ITVs are created

using hardware counters that count the number of committed

instructions of certain types (9 types were used in [11])

during a specified interval. This interval corresponds to a fixed

number n of committed instructions with the value of n to be

determined. Whenever an instruction is retired, the appropriate

instruction counter is incremented. After n instructions have

committed, the resulting 9-element vector is captured and

compared to the ITV of the previously identified phase. If the

difference between the two (measured as sum of differences

between the instruction types of the currently executing and

previously encountered phase) is greater than a threshold, Δ
(another parameter that needs to be determined), then this

is potentially a new phase. If the difference is less than the

threshold, then the same phase has repeated. A newly detected

phase is classified as stable when at least m consecutive

intervals (of n committed instructions each) had a difference of

less than Δ. The number m is another parameter of the scheme

that needs to be determined. Khan uses a phase table to store
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all previously detected stable phases. Since the scheme that we

propose does not need to store prior phase information, we do

not include a phase table in our implementation. Moreover,

since we consider only LP and HPerf cores, we reduced

the ITV from 9 to 4 components, corresponding to integer,

floating-point, memory and branch instructions. Additional

details of the algorithm to detect and classify phases can

be found in [24]. Khan determined the parameters of the

phase classification, namely n, m, and Δ by experimentation.

Since the benchmarks that we consider are different from

those in [24], and the components of the ITV are different,

we have redone these experiments to determine the three

phase classification parameters. After extensive experiments,

we have set the phase classification parameters to (i) interval

length n = 100K instructions, (ii) threshold Δ = 7.5% and,

(iii) m = 4, based on the phase classification quality metrics

defined in [24].

B. Determining program affinity to a core online
Once a phase classification mechanism is in place, we need

to identify the affinity of the current phase to the different

cores in the AMP. The objective here is to non-invasively

predict program performance on other core types without the

drawbacks of online learning based on sampling. Hardware

performance counters (HPCs) reveal information about the

characteristics of the thread currently being executed. We

therefore, decided to develop a scheme to predict power and

performance of an executing application on the host core, as

well as other cores in the AMP using HPCs. Our scheme is

described in detail in the next section.

C. Using performance counters to determine thread to core
affinity

Hardware performance monitoring counters (HPCs) reveal

considerable amount of information about the performance

and power consumption of a thread [25], [26]. Most prior

research dealing with such estimations use HPCs to predict

these characteristics on the same core and not on another core

in the AMP. To make thread to core assignment decisions,

there is a need to estimate the performance and power of

the thread on the host core as well as on the potential core

where it may be executed. Performance on the host core can

be directly collected from the IPC counter, but there is a need

to estimate the power on the host core, as well as the expected

performance and power of the thread if it would be executed

on the other cores. Thus, we need to identify a set of counters

that will enable prediction of power on the host core as well

as performance and power on the other cores. Our objective

is to shortlist potential counters with the most impact.

The performance counters studied by us can be grouped as

follows:

• Instructions per Cycle (IPC): Power consumption of

the processor is dependent on its activity and the IPC counter

provides a good measure of program activity.

• Fetch counters: The IPC metric considers only the retired

instructions, but in a processor, many instructions are executed

speculatively and then flushed from the pipeline. To account

for these, we considered # Fetched instructions, Branch correct
predictions (BCP) and, Branch mispredictions (BMP).

• Miss/Hit counters: Cache hits and misses play a signifi-

cant role in performance or power consumption of a core. In

this regard, the following event counters: L1 hit, L1 miss, L2
hit, L2 miss, page hit and, TLB miss are considered.

• Retired instructions counters: Performance/power con-

sumption can vary significantly depending on the type of the

retired instructions (INT, FP, Memory, Branch). Hence we

considered retired instructions counters.

• Stalls: The activity of the processor will be low when

it experiences dependencies (data or resource conflicts) fre-

quently. We consider stalls due to reservation stations, re-order

buffer (ROB), load/store queues (LSQ), register renaming

and RAT (Register Alias Table). We refer to this counter as

Dispatch Stalls.

1) Performance / Power Modeling: To shortlist the most

influential performance counters, we used correlation between

the counters and the metric that is to be estimated. Estimating

power on the same core is not difficult and has been done in

prior publications using 3 to 4 counters [25], [26]. In contrast,

estimation of the metrics on the other core is not straightfor-

ward. Our objective is to use the least number of counters

to predict all the required metrics. The reason behind this is

not just to save hardware, but also to reduce the number of

counters that have to be monitored simultaneously. In current

processors, the same counters are used for monitoring multiple

events and it is not possible to simultaneously obtain the

count for two different events from the same hardware counter

[25]. We searched for counters that showed high correlation

to power and performance of the other core. Since we are

interested in swapping threads (between the LP and HPerf

cores) at runtime, we need to estimate the performance/Watt of

a thread currently running on LP core, on HPerf core and vice-

versa. To this end, we need to analyze, offline, the correlation

between the performance counters of the LP (HPerf) core to

the power and performance of the thread if it would execute

on the HPerf (LP) core. To accomplish this, we identified

eight representative benchmarks from the set of 38, such that

they included: INT intensive (intStress,bitcount), FP intensive

(fpStress,equake), load/store intensive (gcc), have high IPC

(apsi) and low IPC (mcf,ammp). The 8 benchmarks were run

on both the cores (LP and HPerf) for 1 billion instructions and

the value of the above mentioned performance counters for

both the cores were sampled periodically after the commit of

every 100K instructions (equal to interval length n described

earlier). All the counter values obtained were normalized with

respect to the number of cycles elapsed during that period. We

then computed the correlation between the normalized counter

values of one core and the observed power and performance

on the other core, and the results are plotted in Figures 2 and 3.

As can be seen from the figures, the observed correlation to

both IPC and power is not very high as the counters used

to estimate the performance and power are in the other core.

From the initial set of 15 counters, we shortlisted L2 miss, TLB
miss, # Fetched instructions, IPC, Power, retired INT, L1 hit
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Fig. 2. Correlation of various performance counters in one core to the
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Fig. 3. Correlation of various performance counters in one core to the power
consumed by the other core.

and Dispatch Stalls as they showed reasonable correlation to

both IPC and power on the other core. To reduce the number

of performance counters that are involved in the estimated IPC

and power expressions for the other core, we investigated the

correlation of each of the above selected parameters to the rest.

The one which correlates well with many other parameters

could be used as a proxy for the rest. We found the # Fetched
instructions to have a high correlation to power, while IPC
of the current core correlated well with retired INT and L1
hit counters. Therefore, based on this observation, we chose

L2 miss, TLB miss, # Fetched instructions, IPC and Dispatch
Stalls as the main performance counters to be used in our

estimation scheme. Having the same set of counters for both

the metrics (performance and power on the other core) and

for both the core types (LP and HPerf) greatly simplifies the

estimation mechanism.

We then used the traces obtained from the 8 selected

benchmarks to express the observed performance and power

on the other core as a function of the chosen performance

counters in the current core. A multi-dimensional curve fitting

and regression analysis was performed to obtain expressions

for the estimated performance and power for both the core

types and these are shown in Table III. A similar procedure

was followed to estimate power on the host core using its own

counters. We observed that the same set of counters, selected

for estimating metrics on the other core, shows a reasonably

high correlation to the observed power on the host core too

(figure not included due to space constraints). The expression

TABLE III
POWER AND PERFORMANCE ESTIMATION OF THE OTHER CORE USING THE

PERFORMANCE COUNTERS OF THE CURRENT CORE. L2m - L2 miss, TLBm
- TLB miss, S - Dispatch Stalls, F - # Fetched instructions

Estimating Parameter Expression

LP IPC exp(-41.8 × L2m - 30.2 × TLBm -
3.4 × S + 6.5 × IPC - 2.9 × F + 1.44)

HPerf IPC exp(-389.8 × L2m - 19.6 × TLBm +
3.9 × S + 20.3 × IPC - 22 × F - 3.6)

LP Power exp(-1.5 × L2m - 2.2 × TLBm -
0.6 × S + 1.2 × IPC - 0.5 × F + 2.9)

HPerf Power exp(-126.5 × L2m - 4.7 × TLBm +
3.9 × S + 4.2 × IPC - 6.2 × F - 0.4)

TABLE IV
ONLINE POWER ESTIMATION FOR THE HOST CORE USING ITS OWN

PERFORMANCE COUNTERS. L2m - L2 miss, TLBm - TLB miss, S - Dispatch
Stalls, F - # Fetched instructions

Estimating Parameter Expression

LP Power exp(1.3 × L2m + 1.5 × TLBm +
0.5 × S + 0.5 × IPC + 0.03 × F + 1.7)

HPerf Power exp(-0.48 × L2m + 4.6 × TLBm -
0.35 × S + 1.3 × IPC - 0.5 × F + 3.3)

obtained for the online power estimation for the considered

dual-core type AMP is shown in Table IV.

The accuracy of the expressions obtained was then measured

for all 38 workloads. Counter values from the HPerf core were

used to estimate its own power as well as the performance

and power of the LP core and vice versa. We observed that

on an average, the derived expressions estimated power on the

host core with a 6.5% error, and IPC and power on the other

core with an error of 32% and 9%, respectively. The resulting

IPC/Watt average estimation error for the host core was 8%,

and was 34.2% for the other core. Even though the errors

in estimating metrics for the other core are quite high, they

proved to be adequate for our purpose of making online thread

scheduling decisions. A high estimation error is not important

if the right thread to core assignment is made most of the time.

We found in our experiments that the proposed estimation

based scheme made the right thread scheduling decision 92%

of the time, which is acceptable. As will be seen in Section

VI, the 8% erroneous decisions do not have a significant effect

on the benefits of the proposed scheme.

D. The complete thread scheduling framework
Having a phase classification mechanism and a scheme to

approximately estimate the power and performance of the

thread on other cores, we still need a way to govern these two

autonomous mechanisms and decide on thread reassignments.

The task of managing the phase classification mechanism and

the collection of data from the selected performance counters

is assumed to be handled by a software layer called the

Microvisor. A similar layer has been used by Khan [24] and

was previously developed by IBM [27]. Additional details on

this software layer may be found in those papers. We now

describe the working of the entire system, as managed by

Microvisor.

The flowchart of the procedure followed in the proposed

scheme is shown in Figure 4. Eight workloads are run on

the dual-core type AMP consisting of six LP and two HPerf
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Fig. 4. The thread scheduling flowchart.

cores. Whenever a phase change is detected for any one of the

threads by our phase detection mechanism, the power on the

host core as well as the power and performance of the thread if

executed on the other core are estimated by Microvisor, based

on the chosen performance counters (L2 miss, TLB miss, IPC
and # Fetched instructions) of the host core. The performance

and power of the other core type running other threads are

also collected. The performance/Watt is then calculated for

the current and the alternate thread to core assignment. Based

on this, the current thread to core assignment may be changed.

The number of potential thread to core assignments to assess

increases with the number of simultaneous phase changes for

the various workloads. For a single phase change, when the

thread on the LP core changes phase, there are two potential

threads that it may swap with, i.e. the two threads on the

HPerf cores. Similarly, for a phase change in a thread being

executed on the HPerf core, there are six threads that it may

swap with. Hence, for single phase changes, there are up

to six combinations that have to be assessed. We found in

our experiments that 92% of the time only a single phase

change is detected and the maximum number of simultaneous

phase changes detected was 3 (0.2% of the time). Hence,

the number of combinations to assess was far lower than the

worst case of 8 simultaneous phase changes. Using the esti-

mated performance/Watt of the various threads in an alternate

configuration, the weighted performance/Watt improvement

(geometric or harmonic speedups may also be used) projected

for the new thread to core assignment over the current one

is calculated. If the weighted speedup is over 3% (called

decision threshold; detailed study was conducted to set this

value), the threads are swapped between the two cores. If not,

the current thread to core assignment is maintained. Swapping

threads between cores incurs an overhead due to context switch

and cold cache misses. Rodrigues et al. [8] have estimated

this overhead to be 400 cycles. We assume, conservatively,

a swapping overhead of 1K cycles. We observed the system

to be not very sensitive to this overhead. Another source

of overhead is the invocation of the Microvisor. This was

observed to be invoked, on an average, 700 times per run,

but this overhead is relatively small as it involves collection

of counter statistics and evaluation of the expression. This can

be assumed to be at most a few hundred cycles and we found

this to have negligible effect on the results. By using phase

classification, the proposed scheme needs to make decisions

only when stable phases are detected, which is not very often.

Hence, the overheads associated with decision making are kept

at bay. The proposed scheme is evaluated next and compared

against various baselines.

VI. EVALUATION

In this section, we report the results of our evaluation

experiments. Multi-programmed workloads were run on the

AMP until one of the threads executed 1 billion instructions.

The phase classification parameters were set to: Interval n =

100K, Δ = 7.5% and stable phase interval m = 4.

We now describe the baselines that will be used for com-

parison. The performance/Watt improvement achieved by the

proposed scheme over each of the baselines is then presented.

A. Baseline configurations considered
We compare our proposed scheme to the following baseline

configurations:

• Static: Here the thread to core assignment is static, i.e.,

it never changes. This fixed assignment is based on oracular

knowledge of the best assignment over the entire run of the

workloads and as such is not practical.

• Online learning-based (O Learning) swapping scheme
with sampling overheads: Threads are dynamically swapped

between the cores in this scheme. Detection of phases (based

on the ITV scheme) is used as a trigger to initiate a possible

swap and the learning is done by sampling the newly detected

phase on the other core type of the AMP. This baseline

constitutes a modified version of the scheme proposed by

Becchi et al [9]. Sampling incurs an overhead and it is assumed

to be 1M cycles [9]. Thread swapping overheads are also

considered here.

• Greedy oracle (G Oracle): This baseline is capable of

swapping threads between the cores. The trigger is once again

phase detection, but the thread to core decisions are made

based on oracular knowledge at that instant in time, regarding

the best current reassignment of threads to cores. No learning

overheads are considered for this baseline but thread swapping

overheads are taken into account.

B. Performance per watt analysis over the baselines
We considered three speedup metrics to compare our

proposed scheme to the baselines. We first define the

following terms:

S0 = (IPC/Wattthread0)proposed/(IPC/Wattthread0)baseline
S1 = (IPC/Wattthread1)proposed/(IPC/Wattthread1)baseline
The various speedups considered are:

1) Weighted: Speedupweighted = (S0 + S1)/2
2) Geometric: Speedupgeometric =

2
√
S0 × S1

3) Harmonic: Speedupharmonic = 2/(1/S0 + 1/S1)

From the set of 38 workloads, we randomly selected 100

combinations of eight threaded workloads and had them

executed using the proposed as well as each of the baseline

schemes. We have plotted a subset (30 of the 100) of those

results for various baselines in Figures 5, 6 and 7 for the

Static, O Learning and G Oracle baselines. The shown 30

combinations include the 10 worst results (out of the 100),

the 10 best results and 10 that showed average benefits with
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Fig. 5. IPC/Watt improvement of the proposed scheme against the Static
baseline.
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Fig. 6. IPC/Watt improvement of the proposed scheme against the
O Learning baseline.

respect to the weighted IPC/Watt metric. It is clear that in

general, considerable IPC/Watt improvement is achieved over

the Static baseline and in particular, the O Learning baseline,

where speedup of up to 3.5X is observed. Amongst the worst

cases, it can be seen that an IPC/Watt degradation is observed

when comparing against the static baseline (0.99). However,

when comparing to the O Learning, even the worst case

speedup is 1.14 which shows that the overhead of sampling

negates the benefits of the learning-based approach. When

compared to the G Oracle baseline, barring a few rare cases,

there are no notable gains, as expected. We have also plotted
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Fig. 7. IPC/Watt improvement of the proposed scheme against the G Oracle
baseline.
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Fig. 8. Speedup of the proposed scheme against the Static, O Learning and
the G Oracle schemes.

the average, minimum and maximum weighted IPC/Watt gains

that the proposed scheme achieves over the baselines in Figure

8. It can be seen that on an average, the proposed scheme

performs around 20% better than the Static baseline with

respect to weighted improvement, but what is more noteworthy

is that the gain is 200% when compared to the O Learning
scheme. The reason for this is the overhead due to sampling

(discussed in detail in sub-section VI-B1). It can also be seen

that the proposed scheme comes to within 92% of what the

G Oracle scheme achieves with respect to average weighted

gains, which is very encouraging. We provide detailed analysis

on these results next.

1) Analysis of results:
a) Static: In this baseline, the thread to core assignment

is kept the same throughout the execution. This thread to

core assignment is based on an oracle and as such, cannot be

done in practice. Still, it can be seen that significant IPC/Watt

improvement is achieved by the proposed scheme over this

baseline (Figure 5). This baseline never takes advantage of

phase changes or changes in resource demands. Even if over

the entire run, a thread has an affinity for a certain core,

there may be periods where this thread would be more affine

to another core in the AMP. Hence, the proposed scheme

achieves significant improvement in IPC/Watt over the Static
baseline. Still, there are a few workload combinations where

the Static baseline performs better. This is mainly due to the

mispredictions made by the proposed scheme and the fact

that some workloads do not experience many phase changes.

However, looking at the average, it is clear that there are

only a few mispredictions. The overall benefits (20% on

average for weighted gains) more than justify the losses due

to mispredictions.

b) O Learning: This baseline is dynamic and whenever

deemed beneficial, the threads are swapped between cores.

The decision to trigger swapping is determined by the same

mechanism that is used by the proposed scheme, i.e., phases

detected by the phase classification mechanism. Every time

a phase change is detected, this scheme initiates an online

sampling mechanism. Hence, this scheme is expected to

predict thread to core reassignment more accurately than the

proposed scheme. However, as mentioned earlier, it suffers

from a learning overhead. We found that on an average, there

are approximately 700 such events, significantly increasing the

overhead of this baseline. This is the reason why the benefits

of the proposed scheme over this scheme are higher than even

what was obtained against the Static scheme (see Figure 5

and 6, and Figure 8). We did not find any case where this

scheme performed better than the proposed scheme which is

mainly due to the overheads involved during sampling. As the

number of core types and workloads increase in the system,

the number of phase changes and the number of sampling

intervals increase significantly, which nullifies any benefits

of this scheme. When ignoring the learning overhead, this

scheme performs better than the proposed scheme by 5% on

average, due to its more accurate predictions. This shows that

even though the proposed scheme is slightly inaccurate in its
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decision making, the decisions it makes are good enough and

they do not incur any learning overheads. These results show

that the proposed scheme is a more practical and scalable when

compared to the sampling based learning scheme.

c) G Oracle: This baseline also has the ability to swap

threads between the cores but makes swapping decisions based

on oracular knowledge. From Figures 7 and 8, it can be seen

that in general, the proposed scheme performs worse than

this baseline. This is expected, as this baseline makes perfect

thread to core reassignments without incurring any overheads,

which is not practical. What is interesting is that the proposed

scheme does better than this oracular scheme in a few rare

cases. The reason for this is that sometimes by taking a wrong

decision (as is done by the proposed scheme), the opportunities

that come up later, as compared to the case where always the

right (greedy) decision is made, are different. Sometimes, these

additional opportunities may provide even better benefits. Still,

on an average, the proposed scheme performs worse than this

scheme by 8%.
VII. CONCLUSIONS

We have presented a novel technique to assist thread

scheduling in AMPs in order to maximize performance/Watt.

The key idea is the use of program behavior on one core

to predict the power and performance of the application on

other cores in the AMP. We leverage the use of performance

counters which are available in almost all processors for such a

prediction. To illustrate our approach, an eight-core AMP was

considered with two core types, one core designed to achieve

high performance (HPerf) (two cores) while the other for low

power (LP) (six cores). Detailed experiments on the choice of

performance counters to estimate the performance and power

on the HPerf core while the application executes on the LP

core and vice versa have been presented. Approximate expres-

sions based on the values of these counters were formulated

to assist in the thread to core assignment so as to maximize

performance/Watt. Phase classification was used to trigger the

decision making process.

We compared our technique to a static baseline with best

thread to core assignment, an online learning based scheme,

and an oracular scheme with ability to swap threads between

the cores. Our results indicate that the proposed scheme can

achieve considerable performance/Watt benefits of about 20%

and 200% on an average, over the static and online learning

schemes, respectively. Moreover, the proposed scheme per-

forms worse than the oracular scheme by only 8% on average.
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