
High Level Synthesis of Data Driven ASICS i t

Baiju Patel
T.J. Watson Research Center, IBM
P.O. Box 704, Room H2D20
Yorktown Heights, NY 10598

Abstract

A novel approach to high level synthesis of AsIcs
based on a data driven execution model is presented.
The synthesis procedure is directed at prodncing highly
parallel Aslcs providing high throughput through pipe-
lining. The major benefits of our approach are its poten-
tial for higher speed, ease of design, ease of verification
and testing.

I Introduction
Proposed here is an architecture and synthesis procedure

for design of high performance VLSI circuits for a specific appli-
cation, commonly referred to as application specific IC or ASK.
A key objective of our design is to achieve high performance
by first exploiting the parallelism inherent in the application
and secondly, providing pipelining capabilities. Other potential
benefits of our approach include simple partitionability, ease of
testability and design verification.

Specifically, in our approach, the application is first d e
scribed in SISAL, a data flow language. This SISAL program is
then translated to a dataflow graph (DFG) using an optimizing
compiler developed at Lawrence Livermore National Lab. This
DFG is then “directly” mapped onto VLSI where each node in
the DFG constitutes a cell in VLSI. The operation of these VLSI
cells follows the data-driven execution model; i.e., each cell exe
cutes its task as soon as all the necessary operands are available
at the inputs. This “direct” mapping of the DFG onto VLSI,
coupled with the data driven execution, make i t possible to ex-
ploit the inherent parallelism in the application itself. There
fore, the designer is not required to identify the parallelism in
the application. Storage buffers are added to the arcs in order to
support pipelined operation of the ASIC. Thus, providing high
levels of concurrency and pipelining are the two major goals in
our design.

A novel area minimization algorithm is developed to se
lect implementations from the cell library to minimize the over-
all area of the ASIC for given performance constraints. Also
developed is a buffer allocation algorithm to balance the DFG
!or our data driven architecture. The area minimization and
buffer allocation steps are canied out to meet specified area and
performance requirements. We show that by the very nature
of the ASIC generated using our approach, it is simple to test
the control section of the ASIC. Simple testability features are
incorporated in the data section to facilitate the functional test
generation. The technique is extended to the synthesis of multi-
chip ASICS. Synthesis tools incorporating all these features are
being implemented.

I1 Data Driven Architecture
Conventionally, a control driven architecture has been

used for implementing ASKS. The control driven architecture
is partitioned into two major components:(i) Control and (ii)
Data paths. The data paths are composed of a network of regis-
ters, functional units, multiplexers and buses[4]. The data path
carries out all the operations and also stores intermediate re-
sults. The central control explicitly orchestrates all the actions

‘This work W= swported in part by SRC under contract 9 0 - ~ ~ - 1 2 5

Dhiraj K. Pradhan and brael Koren
Dept. of Electrical and Computer Engineering
University of Massachusetts
Amherst, MA 01003

on the data paths. The control is designed as a finite state
machine (FSM). This architecture is geared towards compact
designs with high degree of sharing of resources leading to an
highly area d d e n t ASIC. The low cost also results in lesser
performance.

The data driven architecture is envisioned based on two
impatant observations: (i) The data flow graph for the applica-
tion represents all the inherent parallelism in the algorithm and
(ii) If storage buffers are placed on the arcs, it can be executed in
pipeline fashion. Of course, such architecture can follow a syn-
chronous execution model used by control driven architectures
whereby each operator is scheduled to execute at a predeter-
mined time. However, this will inhibit the ASIC to efficiently
realize applications which include conditional statements and
loops[6). In order to overcome this shortcoming of synchronous
execution, we elect to use the data driven execution mode of
operation.

The data driven execution is implemented based on well
known handshaking mechanism. A block diagram of a represen-
tative node and buffer is shown in the Figure 4. We use uniform
handshake for all the nodes in order to keep the design p r e
cess simple. Moreover, the same handshake protocol is used for
data transfer within the chip and between chips. This feature
overcomes complicated synchronization problems that arise in
control driven architectures.

The area of the handshake control is of the order of 10%
for add and subtract node. The overhead is even smaller for
large nodes such as multiplication and division. The total delay
added to the dock period due to the handshake control is that
of approximately three to four gate delays which is fairly small.

In summary, our architecture uses one functional module
for every node of the dataflow graph to exploit all the parallelism
available in the DFG. A buffer is placed on every arc of the DFG
to facilitate pipelining. The nodes are executed based on the
data driven execution model in order to minimize the pipeline
period and latency in case of data dependent execution time.
At first glance, it may seem that it is too expensive to use one
functional module for every node and it may be true in many
cases. Therefore, we have developed algorithms which will trade
performance for cost.

I11 Design Process
The complete procedure for designing data-driven ASKS

is shown in Figure 1. These steps are outlined in what follows.
The details may be found in [a]
SISAL to DFG Translation: The application program is
specified in SISAL [SI, which is then translated using an o p
timizing compiler to a DFG.

Area Estimation/Minimization: Different operands at a
multi-input node may arrive at different time instances by travers-
ing different paths. Since the operand that arrives earlier has to
wait for the other operands to arrive, the delay of the nodes on
the shorter paths can be increased without affecting the overall
performance. This, in turn, will reduce the area of the ASIC.

A mathematical programming formulation was developed

91TH037943/91/oooO-P13-3.1$01.00 Q 1991 IEEE
P13-3.1

to obtain the lower bound on the area of the ASIC. If the area
lower bound is unacceptably high, then either the application
program must be modified or the performance requirement must
be relaxed. We have developed two algorithms to assign imple-
meutations from the cell library to the nodes: a greedy algorithm
to obtain a "good" solution, and a branch and bound algorithm
to obtain an "optimal'' solution.
Buffer Allocation: If a DFG with non-uniform path lengths is
directly mapped onto VLSI, it may not be optimally pipelinable.
In such an event, buffers may be added to shorter paths of the
DFG. The buffer allocation problem for this architecture is more
difficult than the similar problem for synchronous pipelines (31
and static data-flow computers [2] because data-driven ASKS
allow variable execution time for nodes and variable delay for
buffers. This problem has been mapped to aquadratic program-
ming problem that can be solved using well-known methods.
Testing: Many of the existing test generation techniques (e.g.,
[l]) may be used for our architecture. However, a general pur-
pose test generation methodology may not be capable of iden-
tifying and exploiting the architecture specific properties of the
data driven ASICS such as hierarchy, small number of pre-designed
cells, and distributed and uniform control. We have developed
a test generation methodology which uses architecture specific
information on our architecture to facilitate their testing. First,
a functional fault model and test generation techniques based
on it are developed. Then, these techniques are validated by
demonstrating that stuck-at-faults in the current implementa-
tion are tested.
Layout Generation: The final layout is generated using OCT
tools 191 developed at the University of California at Berkeley. A
library of behavioral descriptions of the different node implemen-
tations has been prepared. Then, the entire ASIC is svnthesized
from this library of behavioral descriptions using standard cell
based generators.

IV Area Estimation/Minimization
The need for area estimation/minimization can be il-

lustrated through the example in Figure 2. Let the multiply
(MULT) node be a sequential multiplier that takes 16 cycles for
the computation. Let the add (ADD1 and ADD2) nodes be par-
allel 16-bit adders that take one cycle to execute. Therefore, for
the initial mapping, the result of MULT is available 15 cycles
later than the result of ADD1. Since ADD2 cannot execute until
both operands are available, the result of A D D l has to wait for
15 cycles after i t has been computed. However, an alternate bit-
serial implementation (with execution time of 16 cycles) may be
used for node A D D l without affecting the overall performance of
the ASIC. Moreover, the area of the interconnections for ADDl
would be reduced as well. A parallel adder should still be used
for A O D 2 because any slower implementation wil l increase the
length of the critical path and thus increase the latency.

Area Estimation: In the following we formulate the prob-
lem of finding a minimum area ASIC for a given DFG, such that
it satisfies the performance requirements on latency and pipeline
period. Let

- V = (nl , . . . , no: set of the nodes of the DFG
- E = (e l , . . . ,em): set of the edges of the DFG
- Tn(n,): the execution time for node n,
- A,(n,): the area of node n,
- P: pipeline period of the ASIC
- L : latency of the ASIC

ments, the length of all the paths from the inputs to the outputs
of the DFG must not be larger than the desired latency. Hence

This latency constraint must hold for all the paths between the
inputs and outputs of the DFG.

Since the overall pipeline period is determined by the
largest delay of all the nodes in the DFG, the delay of each
node must not be larger than P. Therefore, the pipeline period
constraint is:

T,(n,) - P 0 Vn, E V (2)

For a multi-input node to carry out a computation cor-
rectly, all the inputs must be available at the execution time.
Therefore, any two paths from primary inputs to two inputs of
any node must have the same length. Let two such paths be
4, and dk then the equal path length constraint is

Finally, the area/delay relatlonshrp for a node must be
satisfied as well which ma;. be different for different types of
nodes and may be based on available design methodologes.

Given the performance requirements in terms of L and P ,
the objective is to determine the values of A,(n,) and T,,(n,) such
that the overall area (C,,,,, A,(n,)) of the ASIC is minimized.

Even though the mathematical programming solution to
the synthesis process provides an optimal area solution for the
data driven ASKS, it may not always yield a practical solution.

Therefore, we developed a Greedy Heunstics and a Branch and
Bound algorithm to solve the area minimization problem for the
available implementations of the nodes.

A Greedy Algorithm
In this algorithm, a node for area reduction using the

following guidelines is selected. First, it may be noted that a
node cannot start its execution before all its required inputs
are available. Therefore, the earliest time it can execute is the
latest time instance at which the results from all the predeces-
sor nodes are available. Similarly, the node must complete its
execution before the latest time instance at which its output
must be available to all the successor nodes. These two time
instances are denoted by asap (as soon as possible) and alap
(as late as possible) respectively. The asap and alap times, also
referred to as slack and surplus times, have been used for several
scheduling problems (e.g., [4]). We define the freedom of a node
as the difference between the alap and asap times. The freedom
is the largest amount by which the node execution time can be
increased without increasing the overall latency. Obviously, the
freedom of a node on the critical path is zero. Amongst the
nodes with non-zero freedom, that node which results in max-
imum area reduction is selected. Whenever there is more than
one such candidate node, the one with the smallest freedom is
selected. This node is then replaced by a smaller implementa-
tion. This process is repeated until no new candidate node can
be found for area reduction. If the final area of the resultant
ASIC is still unacceptably large, the length of the critical path
(latency) is increased and the process is repeated. The greedy
algorithm based on the above is summarized as follows.

Algorithm: Area Minimization Let 4 be a path from an input of the DFG to a node or
a primary output. Then, in order to satisfy the latency require-

1. Compute the freedom for each node.

P13-3.2

2.

3.

4.

5.

6.

7.

~ I ,

I greedy I 1 2 2.8 3.6 4.7 6.7 I 7.0
BB I 8 480 732 4748 1745 4699 I14470

Let S be the set of candidate nodes for which there are
implementations such that when replaced, the increase in
the delay is not larger than their freedom.

time(c1ocks) 1 1 I 2 1 4 I 8
hits 1 1 6 1 8 1 4 1 2 _ _ ._ I I I I H areal"') I 0.957 I 0.750 I 0.577 I .soon

If S is empty then exit.

Compute the area savings for each node v in S.

Let S' = { U 1 v E S and U has maximum area savings}

Choose node U from S' with smallest freedom.

Replace current implementation by a smaller one.

Go to step 1.

Branch and Bound Algorithm
As seen above, it is possible to replace the implementa-

tion of a node by a smaller one only if the resulting increase in
the execution time is smaller than its freedom. Therefore, in this
algorithm, first a lower bound for the area of the DFG is eval-
uated by choosing the smallest implementation possible (within
the above constraint). The area lower bound is used during both
the branching and bounding steps. At the branching step, out of
all possible nodes that can be replaced by smaller implementa-
tions, the node whose replacement results in the smallest lower
bound is selected. A tie in this selection is broken in favor of the
node with the smallest freedom. If there are more than one such
node with the smallest freedom, then the node with the largest
area savings is selected. Bounding takes place when the current
smallest solution is larger than the area lower bound.

V Examples
To demonstrate the area minimization algorithms we use

an example taken from [7], shown in Figure 3, where "S" and
"M" nodes are Switch and Merge nodes, respectively. The add
and subtract nodes were designed using 2p technology. The
area and execution time for different implementations of these
nodes are shown in Table 1. The "bits" indicate the number of
bits that are operated simultaneously, i.e., 8 bits indicate that
16 bit addition is performed by adding 8 bits at a time in two
dock cycles. For latency of 8 and pipeline period of 2, an 8-bit
adder implementation (with a delay of two clock cycles) is used
for ADD3, ADD4, ADDS, SUB2, SUB4 and SUBS, and a 4 b i t
adder (with a delay of four clock cycles) for SUBl. The rest of
the nodes are 16-bit adder implementations. Consequently, the
total area for the initial mapping is reduced from 15.32 mm2 to
13.69 mm', while keeping the overall execution time unchanged
(16 dock cydes). Figure 5 shows the area lower bound and the
different areas required using the greedy and branch and bound
algorithms for the example of Figure 3. In all the examples that
we have examined (including the above one), the minimized area
obtained using the greedy algorithm was no more than 7% larger
than the optimal area obtained using the branch and bound
algorithm. The CPU time required for area minimization using
both the greedy and branch and bound algorithms is shown in
Table 2 where run time is measured in seconds on a Microvax 11.

Therefore, we suggest to first generate, using the greedy
algorithm, an initial set of solutions with different areas and
latencies. Using these as input to the branch and bound algo-
rithm, an optimal solution can be obtained. A layout obtained
using this approach is shown in Figure 6.

VI Conclusions
An innovative approach to the design of ASKS has been

presented in this paper. The designed ASICS operate in a data-
driven mode that supports fine grain parallelism and pipelining.
The developed CAD tool indudes a compiler for translating the

Table 1: The area and execution time for different implementa-
tions of a 16 bit adder.

fl latencv 11 8 I 10 I 12 I 14 I 16 I 18 I 20 1

Table 2: The run time (in seconds) for greedy, and branch and
bound (BB) algorithms for the example of Figure 3.

application specified in SISAL to a data-flow graph. This com-
piler also provides estimates for the performance of the ASIC.
In the next step the area of the ASIC is minimized and then the
final layout is generated. Examples illustrating the various steps
in the design of the ASIC have been presented.

Our preliminary experiments show that a DFG with about
50 to 100 add/subtract operators can easily be implemented on
a 1 cm2 chip. Also, the timing analysis using Crystal and Spice
shows that these ASICS can be operated at 1OMHz to 20MHz
clock rate.

References

[l] AGRAWAL, V . , CHENG, K . , A N D AGRAWAL, P. Con-
test: A concurrent test generator for sequentid circuits. In
Proc. of 25th Design Automation Conference (June 1988),
ACM/IEEE, pp. 84-89.

GAO, G . Algorithmic aspects of balancing techniques for
pipelined data flow code generation. Journal of Parallel ond
Distributed Computing 1, 6 (Feb. 1989), 39-61.

LEISERSON, C., ANC SAXE, J . Optimizing synchronous
systems. J. of VLSI and Computer Systems 1, 1 (1983),

MCFARLAND, M . , PARKER, A . , AND CAMPOSANO, R.
Tutorial on high-level synthesis. In Proc. of 25th Design
Automation Conference (1988), pp. 330-336.

MCGRAW, J. R., ET A L . SISAL: Streams and iterations
in a single assignment language: Reference manual version
1.2. Manual M-146, Rev. 1, Lawrence Livermore National
Laboratory, Livermore, CA, Mar. 1985.

MENDELSON, B. , PATEL, B. , AND KOREN., I . Designing
special-purpose CO-processors using the data flow paradigm.
In Advanced Topics in Data-Flow Computing (1990), J.-L.
Gaudiot and L. Bic, Eds., Prentice-Hall.

PARKER, A. , ET A L . MAHA: A program for datapath
synthesis. In Proc. of 23rd Design Automation Conference
(1986), pp. 461466 .

PATEL, B. High-Level Synthesis of Data Driven ASICs. PhD
thesis, ECE Dept. University of Massachusetts, Amherst,
1990.

SPICKELMIER, R., Ed. Oct Tools Distribution 3.0. Univer-
sity of California, Berkeley, Mar. 1989.

41-67.

P13-3.3

I Area Minimization I + Buffer Allocation

e=l Test Generation

I Layout Synthesis I

Cell Library El
Figure 1: The design process.

Figure 2: A simple DFG.

In1 In2 In3 In4 In5 In6

i 1 H;dsh,alce H Execution upit 1 Functional-
control Module - Reset

Clock

Reset

Clock

Figure 4: The block diagram of a node and a buffer.
16 1 I I I I 1 I I I "i 14

g t

i heuristics
branch and bound
lower bound

1
8 1 I I I

I I I I I
0 5 10 15 20 25 30 35 40

Time (clock cycles)

Figure 5: The minimum area required using greedy and branch
and bound algorithms and the lower bound on area for the ex-
ample of Figure 3.

@

Q
(-JD

o u t
Figure 3: An example from [7]. Figure 6: Final layout for the DFG of Figure 3

P13-3.4

