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Abstract 

A novel approach to high level synthesis of AsIcs 
based on a data driven execution model is presented. 
The synthesis procedure is directed at prodncing highly 
parallel Aslcs providing high throughput through pipe- 
lining. The major benefits of our approach are its poten- 
tial for higher speed, ease of design, ease of verification 
and testing. 

I Introduction 
Proposed here is an architecture and synthesis procedure 

for design of high performance VLSI circuits for a specific appli- 
cation, commonly referred to as application specific IC or ASK. 
A key objective of our design is to achieve high performance 
by first exploiting the parallelism inherent in the application 
and secondly, providing pipelining capabilities. Other potential 
benefits of our approach include simple partitionability, ease of 
testability and design verification. 

Specifically, in our approach, the application is first d e  
scribed in SISAL, a data flow language. This SISAL program is 
then translated to a dataflow graph (DFG) using an optimizing 
compiler developed at Lawrence Livermore National Lab. This 
DFG is then “directly” mapped onto VLSI where each node in 
the DFG constitutes a cell in VLSI. The operation of these VLSI 
cells follows the data-driven execution model; i.e., each cell exe  
cutes its task as soon as all the necessary operands are available 
at the inputs. This “direct” mapping of the DFG onto VLSI, 
coupled with the data driven execution, make i t  possible to ex- 
ploit the inherent parallelism in the application itself. There 
fore, the designer is not required to identify the parallelism in 
the application. Storage buffers are added to the arcs in order to 
support pipelined operation of the ASIC. Thus, providing high 
levels of concurrency and pipelining are the two major goals in 
our design. 

A novel area minimization algorithm is developed to se 
lect implementations from the cell library to minimize the over- 
all area of the ASIC for given performance constraints. Also 
developed is a buffer allocation algorithm to balance the DFG 
!or our data driven architecture. The area minimization and 
buffer allocation steps are canied out to meet specified area and 
performance requirements. We show that by the very nature 
of the ASIC generated using our approach, it is simple to test 
the control section of the ASIC. Simple testability features are 
incorporated in the data section to facilitate the functional test 
generation. The technique is extended to the synthesis of multi- 
chip ASICS. Synthesis tools incorporating all these features are 
being implemented. 

I1 Data Driven Architecture 
Conventionally, a control driven architecture has been 

used for implementing ASKS. The control driven architecture 
is partitioned into two major components:(i) Control and (ii) 
Data paths. The data paths are composed of a network of regis- 
ters, functional units, multiplexers and buses[4]. The data path 
carries out all the operations and also stores intermediate re- 
sults. The central control explicitly orchestrates all the actions 
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on the data paths. The control is designed as a finite state 
machine (FSM). This architecture is geared towards compact 
designs with high degree of sharing of resources leading to an 
highly area d d e n t  ASIC. The low cost also results in lesser 
performance. 

The data driven architecture is envisioned based on two 
impatant observations: (i) The data flow graph for the applica- 
tion represents all the inherent parallelism in the algorithm and 
(ii) If storage buffers are placed on the arcs, it can be executed in 
pipeline fashion. Of course, such architecture can follow a syn- 
chronous execution model used by control driven architectures 
whereby each operator is scheduled to execute at a predeter- 
mined time. However, this will inhibit the ASIC to efficiently 
realize applications which include conditional statements and 
loops[6). In order to overcome this shortcoming of synchronous 
execution, we elect to use the data driven execution mode of 
operation. 

The data driven execution is implemented based on well 
known handshaking mechanism. A block diagram of a represen- 
tative node and buffer is shown in the Figure 4. We use uniform 
handshake for all the nodes in order to keep the design p r e  
cess simple. Moreover, the same handshake protocol is used for 
data transfer within the chip and between chips. This feature 
overcomes complicated synchronization problems that arise in 
control driven architectures. 

The area of the handshake control is of the order of 10% 
for add and subtract node. The overhead is even smaller for 
large nodes such as multiplication and division. The total delay 
added to the dock period due to the handshake control is that 
of approximately three to four gate delays which is fairly small. 

In summary, our architecture uses one functional module 
for every node of the dataflow graph to exploit all the parallelism 
available in the DFG. A buffer is placed on every arc of the DFG 
to facilitate pipelining. The nodes are executed based on the 
data driven execution model in order to minimize the pipeline 
period and latency in case of data dependent execution time. 
At first glance, it may seem that it is too expensive to use one 
functional module for every node and it may be true in many 
cases. Therefore, we have developed algorithms which will trade 
performance for cost. 

I11 Design Process 
The complete procedure for designing data-driven ASKS 

is shown in Figure 1. These steps are outlined in what follows. 
The details may be found in [a] 
SISAL to DFG Translation: The application program is 
specified in SISAL [SI, which is then translated using an o p  
timizing compiler to a DFG. 

Area Estimation/Minimization: Different operands at a 
multi-input node may arrive at different time instances by travers- 
ing different paths. Since the operand that arrives earlier has to 
wait for the other operands to arrive, the delay of the nodes on 
the shorter paths can be increased without affecting the overall 
performance. This, in turn, will reduce the area of the ASIC. 

A mathematical programming formulation was developed 
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to obtain the lower bound on the area of the ASIC. If the area 
lower bound is unacceptably high, then either the application 
program must be modified or the performance requirement must 
be relaxed. We have developed two algorithms to assign imple- 
meutations from the cell library to the nodes: a greedy algorithm 
to obtain a "good" solution, and a branch and bound algorithm 
to obtain an "optimal'' solution. 
Buffer Allocation: If a DFG with non-uniform path lengths is 
directly mapped onto VLSI, it may not be optimally pipelinable. 
In such an event, buffers may be added to shorter paths of the 
DFG. The buffer allocation problem for this architecture is more 
difficult than the similar problem for synchronous pipelines (31 
and static data-flow computers [2] because data-driven ASKS 
allow variable execution time for nodes and variable delay for 
buffers. This problem has been mapped to aquadratic program- 
ming problem that can be solved using well-known methods. 
Testing: Many of the existing test generation techniques (e.g., 
[l]) may be used for our architecture. However, a general pur- 
pose test generation methodology may not be capable of iden- 
tifying and exploiting the architecture specific properties of the 
data driven ASICS such as hierarchy, small number of pre-designed 
cells, and distributed and uniform control. We have developed 
a test generation methodology which uses architecture specific 
information on our architecture to facilitate their testing. First, 
a functional fault model and test generation techniques based 
on it are developed. Then, these techniques are validated by 
demonstrating that stuck-at-faults in the current implementa- 
tion are tested. 
Layout Generation: The final layout is generated using OCT 
tools 191 developed at the University of California at Berkeley. A 
library of behavioral descriptions of the different node implemen- 
tations has been prepared. Then, the entire ASIC is svnthesized 
from this library of behavioral descriptions using standard cell 
based generators. 

IV Area Estimation/Minimization 
The need for area estimation/minimization can be il- 

lustrated through the example in Figure 2. Let the multiply 
(MULT) node be a sequential multiplier that takes 16 cycles for 
the computation. Let the add (ADD1 and ADD2) nodes be par- 
allel 16-bit adders that take one cycle to execute. Therefore, for 
the initial mapping, the result of MULT is available 15 cycles 
later than the result of ADD1. Since ADD2 cannot execute until 
both operands are available, the result of A D D l  has to wait for 
15 cycles after i t  has been computed. However, an alternate bit- 
serial implementation (with execution time of 16 cycles) may be 
used for node A D D l  without affecting the overall performance of 
the ASIC. Moreover, the area of the interconnections for ADDl 
would be reduced as well. A parallel adder should still be used 
for A O D 2  because any slower implementation wil l  increase the 
length of the critical path and thus increase the latency. 

Area Estimation: In the following we formulate the prob- 
lem of finding a minimum area ASIC for a given DFG, such that 
it satisfies the performance requirements on latency and pipeline 
period. Let 

- V = (nl ,  . . . , no: set of the nodes of the DFG 
- E = ( e l , .  . . ,em):  set of the edges of the DFG 
- Tn(n,): the execution time for node n, 
- A,(n,): the area of node n, 
- P: pipeline period of the ASIC 
- L :  latency of the ASIC 

ments, the length of all the paths from the inputs to the outputs 
of the DFG must not be larger than the desired latency. Hence 

This latency constraint must hold for all the paths between the 
inputs and outputs of the DFG. 

Since the overall pipeline period is determined by the 
largest delay of all the nodes in the DFG, the delay of each 
node must not be larger than P. Therefore, the pipeline period 
constraint is: 

T,(n,) - P 0 Vn, E V ( 2 )  

For a multi-input node to carry out a computation cor- 
rectly, all the inputs must be available at the execution time. 
Therefore, any two paths from primary inputs to two inputs of 
any node must have the same length. Let two such paths be 
4, and dk then the equal path length constraint is 

Finally, the area/delay relatlonshrp for a node must be 
satisfied as well which ma;. be different for different types of 
nodes and may be based on available design methodologes. 

Given the performance requirements in terms of L and P ,  
the objective is to determine the values of A,(n,) and T,,(n,) such 
that the overall area (C,,,,, A,(n,)) of the ASIC is minimized. 

Even though the mathematical programming solution to 
the synthesis process provides an optimal area solution for the 
data driven ASKS, it may not always yield a practical solution. 

Therefore, we developed a Greedy Heunstics and a Branch and 
Bound algorithm to solve the area minimization problem for the 
available implementations of the nodes. 

A Greedy Algorithm 
In this algorithm, a node for area reduction using the 

following guidelines is selected. First, it may be noted that a 
node cannot start its execution before all its required inputs 
are available. Therefore, the earliest time it can execute is the 
latest time instance at which the results from all the predeces- 
sor nodes are available. Similarly, the node must complete its 
execution before the latest time instance at which its output 
must be available to all the successor nodes. These two time 
instances are denoted by asap (as soon as possible) and alap 
(as late as possible) respectively. The asap and alap times, also 
referred to as slack and surplus times, have been used for several 
scheduling problems (e.g., [4]). We define the freedom of a node 
as the difference between the alap and asap times. The freedom 
is the largest amount by which the node execution time can be 
increased without increasing the overall latency. Obviously, the 
freedom of a node on the critical path is zero. Amongst the 
nodes with non-zero freedom, that node which results in max- 
imum area reduction is selected. Whenever there is more than 
one such candidate node, the one with the smallest freedom is 
selected. This node is then replaced by a smaller implementa- 
tion. This process is repeated until no new candidate node can 
be found for area reduction. If the final area of the resultant 
ASIC is still unacceptably large, the length of the critical path 
(latency) is increased and the process is repeated. The greedy 
algorithm based on the above is summarized as follows. 

Algorithm: Area Minimization Let 4 be a path from an input of the DFG to a node or 
a primary output. Then, in order to satisfy the latency require- 

1. Compute the freedom for each node. 
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~ I ,  

I greedy I 1 2 2.8 3.6 4.7 6.7 I 7.0 
BB I 8 480 732 4748 1745 4699 I14470 

Let S be the set of candidate nodes for which there are 
implementations such that when replaced, the increase in 
the delay is not larger than their freedom. 

time(c1ocks) 1 1 I 2 1 4 I 8 
hits 1 1 6 1  8 1 4  1 2  _ _  ._ I I I I H areal"') I 0.957 I 0.750 I 0.577 I .soon 

If S is empty then exit. 

Compute the area savings for each node v in S. 

Let S' = { U  1 v E S and U has maximum area savings} 

Choose node U from S' with smallest freedom. 

Replace current implementation by a smaller one. 

Go to step 1. 

Branch and Bound Algorithm 
As seen above, it is possible to replace the implementa- 

tion of a node by a smaller one only if the resulting increase in 
the execution time is smaller than its freedom. Therefore, in this 
algorithm, first a lower bound for the area of the DFG is eval- 
uated by choosing the smallest implementation possible (within 
the above constraint). The area lower bound is used during both 
the branching and bounding steps. At the branching step, out of 
all possible nodes that can be replaced by smaller implementa- 
tions, the node whose replacement results in the smallest lower 
bound is selected. A tie in this selection is broken in favor of the 
node with the smallest freedom. If there are more than one such 
node with the smallest freedom, then the node with the largest 
area savings is selected. Bounding takes place when the current 
smallest solution is larger than the area lower bound. 

V Examples 
To demonstrate the area minimization algorithms we use 

an example taken from [7], shown in Figure 3, where "S" and 
"M" nodes are Switch and Merge nodes, respectively. The add 
and subtract nodes were designed using 2p technology. The 
area and execution time for different implementations of these 
nodes are shown in Table 1. The "bits" indicate the number of 
bits that are operated simultaneously, i.e., 8 bits indicate that 
16 bit addition is performed by adding 8 bits at a time in two 
dock cycles. For latency of 8 and pipeline period of 2, an 8-bit 
adder implementation (with a delay of two clock cycles) is used 
for ADD3, ADD4,  ADDS, SUB2, SUB4 and SUBS, and a 4 b i t  
adder (with a delay of four clock cycles) for SUBl. The rest of 
the nodes are 16-bit adder implementations. Consequently, the 
total area for the initial mapping is reduced from 15.32 mm2 to 
13.69 mm', while keeping the overall execution time unchanged 
(16 dock cydes). Figure 5 shows the area lower bound and the 
different areas required using the greedy and branch and bound 
algorithms for the example of Figure 3. In all the examples that 
we have examined (including the above one), the minimized area 
obtained using the greedy algorithm was no more than 7% larger 
than the optimal area obtained using the branch and bound 
algorithm. The CPU time required for area minimization using 
both the greedy and branch and bound algorithms is shown in 
Table 2 where run time is measured in seconds on a Microvax 11. 

Therefore, we suggest to first generate, using the greedy 
algorithm, an initial set of solutions with different areas and 
latencies. Using these as input to the branch and bound algo- 
rithm, an optimal solution can be obtained. A layout obtained 
using this approach is shown in Figure 6. 

VI Conclusions 
An innovative approach to the design of ASKS has been 

presented in this paper. The designed ASICS operate in a data- 
driven mode that supports fine grain parallelism and pipelining. 
The developed CAD tool indudes a compiler for translating the 

Table 1: The area and execution time for different implementa- 
tions of a 16 bit adder. 

fl latencv 11 8 I 10 I 12 I 14 I 16 I 18 I 20 1 

Table 2: The run time (in seconds) for greedy, and branch and 
bound (BB) algorithms for the example of Figure 3. 

application specified in SISAL to a data-flow graph. This com- 
piler also provides estimates for the performance of the ASIC. 
In the next step the area of the ASIC is minimized and then the 
final layout is generated. Examples illustrating the various steps 
in the design of the ASIC have been presented. 

Our preliminary experiments show that a DFG with about 
50 to 100 add/subtract operators can easily be implemented on 
a 1 cm2 chip. Also, the timing analysis using Crystal and Spice 
shows that these ASICS can be operated at 1OMHz to 20MHz 
clock rate. 
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Figure 1: The design process. 

Figure 2: A simple DFG. 
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Figure 4: The block diagram of a node and a buffer. 
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Figure 5: The minimum area required using greedy and branch 
and bound algorithms and the lower bound on area for the ex- 
ample of Figure 3. 
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Figure 3: An example from [7]. Figure 6: Final layout for the DFG of Figure 3 
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