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ABSTRACT 

rl novel, hybrid number representation is proposed in 
this paper. It includes the two’s complement repre- 
sentation and the signed-digit representation ar special 
cases. Such a hybrid representation is capable of bound- 
ing the mazimum length of carry propagation chains 
during addition. Thus, one can select a specific hybrid 
number representation that limits the maximum length 
of all the carry propagation chains to any desired value 
between 1 and the entire word length. The framework 
reveals a continuum of number representations between 
the two eztnimes of two’s complement and signed-digit 
number systems and allows a unified performance anal- 
ysis of the entire spectrum of adders based on the rep- 
resentation selected. 

1. Introduction 

A redundant signed digit (SD) number representation 
makes it possible to perform addition with bounded 
carry propagation chains, and has been used to  speed 
up arithmetic operations [1]- [ 5 ] .  The term “carry- 
free” is used whenever the carry propagation during ad- 
dition can be limited to  a t  most 2 digit positions. The 
SD representation also renders most significant digit 
schemes feasible and has been used in on-line arith- 
metic and digit-pipelined schemes [4, 51. In the Redun- 
dant Binary Signed Digit (RBSD) number system, each 
digit can assume any one of the three values (7 = - 1 , 
0, 1). This provides redundancy, i.e., a number can be 
represented in more than one way. For example, a 1 
ran be represented as 01 or as 17. This redundancy 
ran be exploited to limit the length of carry propaga- 
tion chains to only 2 digit positions [2]. In other words, 
the carry c; out of the i th  digit position depends only 
on the operand digits z;, y;, zi-1, y;-1” The addition 
consists of two steps [6]. In the first step, an  intermedi- 
ate sum s; and a carry c; are generated, based only on 4 
operand digits z;, y,, zi-1, y;-1, a t  each digit position 
2.  This is done in parallel for all digit positions i .  In 
the second step, the summation z; = si +c,- 1 is carried 
out to  produce the final sum digit 2, .  The important 
point is that  it is always possible to select the interme- 
diate sum 3; and carry ci -1  such that the summation 
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in the second step does not generate a carry. Hence, 
the second step can also be executed in parallel for all 
the digit positions, yielding a fixed addition time, irre- 
spective of the word length. However, the speed-up in 
addition time does not come for free, since two bits are 
needed to represent a binary signed digit instead of the 
single bit which is sufficient for unsigned binary digits. 
Also, the basic adder cell that operates on signed digits 
is more complex than a full adder for unsigned digits. 
Thus, more area is traded off for the constant addition 
time. The SD representation is especially useful for 
multi-operand addition. Signed digit adder trees arc 
easier to lay out and route than Wallace trees [3]. In 
[3] a 64 x 64 multiplier based on a RBSD adder tree 
was shown to yield a smaller critical path delay than 
the corresponding Wallace tree multiplier. 

These number representations are at two extremes. 
In the SD number system, more bits, switching devices 
and routing are required per digit. In return, the carry 
propagation is limited to  2 digit positions. In the con- 
ventional number systems on the other hand, less bits, 
switches and routing are needed per digit, but the carry 
propagates across the entire word length. We introduce 
a hybrid number representation where the maximum 
carry propagation length can be set to  any desired value 
between the extremes of 2 and full word length. The 
area required decreases in proportion with the length 
of the carry propagation chain. Such a representation 
reveals a continuum of possible realizations that trade 
off area for speed. This framework permits a unified 
analysis of performance measures based on area (A) 
and execution time (T). 

2. Hybrid Number Representation 

In the hybrid number representation, instead of in- 
sisting that every digit be a signed digit, we let some 
digits be signed and leave others unsigned. For exam- 
ple, every alternate or every third or fourth digit can 
be signed; all the remaining ones are unsigned. We 
refer to this representation as a Hybrid Signed Digit 
(HSD) representation. I t  turns out that  such a r e p  
resentation can limit the (maximum) length of carry 
propagation chains to  any desired value. In the follow- 



ing, we demonstrate that  the (maximum) length of a 
carry propagation chain equals [l + d], where d is the 
(longest) distance between neighboring signed digits. 

It can be verified that  operations with such a rep- 
resentation are feasible only if the carry in between 
digit positions (signed or unsigned) is allowed to  take 
any value in the set (-1, 0,1} as in the SD system. 
Without loss of generality, assume that  the radix is 
r = 2 and that  every alternate digit is a signed digit, 
for the purpose of illustration. Then, operations in the 
signed-digit position are the same as those in the SD 
case. For instance, let x; and y; be radix-2 signed dig- 
its to  be added a t  the i th  digit position, and c;-1 be the 
carry into the i th  digit position. Each of these num- 
bers takes any of the three values (-1, 0,1}. Hence 
-3  5 X; + yi + c;-l 5 +3. This sum can be repre- 
sented in terms of a signed digit output z, and a signed 
carry c; as follows: $1 

~ ; + y ; + c ; - ~ = 2 c ; + z ;  where c;,z; ~{- -1 ,0 ,1}  (1) 

{ + l , O }  -1 +1 
a t  least one of 
a;-1, b;-l is 1 1 0  

In practice, the signed digit output z; is not produced 
directly. Instead, the carry c; and an intermediate sum 
s; are generated in the first step. In the second step, 
the summation z; = s; + c ; - ~  is performed. 

The operations in the unsigned digit position are as 
follows. Let ai-1 and b;-l be the bits to  be added a t  the 
( i  - 1)th digit position; q - 1 ,  bi-1 E {0,1}. The carry 
into the (i - 1)th position, is signed and can be - 1 , O  
or 1. The output digit denoted by ei-1 is restricted to 
be unsigned, i.e., ei-1 E (0 , l ) .  Hence the carry out of 
the ( i -  1)th place must be allowed to  assume the value 
-1 as well. In particular 

if ( q - 1  = bi-1 = 0 and c;-2 = -1) then 
c;-1 = -1 and e;-l = 1 

else 
a;-l+ b , - l +  c,-2 = 2ci-l + e*-1 

where c;-l ,e;-l  2 0 

endif (2) 

We next demonstrate that the carry propagates only 
between the signed digits. The addition consists of two 
steps: 

Step 1 : The signed digit positions generate a carry- 
out and an intermediate sum based only on the two 
input signed digits and the two bits a t  the neighboring 
lower order unsigned digit position. For example, let 
x ;  and y; be the signed digits to  be added in the ith 
position and ai-1 and bi-1 be the unsigned digits (bits) 
in the (a -  1)th position. The carry c; and intermediate 
sum si a t  the ith (signed) digit position are determined 

+2 

based on only four operands x;,y;,a;-1 and bi-1 ac- 
cording to  Table 1. 

1 1  X X [ 0 I + ’ [  

0 0  X X 

Table 1: Rules to determine the carry c; and interme- 
diate sum s; based on x;, y;, ai-1 and bi-1.  

In this table, a 1 denotes -1 and x denotes a “don’t 
care”. The first column of Table 1 indicates all pos- 
sible values of the sum (xi + y;). The second column 
indicates the individual digit values that  lead to  the 
sum in column 1. The third column indicates the pos- 
sible values of ai-l and b;-l. Together, these columns 
cover all possible inputs. The fourth column indicates 
the possible values of ci-1 which is the carry into the 
ith (signed) digit position. This carry into the signed 
digit position affects the carry out of the signed digit 
position (viz., c;). Note that if (a;-l = bi-1 = 0) then 
c ; - ~  is non positive, i.e., c ; - ~  E (0, -I}. If a t  least one 
of a;-] and bi-1 is 1, then c ; - ~  is non negative, i.e., 
c;-1 E (0, +1}. The polarity of c;-1 as defined by these 
mutually exclusive conditions (both u;-1, bi-1 are zero 
and at  least one of them is nonzero) is valid irrespective 
of what values x; and y; assume. The last two columns 
indicate the values of s; and c,, respectively, for each 
possible combination of z;, y;, a;-1 and bi-1. 

From the table, it is clear that the carry out of the 
signed digit (c;) is independent of the carry into the 
previous unsigned (i - 1)th digit position, viz., ci-2. 
Hence, the carries out of, and the intermediate sums 
a t  all the signed digits positions can be calculated in 
parallel in the first step. Furthermore, from the table, 
it is seen that whenever the carry c;-1 to  be generated 
at  the (i - 1)th position is expected to  be non negative 
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(i.e., 0 or +I), s, is selected to be non positive (i.e., 0 
or -1) and vice versa. In other words, 3, and ~ i - 1  are 
guaranteed to have opposite polarity. Consequently, 
the addition z, = si + ci-1 can never generate a new 
carry. Thus, the carry propagation stops at the signed 
digit(s). The most important point is that it is possible 
to  predict when ci-l will be non positive and when it 
will be non negative, just by looking at the operand 
digits a;-1 and b;-l. It is not necessary to wait until 
the actual value of c,-l becomes available; which makes 
it possible to break the carry propagation chain. 

Step 2 : In the second step, the carries generated 
out of the signed digit positions ripple through the un- 
signed digits all the way up to the next higher order 
signed digit position, where the propagation stops as 
described above. The second step can also be carried 
out in parallel, i.e., all the (limited) carry propagation 
chains between the signed digit positions are executed 
in parallel. 

The most significant digit must be a signed digit in 
order to incorporate negative numbers. All the other 
digits can be unsigned. For example, if the word length 
is 32 digits, then, the 32nd digit is a signed digit. The 
rest of the digits are a t  the designer's disposal. If regu- 
larity is not necessary, one can make, for example, the 
Ist, 7th, gth, and 31st (and 32nd) digits signed and 
let all the remaining digits be unsigned digits (bits). 
The addition time for such a representation is deter- 
mined by the longest possible carry-propagation chain 
between consecutive signed digit positions (22 digit po- 
sitions; from the 9th to the 31st digit in this example). 

In [7] Parhami presented a unified treatment of sev- 
eral signed digit schemes under a general framework 
that was called the GSD (Generalized Signed Digit) 
number representation. In the GSD formulation, each 
digit in a radix r positional number system can take 
any value in the interval [-a, +PI. Conditions on r, a 
and p that are necessary in order to perform carry- 
free addition were presented, and equations to per- 
form the carry-free addition were derived. Besides 
the radix-r SD representation, this formulation also 
includes stored-borrow/stored-carry type representa- 
tions as special cases. However, all the digit positions 
in GSD are symmetric, i.e., the range of values a digit 
can assume and the way the digit-wise operations are 
carried out is the same for all digit positions. Our 
representation, on the other hand, deliberately intro- 
duces asymmetry in the digit positions in order to re- 
duce the transistor count (and area). Thus, some digits 
are allowed to be signed and others are left unsigned 
which makes the range of values a digit can assume 
non uniform. Also, the operations performed at  signed 

and unsigned digit positions are quite different as il- 
lustrated above. The goal is to reduce the transistor 
count and if possible, to  reduce the critical path de- 
lay as well. This is feasible because the cells in the 
unsigned digit positions are simpler than those in the 
signed digit positions and the number of bits required 
to represent a number is also reduced (compared to  the 
number of bits required for the SD representation). 

The special case where the number of unsigned dig- 
its between any two signed digits is the same, say d ,  
our HSD representation can be considered to be a spe- 
cial case of the GSD representation with radix r = Zd+' 
[8]. When the distance between the signed digits is non- 
uniform, however, the HSD representation is no longer 
a special case of the GSD representation. Non uniform 
distances between signed digits, in some sense, corre- 
spond to using different radicii for different digit posi- 
tions, a concept clearly beyond the scope of the GSD 
framework. Moreover, even in the case when the dis- 
tance between the signed digits is uniform, performing 
the carry-free addition according to the GSD rules will 
lead to far more complex logic and larger area as well as 
a higher critical path delay. For instance, if the group of 
d+ 1 adjacent digits i, i- 1,.  . . , (i--d+ 1) is interpreted 
as a GSD digit with radix 2d+1, then the carry out of 
the i th (binary) signed digit position (c;) depends on 
the ualues of this and the previous (radix Zd+l) dig- 
its [9]. In other words, the carry depends on all of the 
operands in (binary) digit positions i - 1, . - , i - d + 1 
as well as those in digit positions i - d,  * , i - 2d + 1. 
The carry generation logic in such a case could be enor- 
mous. In contrast, adopting our representation and the 
use of Table 1 shows that the carry out c, depends only 
on 4 operands, viz., those in digit positions a and i - 1. 

Static CMOS implementations of the HSD adder 
cells are presented in [9]. Area and Delay tradeoffs for 
the whole spectrum of adders (from ripple carry to full 
Signed Digit adder) based on the HSD representation 
have been analyzed in [9] and are illustrated in Figure 
1. As seen in the figure, the full SD adder (d = 0) 
takes maximum area and least time while the ripple 
carry adder (d = word length) takes maximum time 
and minimum area. The HSD adders offer a contin- 
uum of choices between these two extremes: increasing 
d trades off execution delay for a smaller area. From 
the figure it is seen that the SD adder is A T  optimal, 
while the HSD adder with d = 1 is A2T optimal. Note 
that A2T can be considered to be a rough estimate of 
[area x power x time delay] because power consumed 
zz (overall capacitance x voltage') and the capacitance 
usually grows with area, while the supply voltage is 
constant. 
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3. Conclusion 
A novel, hybrid number representation has been pro- 

posed and was shown to lead to a limited carry prop- 
agation during addition. The system uses a mixture 
of unsigned and signed digits to represent a number. 
It was demonstrated that the maximum length of a 
carry propagation chain in such a system is limited to  
the (longest) distance between consecutive signed dig- 
its and can therefore be set to any desired value from 
1 (or 2 if the radix is 2) to  the entire word length by 
selecting the position(s) of the signed digits. This re- 
veals a continuum of number representations from two’s 
complement on one hand to the completely signed digit 
system system on the other. This framework was used 
to analyze the area and time (delay) tradeoffs associ- 
ated with each representation. The framework permits 
a unified performance analysis of a whole spectrum of 
adders based on these number systems. 

Several new implementations presented in [9] clearly 
demonstrate the feasibility of synthesizing fast and 
compact circuits for more complex operations by em- 
ploying the proposed HSD representation. SD trees for 
partial product accumulation are known to be easier to  
lay out than Wallace trees. HSD trees could be even 
easier to lay out and could take less area because the 
number of wires to  be routed at each level is smaller. 
In an HSD tree with d = 1, for instance, the number of 
wires a t  any level is only 2th that of SD tree because 
every alternate digit is unsigned and uses only 1 bit in- 
stead of 2. Operations such as multiplication, division, 
square root extraction and elementary function evalu- 
ation by CORDIC have been accelerated by using SD 
representation. For these operations, the HSD repre- 
sentation could provide a continuum of choices between 
ordinary and full signed digit, that  trade off increasing 
area for higher speed. 
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