
Hybrid Number Representations
with Bounded Carry Propagation Chains

D. S. P h a t a k , I. Koren and H. C h o i

Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003

ABSTRACT

rl novel, hybrid number representation is proposed in
this paper. It includes the two’s complement repre-
sentation and the signed-digit representation ar special
cases. Such a hybrid representation is capable of bound-
ing the mazimum length of carry propagation chains
during addition. Thus, one can select a specific hybrid
number representation that limits the maximum length
of all the carry propagation chains to any desired value
between 1 and the entire word length. The framework
reveals a continuum of number representations between
the two eztnimes of two’s complement and signed-digit
number systems and allows a unified performance anal-
ysis of the entire spectrum of adders based on the rep-
resentation selected.

1. Introduction

A redundant signed digit (SD) number representation
makes it possible to perform addition with bounded
carry propagation chains, and has been used to speed
up arithmetic operations [1]- [5] . The term “carry-
free” is used whenever the carry propagation during ad-
dition can be limited to a t most 2 digit positions. The
SD representation also renders most significant digit
schemes feasible and has been used in on-line arith-
metic and digit-pipelined schemes [4, 51. In the Redun-
dant Binary Signed Digit (RBSD) number system, each
digit can assume any one of the three values (7 = - 1 ,
0, 1). This provides redundancy, i.e., a number can be
represented in more than one way. For example, a 1
ran be represented as 01 or as 17. This redundancy
ran be exploited to limit the length of carry propaga-
tion chains to only 2 digit positions [2]. In other words,
the carry c; out of the i th digit position depends only
on the operand digits z;, y;, zi-1, y;-1” The addition
consists of two steps [6]. In the first step, an intermedi-
ate sum s; and a carry c; are generated, based only on 4
operand digits z;, y,, zi-1, y;-1, a t each digit position
2. This is done in parallel for all digit positions i . In
the second step, the summation z; = si +c,- 1 is carried
out to produce the final sum digit 2, . The important
point is that it is always possible to select the interme-
diate sum 3; and carry ci -1 such that the summation

1063-64OU93 $03.00 0 1993 IEEE
272

in the second step does not generate a carry. Hence,
the second step can also be executed in parallel for all
the digit positions, yielding a fixed addition time, irre-
spective of the word length. However, the speed-up in
addition time does not come for free, since two bits are
needed to represent a binary signed digit instead of the
single bit which is sufficient for unsigned binary digits.
Also, the basic adder cell that operates on signed digits
is more complex than a full adder for unsigned digits.
Thus, more area is traded off for the constant addition
time. The SD representation is especially useful for
multi-operand addition. Signed digit adder trees arc
easier to lay out and route than Wallace trees [3]. In
[3] a 64 x 64 multiplier based on a RBSD adder tree
was shown to yield a smaller critical path delay than
the corresponding Wallace tree multiplier.

These number representations are at two extremes.
In the SD number system, more bits, switching devices
and routing are required per digit. In return, the carry
propagation is limited to 2 digit positions. In the con-
ventional number systems on the other hand, less bits,
switches and routing are needed per digit, but the carry
propagates across the entire word length. We introduce
a hybrid number representation where the maximum
carry propagation length can be set to any desired value
between the extremes of 2 and full word length. The
area required decreases in proportion with the length
of the carry propagation chain. Such a representation
reveals a continuum of possible realizations that trade
off area for speed. This framework permits a unified
analysis of performance measures based on area (A)
and execution time (T).

2. Hybrid Number Representation

In the hybrid number representation, instead of in-
sisting that every digit be a signed digit, we let some
digits be signed and leave others unsigned. For exam-
ple, every alternate or every third or fourth digit can
be signed; all the remaining ones are unsigned. We
refer to this representation as a Hybrid Signed Digit
(HSD) representation. I t turns out that such a r e p
resentation can limit the (maximum) length of carry
propagation chains to any desired value. In the follow-

ing, we demonstrate that the (maximum) length of a
carry propagation chain equals [l + d], where d is the
(longest) distance between neighboring signed digits.

It can be verified that operations with such a rep-
resentation are feasible only if the carry in between
digit positions (signed or unsigned) is allowed to take
any value in the set (-1, 0,1} as in the SD system.
Without loss of generality, assume that the radix is
r = 2 and that every alternate digit is a signed digit,
for the purpose of illustration. Then, operations in the
signed-digit position are the same as those in the SD
case. For instance, let x; and y; be radix-2 signed dig-
its to be added a t the i th digit position, and c;-1 be the
carry into the i th digit position. Each of these num-
bers takes any of the three values (-1, 0,1}. Hence
-3 5 X; + yi + c;-l 5 +3. This sum can be repre-
sented in terms of a signed digit output z, and a signed
carry c; as follows: $1

~ ; + y ; + c ; - ~ = 2 c ; + z ; where c;,z; ~{- -1 ,0 ,1} (1)

{ + l , O } -1 +1
a t least one of
a;-1, b;-l is 1 1 0

In practice, the signed digit output z; is not produced
directly. Instead, the carry c; and an intermediate sum
s; are generated in the first step. In the second step,
the summation z; = s; + c ; - ~ is performed.

The operations in the unsigned digit position are as
follows. Let ai-1 and b;-l be the bits to be added a t the
(i - 1)th digit position; q - 1 , bi-1 E {0,1}. The carry
into the (i - 1)th position, is signed and can be - 1 , O
or 1. The output digit denoted by ei-1 is restricted to
be unsigned, i.e., ei-1 E (0 , l) . Hence the carry out of
the (i - 1)th place must be allowed to assume the value
-1 as well. In particular

if (q - 1 = bi-1 = 0 and c;-2 = -1) then
c;-1 = -1 and e;-l = 1

else
a;-l+ b , - l + c,-2 = 2ci-l + e*-1

where c;-l ,e;-l 2 0

endif (2)

We next demonstrate that the carry propagates only
between the signed digits. The addition consists of two
steps:

Step 1 : The signed digit positions generate a carry-
out and an intermediate sum based only on the two
input signed digits and the two bits a t the neighboring
lower order unsigned digit position. For example, let
x ; and y; be the signed digits to be added in the ith
position and ai-1 and bi-1 be the unsigned digits (bits)
in the (a - 1)th position. The carry c; and intermediate
sum si a t the ith (signed) digit position are determined

+2

based on only four operands x;,y;,a;-1 and bi-1 ac-
cording to Table 1.

1 1 X X [0 I + ’ [

0 0 X X

Table 1: Rules to determine the carry c; and interme-
diate sum s; based on x;, y;, ai-1 and bi-1.

In this table, a 1 denotes -1 and x denotes a “don’t
care”. The first column of Table 1 indicates all pos-
sible values of the sum (xi + y;). The second column
indicates the individual digit values that lead to the
sum in column 1. The third column indicates the pos-
sible values of ai-l and b;-l. Together, these columns
cover all possible inputs. The fourth column indicates
the possible values of ci-1 which is the carry into the
ith (signed) digit position. This carry into the signed
digit position affects the carry out of the signed digit
position (viz., c;). Note that if (a;-l = bi-1 = 0) then
c ; - ~ is non positive, i.e., c ; - ~ E (0, -I}. If a t least one
of a;-] and bi-1 is 1, then c ; - ~ is non negative, i.e.,
c;-1 E (0, +1}. The polarity of c;-1 as defined by these
mutually exclusive conditions (both u;-1, bi-1 are zero
and at least one of them is nonzero) is valid irrespective
of what values x; and y; assume. The last two columns
indicate the values of s; and c,, respectively, for each
possible combination of z;, y;, a;-1 and bi-1.

From the table, it is clear that the carry out of the
signed digit (c;) is independent of the carry into the
previous unsigned (i - 1)th digit position, viz., ci-2.
Hence, the carries out of, and the intermediate sums
a t all the signed digits positions can be calculated in
parallel in the first step. Furthermore, from the table,
it is seen that whenever the carry c;-1 to be generated
at the (i - 1)th position is expected to be non negative

273

(i.e., 0 or +I), s, is selected to be non positive (i.e., 0
or -1) and vice versa. In other words, 3, and ~ i - 1 are
guaranteed to have opposite polarity. Consequently,
the addition z, = si + ci-1 can never generate a new
carry. Thus, the carry propagation stops at the signed
digit(s). The most important point is that it is possible
to predict when ci-l will be non positive and when it
will be non negative, just by looking at the operand
digits a;-1 and b;-l. It is not necessary to wait until
the actual value of c,-l becomes available; which makes
it possible to break the carry propagation chain.

Step 2 : In the second step, the carries generated
out of the signed digit positions ripple through the un-
signed digits all the way up to the next higher order
signed digit position, where the propagation stops as
described above. The second step can also be carried
out in parallel, i.e., all the (limited) carry propagation
chains between the signed digit positions are executed
in parallel.

The most significant digit must be a signed digit in
order to incorporate negative numbers. All the other
digits can be unsigned. For example, if the word length
is 32 digits, then, the 32nd digit is a signed digit. The
rest of the digits are a t the designer's disposal. If regu-
larity is not necessary, one can make, for example, the
Ist, 7th, gth, and 31st (and 32nd) digits signed and
let all the remaining digits be unsigned digits (bits).
The addition time for such a representation is deter-
mined by the longest possible carry-propagation chain
between consecutive signed digit positions (22 digit po-
sitions; from the 9th to the 31st digit in this example).

In [7] Parhami presented a unified treatment of sev-
eral signed digit schemes under a general framework
that was called the GSD (Generalized Signed Digit)
number representation. In the GSD formulation, each
digit in a radix r positional number system can take
any value in the interval [-a, +PI. Conditions on r, a
and p that are necessary in order to perform carry-
free addition were presented, and equations to per-
form the carry-free addition were derived. Besides
the radix-r SD representation, this formulation also
includes stored-borrow/stored-carry type representa-
tions as special cases. However, all the digit positions
in GSD are symmetric, i.e., the range of values a digit
can assume and the way the digit-wise operations are
carried out is the same for all digit positions. Our
representation, on the other hand, deliberately intro-
duces asymmetry in the digit positions in order to re-
duce the transistor count (and area). Thus, some digits
are allowed to be signed and others are left unsigned
which makes the range of values a digit can assume
non uniform. Also, the operations performed at signed

and unsigned digit positions are quite different as il-
lustrated above. The goal is to reduce the transistor
count and if possible, to reduce the critical path de-
lay as well. This is feasible because the cells in the
unsigned digit positions are simpler than those in the
signed digit positions and the number of bits required
to represent a number is also reduced (compared to the
number of bits required for the SD representation).

The special case where the number of unsigned dig-
its between any two signed digits is the same, say d ,
our HSD representation can be considered to be a spe-
cial case of the GSD representation with radix r = Zd+'
[8]. When the distance between the signed digits is non-
uniform, however, the HSD representation is no longer
a special case of the GSD representation. Non uniform
distances between signed digits, in some sense, corre-
spond to using different radicii for different digit posi-
tions, a concept clearly beyond the scope of the GSD
framework. Moreover, even in the case when the dis-
tance between the signed digits is uniform, performing
the carry-free addition according to the GSD rules will
lead to far more complex logic and larger area as well as
a higher critical path delay. For instance, if the group of
d+ 1 adjacent digits i, i- 1,. . . , (i--d+ 1) is interpreted
as a GSD digit with radix 2d+1, then the carry out of
the i th (binary) signed digit position (c;) depends on
the ualues of this and the previous (radix Zd+l) dig-
its [9]. In other words, the carry depends on all of the
operands in (binary) digit positions i - 1, . - , i - d + 1
as well as those in digit positions i - d, * , i - 2d + 1.
The carry generation logic in such a case could be enor-
mous. In contrast, adopting our representation and the
use of Table 1 shows that the carry out c, depends only
on 4 operands, viz., those in digit positions a and i - 1.

Static CMOS implementations of the HSD adder
cells are presented in [9]. Area and Delay tradeoffs for
the whole spectrum of adders (from ripple carry to full
Signed Digit adder) based on the HSD representation
have been analyzed in [9] and are illustrated in Figure
1. As seen in the figure, the full SD adder (d = 0)
takes maximum area and least time while the ripple
carry adder (d = word length) takes maximum time
and minimum area. The HSD adders offer a contin-
uum of choices between these two extremes: increasing
d trades off execution delay for a smaller area. From
the figure it is seen that the SD adder is A T optimal,
while the HSD adder with d = 1 is A2T optimal. Note
that A2T can be considered to be a rough estimate of
[area x power x time delay] because power consumed
zz (overall capacitance x voltage') and the capacitance
usually grows with area, while the supply voltage is
constant.

274

3. Conclusion
A novel, hybrid number representation has been pro-

posed and was shown to lead to a limited carry prop-
agation during addition. The system uses a mixture
of unsigned and signed digits to represent a number.
It was demonstrated that the maximum length of a
carry propagation chain in such a system is limited to
the (longest) distance between consecutive signed dig-
its and can therefore be set to any desired value from
1 (or 2 if the radix is 2) to the entire word length by
selecting the position(s) of the signed digits. This re-
veals a continuum of number representations from two’s
complement on one hand to the completely signed digit
system system on the other. This framework was used
to analyze the area and time (delay) tradeoffs associ-
ated with each representation. The framework permits
a unified performance analysis of a whole spectrum of
adders based on these number systems.

Several new implementations presented in [9] clearly
demonstrate the feasibility of synthesizing fast and
compact circuits for more complex operations by em-
ploying the proposed HSD representation. SD trees for
partial product accumulation are known to be easier to
lay out than Wallace trees. HSD trees could be even
easier to lay out and could take less area because the
number of wires to be routed at each level is smaller.
In an HSD tree with d = 1, for instance, the number of
wires a t any level is only 2th that of SD tree because
every alternate digit is unsigned and uses only 1 bit in-
stead of 2. Operations such as multiplication, division,
square root extraction and elementary function evalu-
ation by CORDIC have been accelerated by using SD
representation. For these operations, the HSD repre-
sentation could provide a continuum of choices between
ordinary and full signed digit, that trade off increasing
area for higher speed.

References

(41 Irwin, M. J. and Owens, R. M., “Digit-Pipelined
Arithmetic as Illustrated by the Paste-Up System:
A Tutorial ,” IEEE COMPUTER, pp. 61-73, Apr.
1987.

[5] Ercegovac, M.D. and Lang, T., “Redundant and on-
line CORDIC: application to matrix triangulariza-
tion and SVD,” IEEE Transactions on Computers,
vol. C-39, pp. 725-740, Jun. 1990.

[6] Koren, I., Computer Arithmetic Algorithms.
Prentice-Hall Inc., Englewood Cliffs, NJ, 1993.

[7] Parhami, B., ”Generalized signed-digit number sys-
tems: a unifying framework for redundant number
representations,” IEEE fiansactions on Comput-
ers, vol. C-39, pp. 89-98, Jan. 1990.

[8] Parhami, B., Personal Communication.

[9] Phatak, D. S., Koren I., and Choi, H., “Hy-
brid Signed-Digit Number Systems: A Unified
Framework for Redundant Number Representa-
tions with Bounded Carry Propagation Chains,”
Tech. Rep. TR-93-CSE-2, ECE Dept., Univ. of
Massachusetts, Amherst, Jan. 1993.

I I I 40
I ,e. 1 1100 1

9

Y 4 1000
d
c 900

800

< 700
m
5 600

500

0

L
0

c

<
. Area
0 Area, C a r r y

Lookahead

Delay

I
I I I 5

0 Area, C a r r y
Lookahead

Delay 15 :
0 Delay. C a r r y \--I 1 0 Lookahead

AT. C a r r y
Lookahead 2 5

Avizienis, A., “Signed-digit number representations
for fast parallel arithmetic,” IRE Transactions on
Electronic Computers, vol. EC-10, pp. 389-400,
Sep. 1961.

Takagi, N., Yasuura, H., and Yajima, S., “High- 0 5 10 15 20 25 speed VLSI multiplication algorithm with a redun-
dant binary addition tree,” IEEE Transactions on
Computers, vol. C-34, pp. 789-796, Sep. 1985.

Kuninobu, S., Nishiyama, T. , Edamatsu, H.,
Taniguchi, T., and Takagi, N., ‘‘Design of high

binary representation,” Proc. of the 8th Symp. on
Computer Arithmetic, pp. 80-86, 1987.

10

5
L. <

Dielance between bigned digit8 (d)

Figure 1: Area (A) , Delay (T) , AT and A2T a
speed MOS multiplier and divider using redundant function of the distance d between two consecutive

signed digits

275

