The Effect of Placement on Yield for Standard Cell Designs *

Rajnish K. Prasad and Israel Koren

Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003, USA

Abstract

The ability to improve the yield of integrated circuits through layout modification has been recog-
nized and several techniques for yield enhanced routing and compaction have been developed. Yield
improvement during routing is however, limited by the predetermined placement. It is conceivable
therefore, that different placements of the modules (e.g., standard or custom cells) may lead to very
different yield enhanced routings with different projected yields. This is conceptually similar to the
effect that the floorplanning of the entire chip has on the yield [2], but while chip floorplanning
deals with the major building blocks, placement deals with the modules within an individual block.
Yield enhanced placement of modules has not been attempted before mainly due to the difficulty of
estimating the yield of the block before the routing is done. Recently, a technique for estimating the
yield prior to the routing has been developed [1] making it possible to modify the placement in order
to achieve higher yield. The goals of this paper are to investigate the effect that placement has on
the projected yield and to modify a standard cell placement algorithm so that yield becomes a design

objective.

1: Introduction

The general placement problem is the problem of placing a set of circuit modules within a block
such that a certain objective function is minimized. The ultimate goal is to minimize the total chip
area occupied by the circuit modules and minimize the length of the interconnections between the
modules. To make the placement problem computationally feasible, various simpler to calculate
objective functions such as the area of the bounding rectangles, total interconnection wire length,
or some other routing area estimates are commonly used. The yield of the circuit is normally not

considered during placement.

Recently, it has been shown [2] that floorplanning may considerably affect the yield of the chip. We
believe that the placement of modules within a block will have a similar impact. Yield enhancement

has so far been attempted only during the detailed routing and compaction steps (e.g., [4, 5, 6, 7]).

* Supported in part by NSF under contract MIP-9710130.

However, significant changes in wiring congestion cannot be performed during these steps as the
circuits have already been placed. Since there is a direct relationship between the density of the
routing and the yield, it is conceivable that by incorporating the expected yield into the objective
function of the placement algorithm, improvements in yield can be achieved. This has not been
attempted before, since until now the expected yield was calculated only after the layout (including

routing) was completed.

It has recently been demonstrated in [1] that reasonably accurate estimates for the yield can be
obtained prior to routing. Thus, we can use such estimates within the placement stage to enhance
the yield of the final layout. In section 2 we describe the modified placement algorithm which
incorporates the yield as a design objective. In section 3 we present some of our numerical results.

Section 4 presents conclusions and future work.

2: The Modified Placement Algorithm

The placement problem can be classified according to the different types of design methodologies
such as gate array, standard cell and macro/custom cell placement. We focus in this paper on the
placement of standard cells with yield as a design objective and we use the standard cell placement
algorithm TimberWolf [3] to illustrate our approach. This algorithm employs simulated annealing
for minimizing the total wire length. The simulated annealing procedure randomizes the iterative
improvement technique and also allows occasional “uphill moves” in an attempt to reduce the proba-
bility of getting stuck at a local optimal solution. These uphill moves are controlled probabilistically
by the temperature T, and become less and less likely toward the end of the process, as the value of
T decreases. TimberWolf allows placements with overlapping modules as intermediate solutions, to
achieve fast update of the cost function. After each move to a neighboring solution, the overhead
in displacing modules to remove overlap is not incurred. TimberWolf also allows modules to move
to a new location without any swapping or width requirement, increasing this way the number of
different placements examined. The cost function in TimberWolf consists of total wire length and
a measure of the overlap between modules. The cost due to module overlap converges to zero, as

the temperature T approaches zero guaranteeing in this way a feasible final placement.

We have modified the TimberWolf placement algorithm to include yield as a design objective.

The pseudo-code for the modified simulated annealing placement algorithm is shown below.

SimulatedAnnealing(x,T){
/* Given an initial solution x and initial parameter T */
while("stopping criterion" is not satisfied){

generate T’ < T;

T =T;

while("inner loop criterion" is not satisfied){

generate a new solution x’;

/* estimate yield of new solution */
YieldEstimate(x’);

/* c(x’) is cost of the new solution */

/* c(x) 1is cost of the current solution */
if (accept (c(x’),c(x)){

=).
X =Xx;

To incorporate the yield objective into the cost function, we have to estimate the yield of intermediate
placements. The routine “YieldEstimate” (shown below), estimates the yield of the new placement
using ybound [1]. As reported in [1], fairly accurate yield estimates (with differences of 1.0 to
4.0% for short-circuit failures and 0.4 to 4.0% for open-circuit failures) can be obtained by the
ybound algorithm in a fraction of the time required for actual yield estimation. This algorithm uses
an approximation of the average length for the conductors in each wiring channel for estimating
the short-circuit yield. If the current intermediate placement has overlapping cells, the overlap
is removed temporarily before the yield is estimated. This is essential, since substantial overlap
between adjacent modules will cause false net segment overlap, which in turn will result in a large
number of track requirements and consequently, wrong yield estimation. Once overlaps are removed,
a minimum spanning tree is constructed for each net. Then the left edge algorithm is used to assign
tracks to all net segments. Finally, the channel information is decompiled for yield estimation. The

pseudo-code for yield estimation is

YieldEstimate(original){
/* original placement has module overlaps */
/* make a copy of it before modifying it */

newCopy = copyCurrentState(original);

/* remove overlap from placement */

removeOverlap (newCopy) ;

/* build a Minimum Spanning Tree for each net */
/* assign tracks using the Left Edge algorithm */
globroute();

/* obtain yield estimate using ybound */

yield = ybound();

The routine “accept” in the SimulatedAnnealing procedure, takes in the new cost c(x’) and
current cost ¢(x) and decides if the new solution should be accepted or rejected. The new solution is
definitely accepted if the new cost is better than the current one, and is accepted with a probability

determined by the annealing schedule if it is worse than the current one.
The new cost function for the modified algorithm is
Cost(z) = WireLength(x) + Overlap(z) — Yield(z) * ScaleFactor(x) x (1)

where = denotes the index of the current iteration of the simulated annealing process. The param-
eters ScaleFactor(x) and 8 are explained below. Since the wire length and overlap costs are large
integers and the yield is a fraction less than one, we introduced a scaling factor function so that
changes in yield are not ignored completely. The scale factor is determined dynamically for each

iteration, and is computed as shown below. We first define
Scale(x) = |(WireLength(z) — WireLength(xz — 1))/ (Yield(z) — Yield(z — 1))| (2)
where x — 1 denotes the index of the previous iteration. We then compute ScaleFactor(z) as
ScaleFactor(x) = ScaleFactor(z — 1) + Scale(x — 1) /h — Scale(x — 1 — h)/h (3)

where h is the depth of history for variation in wire length with respect to yield. This ScaleFactor(x)
captures the information about the average variation in wire length with respect to the change in
yield in the last few iterations. From the experiments we carried out, we found that a depth of
history equal to 3 worked well. The parameter § serves to assign a weight to the yield relative to
the wire length and can be any real number greater than zero. As will become evident in the next
section, the placement algorithm should be run for several values of 3, and then a placement with

acceptable wire length and yield should be selected.

3: Numerical Results

Ten benchmark circuits were selected from the iscas and lgsynth91 test suites. Table 1 shows the
variation in yield for different placements of the ten circuits. It shows the possible range of yield for
the different designs, when starting with any possible initial placement. A key observation is that
for larger circuits (e.g., C5315 and C6288), the effect of placement on the yield is larger than for
smaller circuits (e.g., C432, C499 and C1355). This is mainly due to the fact that a larger number

of placements can be generated for a bigger circuit than for smaller circuits.

In practice however, such a choice of starting with any random initial placement (as shown in
Table 1) is not available and various techniques to obtain an initial placement are used. Placement
algorithms like those based on simulated annealing normally use an especially generated initial

solution to obtain a near optimal placement. Table 2 compares the yield achieved by incorporating

Design || Number of Min Yield Max Yield Yield Range%
Shapes Wire Length | Yield Wire Length | Yield

C432 8573 95881 0.917992 88111 0.943516 2.6%
C499 9114 91797 0.921549 88554 0.945984 2.4%
C1355 9481 108052 0.926048 104271 0.946846 2.1%
C880 11058 129326 0.887666 120814 0.920834 3.3%
C1908 11232 129407 0.903055 117042 0.932235 2.9%
C2670 30602 445010 0.598460 432647 0.652999 5.5%
dalu 32313 371932 0.636525 345657 0.701436 6.4%
i8 33654 480713 0.536601 467960 0.585129 4.8%
C5315 69241 846123 0.377067 787151 0.463422 8.6%
C6288 123884 908425 0.335353 800092 0.428692 9.4%

Table 1. Range of Yield and Wire Length for the ten benchmarks

the yield objective into the cost function, to the yield of the placement generated by the original
algorithm without a yield objective. Both final placements were obtained from the same initial
placement. The wire length and yield of the placement generated when incorporating the yield
objective into the cost function are relative to those obtained without considering yield. As all the
solutions with a yield objective have a wire length which is very close to the near optimal wire length
of the original solution, any of them is equally probable to be accepted and if the yield of the circuit
is not considered, the algorithm may select a placement with a yield lower than that achievable. For
the largest circuit (C6288), the gain in yield is 4.7%. In several cases, yield enhancement occurred
along with a reduction in total wire length. For example, for C6288 the reduction in wire length is
3.8%. This reduction is due to the random nature of the simulated annealing process and can not
be guaranteed. In such cases, we pay no penalty for increasing the yield. We do have to expect in

some cases a possible increase in wire length for a placement with a higher yield.

Design || Without Yield Objective || With Yield Objective
Wire Length | Yield Wire Length | Yield

C432 87229 0.937738 0.991 1.006
C499 88615 0.936475 0.982 1.006
C1355 106150 0.935358 1.003 1.006
C880 123322 0.910646 0.967 1.004
C1908 120123 0.915330 1.013 1.006
C2670 435714 0.621824 1.0002 1.036
dalu 351890 0.679434 0.998 1.017
i8 487279 0.555882 0.995 1.025
C5315 756475 0.449924 0.994 1.026
C6288 843885 0.368968 0.962 1.047

Table 2. The changes in Yield and Wire Length with the new cost function

Figure 1 shows the different solutions obtained for the i8 benchmark by varying the parameter

B. The baseline solution is for f = 0 (i.e., the original placement algorithm with no yield con-

siderations). The yield and wire length of all the other solutions are normalized with respect to
the baseline solution. As f increases, we assign a larger weight to the yield compared to the wire
length. As seen in the figure, giving more weight to yield does not guarantee higher yield or vice
versa. Thus, several runs with varying f are required to obtain a solution with acceptable wire
length and yield. Also, as expected, some designs (like i8) give better improvement in yield for very
little or no wire length increase whereas others (like C880 shown in Figure 2) do not provide such
gain. Figures 1 and 2 demonstrate that the wire length and yield attributes are not correlated in
the general case. As a result, we may be able to reduce both in some cases while we may have to

trade-off one for the other in other cases.

1.04 T T

1.04

I"wire—length" —
tyield" ---x---

1.03 1.03

1.02 1.02

1.01 1.01

variation in yield
variation in wire length

0.99 0.99

0.98

0.98

0.97 L L L 0.97
0o 0.5 1 1.5 2

beta

Figure 1. Variation in wire length and yield as a function of (3 for i8 benchmark.

Curves like those in Figure 1 and 2 do not convey in a clear way the possibility of a trade-off
between yield and wire length. A figure showing the Pareto optimal solutions would better assist the
designer when deciding on the final placement. Such a set of Pareto optimal solutions is shown in
Figure 3 for the C2670 benchmark. This figure shows that the yield of this circuit can be increased
by 3.4% for just 0.8% increase in wire length.

Figure 4 shows the estimated yield as a function of the defect density for two placements of
the C5315 circuit, one obtained with the original cost function and the other obtained with the
modified cost function. As seen, we get an approximately 3 to 4% improvement in yield when the

defect density increases.

To illustrate the differences between placements obtained by the original and modified placement

1.03 T T T 1.03
"wire-length" ———
tyield" ---x---

1.02 ' 1.02

1.01 1.01

variation in yield
variation in wire length

0.99 0.99

0.98

0.98

beta

Figure 2. Variation in wire length and yield as a function of 5 for C880 benchmark.

algorithms we have applied the two algorithms to a simple nine standard cell design. Figure 5 shows
the two placements where the placement with the higher yield has a more uniform distribution of
net segments across the channels. For such a very small circuit the difference in yield is negligible
(0.000380) but this difference will become noticeable when a logic block which is roughly 25 times

larger is designed.

4: Conclusions and Future Work

The numerical results presented in the previous section reinforced our belief that the yield of
circuits can be enhanced by incorporating the yield objective into the cost function of a placement
algorithm. Also, as illustrated by the results, greater yield enhancement can be achieved for bigger
circuits at lesser or no penalty in terms of wire length. We expect to be able to obtain better results
by designing a new simulated annealing algorithm with all its parameters (like range of temperature
and the rate of temperature reduction) fine-tuned for yield maximization. We also expect (based on
the results in Table 1) that incorporating the yield objective in the generation of an initial placement
would provide better opportunity for a yield enhanced layout. In addition to the above, we would

also like to extend this approach to the gate array and macro/custom cell placement procedures.

change in yield

1.035 T T T T T T

“C2670" —+

1.03 -

1.025 |- -

1.02 -

1.015 |- -

1.01 -

1.005 b

1 1 1 1 1 1 1
1 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008

change in wire length

Figure 3. Pareto Optimal solutions for the C2670 benchmark.

References

[1]

8]

[9]

A. Venkataraman and I. Koren, “Determination of yield bounds prior to routing,” Proceedings

of the IEEE Symposium on Defect and Fault Tolerance in VLSI Systems, pp 4-13, 1999.

I. Koren and Z. Koren, “On the Effect of Floorplanning on the Yield of Large Area Integrated
Circuits,” IEEE Trans. on VLSI Systems , pp. 3-14, March 1997.

University of California, “The TimberWolf Placement and Routing Package,” 1984.

E.P. Huijbregts, H. Xue and J.A.G. Jess, “Routing for Reliable Manufacturing,” IEEE Trans.
on Semiconductor Manufacturing, vol. 8, pp. 188-194, May 1995.

S. Y. Kuo, “YOR: A Yield-Optimizing Routing Algorithm by Minimizing Critical Areas and
vias,” IEEE Trans. Computer-Aided Design, vol. 12, no. 9, pp. 1303-1311, Sept. 1993.

A. Venkataraman, H. Chen and I. Koren, “Yield Enhanced Routing for High-Performance VLSI

Designs,” Proc. of the Microelectronics Manufacturing Yield, Reliability and Failure Analysis,
SPIE’97, pp. 50-60, Oct. 1997.

V.K.R. Chiluvuri, I. Koren and J. L. Burns, “The Effect of Wire Length Minimization on
Yield,” Proc. of the 1994 IEEE Internl. Workshop on Defect and Fault Tolerance in VLSI
Systems, pp. 97-105, Oct. 1994.

S.M. Sait and H. Youssef, “VLSI Physical Design Automation, Theory and Practice,” World
Scientific, 1999

T. Lengauer, “Combinatorial Algorithms for IC Layout,” Wiley- Teubner Series, 1990

Yield

"without-yield-objective” —+—
"with-yield-objective" --->x---

0.6 [

0.3 i i i
0] 50 100 150 200
Defect Density

Figure 4. Yield as a function of the defect density for the C5315 benchmark.

6
1 I
! > ! 1 1 t
n i 1 — 1
Yield =0.999213 Yield = 0.999593

Figure 5. Two placements of a nine standard cell design.

