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Abstract . o o
able fast execution, this first order (Boolean) recursion is

unrolled, leading to a tree structure with logarithmic delay.
This is achieved via defining grouf; andG;:j variables

for a group of bitgi : j] i > j in terms of the bit-wise sig-
nalsP, andG; and then expressing recursions to synthesize
P andG signals of bigger groups from those of smaller adja-
cent or overlapping subgroups [4]. These recursions can be
summarized via the fundamental carry operation [1, 4, 7],
fco , denoted by ®”, and defined by

In two operand addition, bit-wise intermediate variables
such as the “propagate” and “generate” terms are de-
fined/evaluated first. Basic carry propagation recursion
is then expressed in terms of these variables and is “un-
rolled” to obtain a tree structure for fast execution. In
CMOS VLSI technology, multiplexors are fast and efficient
to implement. Hence, we investigate in this paper all pos-
sible two-bit encodings for the intermediate variables and

identify the ones that enable multiplexor-based implementa-(P’ Go((Pre6) = (P-PG+P-G) 2)
tions. Some of these encodings enable further simplification ~ (P:j,Gi;j) = (Pi:m,Gim) © (Psj,Gv;j) 3)
of the multiplexor-based realizations. Our analysis also where i>mv>m—1andi>v> |

shows that adopting an intermediate signed-digit represen-
tation simply amounts to selecting one of the possible en- ) . ) )
codings. Thus, there is no inherent advantage to the use of I the following section, we examine all possible encod-
intermediate signed-digit representations in a two operand INgs (with two bits or Boolean variables) for the interme-
addition. Finally, we extend our analysis to the generalized diateé variables and identify the ones that are suitable for
look-ahead-recursions proposed by Doran. multiplexor-based implementations. This analysis shows
that adopting an intermediate signed-digit representation (in
a two operand addition) simply amounts to selecting one
of the possible encodings. This is demonstrated via a one-
In a two operand addition of the numbers tq-oqe correqundgnce between aI_I possible gncodings for
A={an 1,-a, a} and B={by 1,---bi,---bo}, bit- bit-wise (result indicator) varlgbles in gonveptlonal quers
wise terms such aB and Gi are generated first and the and those that go through an intermediate signed digit rep-

basic carry propagation recursion is expressed in terms off€Sentation. We then extend our discussion to include the
these intermediate variables: generalized look-ahead recursions which were proposed by

Doran [2].
Given the above goals, the paper mainly deals with the
and P € {(a +bi), (@ ®bi)} (1) underlying theory. Full hardware realizations are not con-

vv_here “+" indicates logical OR," (or a product term) in-  sidered and as a result, raw nanosecond and area values are
dicates logical AND& denotes XOR and_3, ¢ denote  |egs relevant in this exposition.

the carries into and out-of positianrespectively. To en-

andc = Gjj+P;-cj—1 (4)

1. Introduction

G = Gi+PBc_1 where G =a-b
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Encodings for bit-wise

Next carry/borrow Ci asa

sumYi (bits Ti, Ri) Canonica SOP expression o
0 1 2 of (Ci-1, Ti, Ri) Output sum-bit di Correspondence
10 m(2, 5, 6) +d(3, 7) m(1, 4,6) +d(3,7) | EO<-->SD14
01— .11 m(3,5,7) + d(2, 6) m(1,4,7)+d(2,6) | El1<-->SD20
00 10—+01 m(1, 5, 6) + d(3, 7) m(2,4,5)+d(@3,7) | E2<--->SD8
=11 m(3, 6, 7) + d(L, 5) m(2,4,7) +d(1,5) | E3<---->SD22
11—+ 01 m(1, 5, 7) + d(2, 6) m(3, 4,5) +d(2,6) | E4<---->SD10
10 m(2, 6, 7) + d(1, 5) m(3, 4,6) +d(1,5) | ES<---->SD16
10 m(2, 4, 6) +d(3, 7) m(0, 5,6) +d(3,7) | E6<---->SD12
000 11 | m@347)+d2 6) m(0,5,7) +d(2,6) | E7<-->SD18
01 10—"00 m(0, 4, 6) +d(3, 7) m(2,4,5) +d(3,7) | E8<--->8D2
U1 m(3, 6, 7) + d(0, 4) m(2,5,7) +d(0,4) | E9<---->SD23
11— 00 m(0, 4, 7) + d(2, 6) m(3, 4,5) +d(2,6) | E10<---->SD4
10 m(2, 6, 7) +d(0, 4) m(3, 5, 6) +d(0,4) | E11<---->SD17
01 m(1, 4, 5) + d(3, 7) m(0,5,6) +d(3,7) | E12<---->3D6
0011 | m@E47)+dL5 | m(067)+dL5) | E3<->SD19
10 01— 00 m(0, 4,5) +d(3,7) m(1, 4,6) +d(3,7) | E14<---->SD0
11 m(3, 5, 7) + d(0, 4) m(1, 6,7) +d(0,4) | E15<---->SD21
11— 00 m(0, 4, 7) + d(1, 5) m(3,4,6) +d(1,5) | E16<---->3D5
01 m(1, 5, 7) + d(0, 4) m(3,5,6) +d(0,4) | E17 <---->SD11
01 m(1, 4, 5) + d(2, 6) m(0, 5,7) +d(2,6) | E18<---->SD7
00~ 10 m(2, 4, 6) + d(1, 5) m(0, 6,7) +d(1,5) | E19<---->SD13
. 01— 00 m(0, 4, 5) + d(2, 6) m(1,4,7) +d(2,6) | E20<---->SD1
=10 m(2, 5, 6) + d(0, 4) m(1, 6,7) +d(0,4) | E21<---->SD15
10 =00 m(O0, 4, 6) + d(1, 5) m(2,4,7) +d(1,5) | E22<—-->G3
01 m(1, 5, 6) + d(0, 4) m(2,5,7) +d(0,4) | E23<---->SD9
-1 0 +1

Encodings for bit-wise

difference Yi ina method based on
intermediate SD representation

Table 1: All possible encodings of the sum (or differengeyith bits (T, R).

ables used in thigh bit position be labeled; andR; to dis-
tinguish them fromP, andG;. In fact, whenP, is defined
to be the bit-wise OR o§ andb;j, andG; is the AND (as
is conventionally done), it is just one instance of all possi-

The conventional bit-wise propagate and generate vari-p|e encodings whereirP( G;) = “00” represents a suny;
ables can be viewed as an encoding of the bit-wise (algeajue of 0, B,G;) = “10” representy; = 1 and “11” en-

braic) sumy; = & + bj which can assume one of the three cgdegy; = 2.

values.{0,1,2}. o ~Inall, there are 24 possible encodings that can be used
Two bits are sufficient to encode these three values. It istq represent the sugy. All 24 encodings are summarized

possible to use more than two bits to encode albiitevise i Table 1. We examine all of them to determine the ones
information of interesthat is necessary to be propagated. that enable multiplexor-based implementations. Each row

However, in this paper we only consider schemes that usesf Table 1 shows one encoding which is labeled in the first
two bits to encode the bit-wise information. Let the vari-

2. Encodings
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sub-column of the last column (titled “Correspondence”) by
labels E, r =0,1,---,23. For convenience, encodings are
labeled from 0 onwards. The first (leftmost) multi-column
(consisting of three sub-columns) shows tfigR;) encod-
ing used to represent the three possible values of theysum
(0, 1, and 2). The next column shows tb@nonicalsum-
of-products (SOP) Boolean expression for the carry-qiit
in terms of the incoming carrg;_1 and the intermediate
bit-wise signalsT; andR; (determined by the encoding in
that row). In the SOP expressions, the decimal labeling of
minterms corresponds to variable ordgr {, Ti,R)), and the
notationm(i, j,k) +d(n,l) indicates that the SOP expres-
sion contains minterms j,k and its value is a don’t-care
corresponding to mintermsand].

The next column shows the logical SOP expression for
the final sum output bit}; in terms of €¢;_1,Ti,R) for the
encoding in that row.

The don’t cares in columns 2 and 3 (th&dj terms in
the SOP expressions, wherelk,| < 7) arise because only
three out of the four combinations of two bit§,[R;) are
needed to encode all possible valueg;of

As an example, the 9th row shows encoding E8 in which
yi = 0 is encoded byT{,R) = “01", y; = 1is encoded by
“10" and y; = 2 is encoded by “00”. Under this encod-

source capacitance which is likely to be smaller than a gate
capacitance.

(iii) The multiplexor control signalss and the signaby;
should be derived from the (fewest possible) operand bits,
so that they can be realized with small delay and hardware.
Henceforth in this paper, expressions like the right hand side
of equation (5) are said to be in the “mux-form”.

Having identified the above desirable attributes, the next
logical question is: which of the 24 encodings in Table 1
lead to expressions of the form (5) (which in turn lead to
recursions of the form in equation (11); making it possible
to synthesize a look-ahead-tree using multiplexors as ex-
plained later)?

It can be verified that out of the 24 encodings in Table 1,
the following 16 encodings, viz.,

L ={EO, E2, E4, E5, E7, E8, E9, E10, E13, E14, E15,
E16, E18, E19, E21, EZ3

allow a multiplexor-based implementation of the form (5)

where the variabl& is either an XOR or XNOR of the

operand bits. We illustrate this for encoding EO for which

the multiplexor-based expression fpiis

G =RT+Rci1 (6)

For this encoding, thd;,R are generated from the truth

table in Table 2.

ing, the canonical SOP expression for the carry propagation

equation is ¢, = m(0,4,6) +d(3,7).

Encoding E2 is the conventional carry generate and
propagate encoding witR = a & b;, while E3 is the con-
ventional carry generate and propagate encoding Rith
a +by.

a b [yi=a+b | T | R | Further simplification
of Tj

0O O 0 0|0 0

0o 1 1 0|1 X

1 0 1 0|1 X

1 1 2 110 1

Table 1 is also used to demonstrate the equivalence be
tween conventional adders and those based on an intermed

ate signed-digit representation. The one-to-one correspon-

dence is explained in the next section.

To obtain a compact multiplexor-based look-ahead cir-
cuit, the carry-out; (which is a function oti_1, Ti andR;)
must be expressible in the form
G =S0i+Sci-1 (5)
This expression has the following desirable properties:

() The incoming carry;—; is the late arriving signal and
therefore any expression farshould involve onlyc; 1, not

its complement (to avoid extra delay in the inversion). Like-
wise, ¢; should be available in uncomplemented form (note
that fully restoring complementary static CMOS is inher-
ently “inverting” logic). Finally, it should be possible to
inputc;_1 via the shortest (delay) path. All of this is possi-
ble in a transmission-gate-based multiplexor realization of
equation (5) above.

(ii) For the same reason, the load on signal should be as
small as possible. In a transmission gate multiplexor imple-
mentation of the above equatian, 1 sees only the drain or

24

fable 2: Derivation ofl; andR; for
Encoding EO in Table 1.

From Table 2 we obtaiR, = a; ® bj andT, = a; - b;.
In the last column we show further simplification of tie
variable: note thaR; is well defined for all combinations
of input operand bits (no don't cares). This combined with
equation (6) indicates that whene\Rr= 1, the incoming
carry is propagated and the value Bfis inconsequential
(since it is ANDed withR; which is 0). Hence, whenever
R =1, the actual value df; can be replaced by a don’t care
(denoted byx) as shown in the last column of Table 2. With
these don't care§; can be further simplified to
Ti=a or Ti=b (7
Thus the conventional bit-wise ANOX) can be replaced
by one of the operand bits itself, without affecting the rest
of the carry look-ahead tree and the adder structure.

Out of 16 encodings that enable multiplexor-based im-
plementations of the look-ahead recursion, eight encodings,
viz.,

L, ={EO, E2, E4, E5, E7, E9, E13, E15



make it possible to simplifyf; as indicated above and re- Even if one starts off withQ; = g (or Q; = b;) and the
place it by one of the operand bits. The set of these eightfso operation, it is still possible to switch over to the conven-

encodings is henceforth denotedlby. tional fco operation at any intermediate level of the look-
In the remaining eight encodings, viz. ahead tree with a small hardware and delay overhead (asso-
L, = {E8, E10, E14, E16, E18, E19, E21, B23 ciated with one complex gate operation).

While specific instances of multiplexor-based look-
ahead-trees have been investigated in the literature (for in-
stance [10], [12], etc.) the contributions of this paper are:

Ti can be simplified and set equal to eitagrorb;, i.e., the
complement of one of the operand bits.

The next question of interest is: can the mux-form re- ~ - ) )
cursions in equations (5) and (6) be extended to groups of('? A umfu_ad treatment_and exploration of all possml_e two-
bits so that a look-ahead-tree of multiplexors can be con-Pit encodings to identify the ones that enable multiplexor-

structed: and which of the 24 encodings lead to such trees°2Sed look-ahead-tree implementation. 3
It turns out that all the 16 encodings in the kelead to (if) Simplification of the variable@;) and inter-operability

multiplexor-based look-ahead trees. For a succinct presen-0 fthe fcoand fso functions with and without thege

. . ; ; . simplifications; and
tation, it is useful to introduce thBundamental selection (iii) Demonstration that adopting an intermediate signed-
operator” (fso) denoted by&” and defined by bting 9

o ~ A digit representation simply amounts to selecting one of the
RT)®(RT)=(R-R T-R+T-R) (8)

R 24 possible encodings, which is done in the next section.
which is analogous to the well-known fundamental carry  Note that Manchester and carry-skip methods in effect
operator (explained in the previous section). Note that the

. ) > employ recursions (10)—(12) above. In fact, most imple-
above relation (8) includdsvo equations, and one of them

mentations, classic [1] as well as recent ones [3, 7, 8, 11,
(the second) has the mux-form. It turns out that all mux- 12, 13], in effect employ the recursions in (1)—(4) or (10)—

form recursions of interest can be expressed in terms of the(lz) whereQ is restricted to be the conventior@l=a; - b
fso operator®, as shown next.

Starting with bit-wise variables, let
P® = aab and
Q € {a&,h,G} where Gi=a-b 9)
i.e., Qi can take any of the 3 valuesg b;, G;.

Then, it can be shown that all eight encodings in the set
L, lead to the following recursions:

3. Correspondence between Adders Based on
Intermediate Signed-Digit Representations
and Conventional Ones

Several algorithms for addition that employ an interme-
diate Signed-Digit (SD) representation have been proposed

G = @Qi +PCi1 (10) (for instance [5, 12]). In the following we show that these
(Piﬂﬁj,Qi:j) = (P9,Qm® (P\%,Qv:j) (11) seemingly different methods simply amount.to using a dif-
where i>mv>m—1andi>v> | ferent encoding (from_ among the 24 shown in Table 1). In
= these methodsA(+ B) is re-written as
¢ = P%;-Q;j+Pjcji1 (12)

. _ _ o A+B=(A-B-1) modulo 2 (13)
TheR;j andQ;; in the above expressions, are similarto the \yhereB is the one’s complement & obtained by inverting
group propagate and generate variables in the conventional| the pits ofB:

fco operation. In particular, the equations summarized byE —2"_1_B ,wherenis the word-length (14)

relation (11) show that thE andQ signals for a group of . . i
bits [ : j] can be synthesized from tzandQ signals of The —1 in equation (13) can be taken care of by forcing a
carry (borrow)-inci, = —1. The modulo operation simply

two adjacent ooverlappingsubgroups of bitsi[. m] and [v: ) i _
j] using multiplexor-based selection operation (fso) which @mounts to discarding the outgoing borrow, except when
there is an overflow, which can be detected as in conven-

can be employed throughout a look-ahead-tree. ’ L '
tional addition. Assuming

If the bit-wise P variable is restricted to be the XOR of . .
. o . . . (i) cn—1 andc, represent the borrow-in and borrow-out of
the operand bits and the bit-wigkvariable is restricted to S . Iy
the most significant bit position, and

be the AND, it can be shown that the operators feg ( (i) a logical “1” is used to represent a borrow of algebraic

and fso ®.) arg completely interchangeable, .SO that they value—1 (which implies that a logical “0” indicates no bor-
can be arbitrarily mixed-and-matched as required. In such .
row or a borrow of value 0);

a case, one could realize the first few levels of the look-

ahead tree with the fso operation and then switch over to thelt ¢an be shown thaiverflow = ¢, & Cr—1 (15)

conventional fco operation if required (to avoid cascading s in conventional addition.

too many transmission gates in series, for example). Since each of the bits ok andB can be 0 or 1, a
bit-wise subtraction directly leads to a signed-digit output
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representing/4 — B), where each digiy; = a — by is in the the intermediate bit-wise resuft can assume{—1,0,1}
range{—1,0,1}. The bit-wise subtraction can be carried in adders based on intermediate signed digits (please refer
out in parallel for all the digit positions because there is no to the footing at the bottom of the first column in Table
need to propagate signals from one digit position to the next.1); and{0,1,2} in conventional adders. The three sub-
The bit-wise differencg; requires two variables for its ~ columns in the first column list the bit values of the ordered
encoding. Let the variable pair used to encode the three valfair (Ti,R) for y; equal to—1, 0 and +1, respectively, in
ues ofy; be (T,R). After these intermediate variables are & scheme based on intermediate signed digits. The same
evaluated, a “borrowd; is propagated from the least signif- three sub-columns also represent the bit values of the pair
icant bit to the most significant bit. The algebraic value of (Ti,Ri) foryi equal to 0, 1 and 2, respectively, in a conven-
cin is —1. Likewise, borrowg; into positioni has a negative  tional addition. For instance, the first row corresponds to
weight, i.e. ¢ € {—1,0} fori > 0. an encoding where the paiF,(R;) = (0,0) represents the in-
The final operation at each of the digit positions is termediate resulyj = —1, the pair (0,1) represenys =0
W = Vi — Gi_1. (16) and the pair (1,Q) represents= _+1. The.s_ame row also '
which can result in any of the four valuds-2,—1,0,1}. shpws an encoding for conven.tlonal addition Whgre the bit
Here.w is recoded with two bits: oY pair 00 represents the algebraic value 0, the pair 01 repre-
1) 7representing the “outgoing borrow” sents the value 1 and _10 reprr—_:s_ents the value 2. Encodings
(2) the final sum output b, ' for adders based on S|gned digits have labels SD_r_ where r
that satisfy the relation ! =0,1,---,23. Thus the first row of the table specifies en-
coding EO for conventional adders and encoding SDO for
W =Yi—Ci—1=d — 2¢; (17) adders based on intermediate SD result. The last column
Note that in a conventional addition, the analogous op- indicates the one-to-one correspondence between the two
eration at each digit position ¥ =y + ¢i—1 and hence  schemes which is explained next.
Wi can assume any Of_ the four valugs1,2,3, Wt"Ch are The first correspondence (in the first row) indicates that
recocied with two blt_s. (1%; representing the 0Ut90_|n9 EO and SD14 are equivalent. Encoding SD14 corresponds
carry”, and (2) the final sum output liit. These two bits 15 the 15¢th row of the table, showing that under this en-
satisfy the relation coding (for adders based on interim SD representation), the

Wi =Yi+Ci—1=di+2¢ (18)  intermediate bit-wise difference valye= —1 is encoded
The encoding of the final sum-output bitis fixed be- by (Ti,R) = (1,0);y; = 0is encoded by “01” whilg; = +1
cause the final sum output must benion redundant two’s is encoded by “00”". Here; represents the “borrow-out” of

complement format. As a result, equations (17) and (18) positioni while d; denotes the final output bit at position
uniquely determinghe algebraic values of jandd; for With this encoding, it can be verified that

each possible value of; (abbreviatedv; <+ (c;,d;)) as in- ¢ = f(c_1,Ti,R) = m(2,5,6) +d(3,7) (19)
dicated below: d = f(6_1,T,,R) = M(0,2,5) +d(3,7) (20)
_12:__: ((0_%)’ 0; -1«(-1,1); 0+ (0,0 and Note that the canonical SOP expression (19) for the
for adders’ based on intermediate SD representation'borrOW_OUt (underthis encoding, viz. SD14) _is identical to
whereas the expression for the carry-out under encoding EO for con-
ventional adders (as seen in the first row of Table 1). The
04 (0,0); 1¢(0,1) 2+ (1,0; 3¢ (L1 expression fod; under encoding SD14 is the complement
for conventional adders. of the expression fat; under EO (this happens because one

The only difference that can arise between the two scheme®f the operand bits is complemented before generating the
(conventional versus those that employ intermediate SDbit-wise difference, in the scheme based on intermediate SD
representation) is therefore due to the encoding used to reprepresentation).

resent the intermediate resyjtand the resultant Boolean All the equivalences (E«— SDp) listed in the last col-
recursion equations. umn of Table 1 hold in the same sense, viz.,
There are 24 possible encodings to represgné (i) Canonical SOP expressions fgrare identical under en-

{=1,0,1} with two bits. For every encoding (and conse- coding SOy, for adders based on intermediate SD represen-

quently for every recursion) in a scheme that utilizes inter- tation, and encoding&or conventional adders; while

mediate SD result, there is a corresponding encoding (and gii) The expression fod; under encoding SRis the com-

corresponding recursion) in the conventional scheme. Thisplement of the corresponding one under encoding E

correspt_mdence IS wmmanze_d 'r] Table 1. ] The encodings turn out to be symmetric in the sense that
The first column in Table 1 indicates the 24 possible en- Ei +— SDj and § «— SD, for 0< i, j < 23.

codings that can be used to represent the three values which ) -
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In view of this one-to-one correspondence, itisreadily di = R ®c_1 (25)
seen that 16 out of the 24 SD encodings viz. The only difference between the recursions (in¢tadH
M ={SDo0, SD2, SD4, SD5, SD7, SD8, SD9, SD10, SD13, variables) lies in the coefficient of the propagated variable.

SD14, SD15, SD16, SD18, SD19, SD21, Sp23 In the conventional case, the coefficientpof; (in equation

also allow multiplexor-based implementations like the con- (24)) is derived solely from operands from bit position
ventional adders. whereas in Ling's case the coefficientldf 1 (in equation
Similarly, exactly half of these sixteen encodings enable (22)) is derived only from operands in positidr(1). This
further simplification ofT; to equal one of the operand bits seemingly small difference leads to a substantial advantage

a or b;. These are the encodings when the recursion is unrolled to four bit positions to eval-
M; ={SD8, SD10, SD14, SD16, SD18, SD19, SD21, uate the groupt andG variables:
SD23}. Gi-z = Gi+RG_-1+PRR-1G_2
In the remaining eight encodings viz., +PPR-1P_2Gi_3 (26)
M, = {SD0, SD2, SD4, SD5, SD7, SD9, SD13, SD15 His = G +Z_1Gi_1+Z_1Z_2Gi_2»
T; can be simplified to equal the complement of one of the +Zi-1Zi 27 3Gi_3

two (?pe_rand bits (re_qu.|r|ng an inverter). G +Gi1 471G
It is likely that a similar one-to-one correspondence also 7 7 G inceZ -G = G 27

exists between encodings of intermediate variables in con- th-14-2 -3 sinces-& = _ ( )_

ventional addition and stored-carry/borrow or carry-sum [9] !t iS seen thaH;_3 requires a smaller expression, making

representations. it faster to evaluate tha@;;;_3. The expression for the fi-
nal sum output bid; in Ling’s scheme is more complex,
4. Other Variants of Carry look-ahead but that penalty was deemed worthwhile (for the imple-
Addition mentation technology which was available at that time) in

exchange for speeding up the look-ahead signal generation

The outgoing carrygi, is a meaningful signalivariable for a group of four bits.
and hence is the variable of choice for expressing the funda- Doran identified the desirable properties in Ling’s recur-
mental carry recursion. However, in theory, other Boolean sion:
variables can be defined and propagated in the look-aheadi) Only Hi_1 appears, not its complement (this avoids in-
tree, instead of the carry variable. Doran [2] investigated all version delays).
possible Boolean variables that can be used to express théi) The coefficient ofH; 1 is derived from operands in bit
fundamental carry recursion and showed a methodology toposition { — 1) alone.
systematically derive the recursive Boolean equations whenHe then showed thatl is not the only variable which has
expressed in terms of the chosen variables. The main goa#ll these desirable properties. He systematically arrived at
of his work was to identify forms of recursion which enable all possible recursions which have the same properties as
more compact and faster implementation of the look-aheadLing’s recursion (and hence are equivalent from a hardware
signal generation for a group of four bits. This was inspired implementation viewpoint). These are reproduced for con-
by Ling’s adder [6] in which instead of propagating the car- venience in Table 3 (on the next page) where Adder 1 is
ries, Ling defines Ling’s adder.
Hi=c +c_1 (21) The main difference from the conventional adders is that
i.e., Hi = 1 if there is a carry in or out of position One  the bit-wiseP, G or Z signals from two positions,and { —
possible interpretation dff is that it is true if “something 1), @re used in the fundamental recursion (in row 1 of Table
interesting” happens at positionLing’s adder propagates 3). The issue of interest is whether any of these recursions
this variableH by expressing fundamental carry recursions 1€nd themselves to mux-form expressions (such as those in
in terms ofH and operand bits in positiorisand { — 1) equations (5) or (11)) which can be implemented by a single
and evaluates the sum output diiin terms of this variable ~ Multiplexor.
H [2, 6]. To this end, a cascaded mux-form representation (one of
H = G+Z_1H_1 where, (22)  the several possible) is shown below for each of the four

recursions in Table 3.

G = ab and Z=a+h Adderl: X = Gi-1+Gi(P1Q_1+P_X_1)  (28)
@ = a®H+GA M 3 adder2 X = P-14RPAQ 1P 1)  (29)
In contrast, the conventional adder implements — _

6 = G 4PG.1 where (24) Adder3: X = Ei-1+zi(Gi,l-0+Ei71Xa71) (30)
G = a-b and P=adhb Adder4d: X; = P;-1+PR(Gj_1-0+ G_1X%_-1) (32)
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Adder 1 Adder 2 Adder 3 Adder 4
Recursion: X = Gi+Zi_1%i—1 | Pi+Z_1X-1 | Zi+Gi_1Xi—1 | Pi+Gi_1Xi_1
Relation to carries: X; = Gi+¢ci—1 Pi+ci_1 Zi+TCi_1 Pi+¢C_1
Sum output bit: d; = ZioX + Xi + (GioX) - X -
GiZi1%1 | PZ.1X1 | ZG 1X1 | PGi1X1

Table 3: The four recursions derived by Doran [2].

where, Qi_1 can take any of the three values
{@-1,bi-1,Gi1}.

Equation (28) was obtained by starting from the defini-
tion Xi = Gj + ¢j_1. From this, it is possible to obtain the
expressionX = Gj + Gi_1 + Zj_1¢i_1. Substitutingci_1 =
Zi_1X_1, along withGj_1 = Pi_1Gj_y andZi_1 = R_1Z;_1
yields the result. Equation (29) can be derived likewise.

Each of the above equations (28)—(31) can be imple-

mented as a cascade of two muxes, where the expression i

parenthesis is implemented by the first multiplexor, whose
output is one of the select lines of the second multiplexor.

In CMOS, it is possible (and might be advantageous) to use

AOI, OAIl and complex gates instead of multiplexors; and

directly implement the fundamental recursion expressions
in Table 3. However, the main issue we are addressing is

not finding out the most efficient implementation of Doran’s

recursions. Rather, the relevant question is whether Doran-

style recursions can be realized usirgjragleMUX (if not,
then these recursions don't *fit” as well with MUX trees as

some other recursions identified above). To the best of our

knowledge, the answer is no.

This can be seen by exploring the generator equa-

tions underlying the above recursions. Following Doran’s
method of analysis, let
Xi = (ai,bi)ci—1+ @&, bi)Ti—1 (32)
be the generic expression for the recursion varizbl8ince
A+ B=B+A, the functionsp(a;,b;) andg(a;, b;) must be
symmetric ing; andb;. There are eight symmetric Boolean
functions ofa; andb; which fall under two classes [2] as
shown next:
fi=ab+abi=P +0 fs=P;=abj +ab
fo=a+b=R+G
fsa=a+b=R+7Z
fa=1=R+P
Class| P D fi ClassIl P D f, (33)
It can be said tha® D fj,i=1,2,3,4, i.e., whenevelR = 1,
all the functiondy, 5, fo, f4 are also 1. Likewise =1 im-
plies that the remaining four functiors, fg, f7, fg all take
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the value 0 {4 and fg are constant functions and included
only for the sake of completeness. obviously, they are not
used anywhere).

Thus there are 64 pairs @fandg functions and 64 pos-
sible recursions. Not all of these are useful: many of them
do not form an adder. In other words, for these definitions
of X;, the final sum output bit cannot be retrieved fréfn
and operand bits at position(@ =y = 0, yieldingX; =0
is such an example). Furthermore, it can be shown that if

and@ belong to the same class (Class | or Il in equation

3) above), then the resultaXtdoes not form an adder [2].
That rules out 32 (16+16) possibilities. The remaining 32
recursions form adders (i.e., variab{gcan be utilized in-
stead of the carry variable to express the fundamental carry
recursions). These recursions fall into two classes whose
generator equations are

Class:X; = (P +uU)c_1+VG 1 (34)
¢ = G+RX=G+2ZX (35)
= GXi+7ZX and
Classll: X = uG_1+ (R +V)Ti-1 (36)
G = Gi+PXi=G+Z7ZX (37)
= GX+zZX
where, uve{0,Z,G;,P} (38)

We illustrate the analysis method for the first recurrence
only, the second recursion in equation (36) can be handled
in an identical manner. The first generator equation (34)
leads to the recursion

X = (R+uU)[Z_1X—1+Gi—1Xi_1)]

+V[Zi—1Xi—1+ Gi—1Xi—1]

= [(R+WzZ 1+VZi 1] X 1

+[(PR+uGi_1+VGi_1] Xi_1 (39)
To enable multiplexor-based implementation, oKy, or
its complemeniX;_1, but not both, should appear in the
above recurrence. For illustration, consider the case in
which Xi_; appears, and not it's complement. This hap-
pens only if the term ifXj_; can be absorbed into the term
in Xi_1 in equation (39) above, which in turn happens if
[(P+U)Gi—1+VGi—1] D [(R+U)Zi—1 + VZi_1]

ie., if



[(R+WGi_1+VR_1+VZi_1] D References
[(R+UGi_1+ (R+UR_1+VZi_1] (40)
after substitutings;_1 = P_1+ Zi_1 and [1] R. P. Brent and H. T. Kung. A regular layout for paral-

Zi_1 =Gj_1+PB_1; the above holds if

VR_1D (R+u)R_y

sinceGj_1,P_; andZ;_; are disjoint, i.e., only one of them
can take the value 1. This condition finally leads to

vDR+u ie., vDu since uv>DPR (42)
This condition leads to the simplifications
Xi = v+ (R +u)c_1 andthe recursionto
X = (R+uUGi_1+V+[P+UZ_1+V]X-1
= (R4+u)Gi_1+V+[(R+u)Z_1]Xi_1 (42)

The above expression can be implemented as a single multi-
plexoronlyif (R+u)Gj_1 can be expressed in the form
(R+UWZi1-p (43)
where p can be some Boolean function of operand bits
{&,bi,a_1,bi_1}. For theu andv choices dictated by con-
straints (38) and (41) it can be verified that an expression
of the form required by (43) is not feasible, which leads to
the conclusion that Doran’s recursions cannot be expressed
using a single multiplexor.

In other words, involving operands from two bit posi-
tions ( andi — 1) in fundamental carry recursion expres-
sions may be beneficial if complex gates are to be used in
the hardware realization; however, it is not advantageous in
multiplexor-based implementations.
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