
Intermediate Variable Encodings that Enable Multiplexor-Based
Implementations of Two Operand Addition

Dhananjay S. Phatak
Electrical Engineering Department

State University of New York, Binghamton, NY 13902–6000
phatak@ee.binghamton.edu

I. Koren
Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003

koren@euler.ecs.umass.edu

(Proceedings of the IEEE ARITH’14, Adelaide, Australia, April 1999, pp 22–29)

Abstract

In two operand addition, bit-wise intermediate variables
such as the “propagate” and “generate” terms are de-
fined/evaluated first. Basic carry propagation recursion
is then expressed in terms of these variables and is “un-
rolled” to obtain a tree structure for fast execution. In
CMOS VLSI technology, multiplexors are fast and efficient
to implement. Hence, we investigate in this paper all pos-
sible two-bit encodings for the intermediate variables and
identify the ones that enable multiplexor-based implementa-
tions. Some of these encodings enable further simplification
of the multiplexor-based realizations. Our analysis also
shows that adopting an intermediate signed-digit represen-
tation simply amounts to selecting one of the possible en-
codings. Thus, there is no inherent advantage to the use of
intermediate signed-digit representations in a two operand
addition. Finally, we extend our analysis to the generalized
look-ahead-recursions proposed by Doran.

1. Introduction

In a two operand addition of the numbers
A= fan�1; � � �ai ; � � �a0g and B= fbn�1; � � �bi ; � � �b0g, bit-
wise terms such asPi and Gi are generated first and the
basic carry propagation recursion is expressed in terms of
these intermediate variables:

ci = Gi +Pici�1 where Gi = ai �bi

and Pi 2 f(ai +bi);(ai�bi)g (1)

where “+” indicates logical OR, “�” (or a product term) in-
dicates logical AND,� denotes XOR andci�1, ci denote
the carries into and out-of positioni, respectively. To en-

able fast execution, this first order (Boolean) recursion is
unrolled, leading to a tree structure with logarithmic delay.
This is achieved via defining groupPi: j andGi: j variables
for a group of bits[i : j] i � j in terms of the bit-wise sig-
nalsPi andGi and then expressing recursions to synthesize
P andG signals of bigger groups from those of smaller adja-
cent or overlapping subgroups [4]. These recursions can be
summarized via the fundamental carry operation [1, 4, 7],
fco , denoted by “�”, and defined by

(P;G)� (P̃;G̃) = (P � P̃;G+P� G̃) (2)

(Pi: j ;Gi: j) = (Pi:m;Gi:m)� (Pv: j ;Gv: j) (3)

where i �m; v�m�1 and i � v> j

and ci = Gi: j +Pi: j �cj�1 (4)

In the following section, we examine all possible encod-
ings (with two bits or Boolean variables) for the interme-
diate variables and identify the ones that are suitable for
multiplexor-based implementations. This analysis shows
that adopting an intermediate signed-digit representation (in
a two operand addition) simply amounts to selecting one
of the possible encodings. This is demonstrated via a one-
to-one correspondence between all possible encodings for
bit-wise (result indicator) variables in conventional adders
and those that go through an intermediate signed digit rep-
resentation. We then extend our discussion to include the
generalized look-ahead recursions which were proposed by
Doran [2].

Given the above goals, the paper mainly deals with the
underlying theory. Full hardware realizations are not con-
sidered and as a result, raw nanosecond and area values are
less relevant in this exposition.

22

0 1 2

0 1 1 0

0 0

1 1

0 0
1 1

1 0
1 1

0 0
1 0

1 0 0 1

0 0

1 1

0 0
1 1

0 1
1 1

0 0
0 1

1 1 0 1

0 0

1 0

0 0
1 0

0 1
1 0

0 0
0 1

0 0 1 0

0 1

1 1

0 1
1 1

1 0
1 1

0 1
1 0

m(2, 5, 6) + d(3, 7) m(1, 4, 6) + d(3, 7) E0 <----> SD14

m(1, 5, 6) + d(3, 7) m(2, 4, 5) + d(3, 7) E2 <----> SD8
m(3, 6, 7) + d(1, 5) m(2, 4, 7) + d(1, 5) E3 <----> SD22

m(1, 5, 7) + d(2, 6) m(3, 4, 5) + d(2, 6) E4 <----> SD10
m(2, 6, 7) + d(1, 5) m(3, 4, 6) + d(1, 5) E5 <----> SD16

m(2, 4, 6) + d(3, 7) m(0, 5, 6) + d(3, 7) E6 <----> SD12
m(3, 4, 7) + d(2, 6) m(0, 5, 7) + d(2, 6) E7 <----> SD18

m(0, 4, 6) + d(3, 7) m(2, 4, 5) + d(3, 7) E8 <----> SD2
m(3, 6, 7) + d(0, 4) m(2, 5, 7) + d(0, 4) E9 <----> SD23

m(0, 4, 7) + d(2, 6) m(3, 4, 5) + d(2, 6) E10 <----> SD4
m(2, 6, 7) + d(0, 4) m(3, 5, 6) + d(0, 4) E11 <----> SD17

m(1, 4, 5) + d(3, 7) m(0, 5, 6) + d(3, 7) E12 <----> SD6
m(3, 4, 7) + d(1, 5) m(0, 6, 7) + d(1, 5) E13 <----> SD19

m(0, 4, 5) + d(3, 7) m(1, 4, 6) + d(3, 7) E14 <----> SD0
m(3, 5, 7) + d(0, 4) m(1, 6, 7) + d(0, 4) E15 <----> SD21

m(0, 4, 7) + d(1, 5) m(3, 4, 6) + d(1, 5) E16 <----> SD5
m(1, 5, 7) + d(0, 4) m(3, 5, 6) + d(0, 4) E17 <----> SD11

m(1, 4, 5) + d(2, 6) m(0, 5, 7) + d(2, 6) E18 <----> SD7
m(2, 4, 6) + d(1, 5) m(0, 6, 7) + d(1, 5) E19 <----> SD13

m(0, 4, 5) + d(2, 6) m(1, 4, 7) + d(2, 6) E20 <----> SD1
m(2, 5, 6) + d(0, 4) m(1, 6, 7) + d(0, 4) E21 <----> SD15

m(0, 4, 6) + d(1, 5) m(2, 4, 7) + d(1, 5) E22 <----> G3
m(1, 5, 6) + d(0, 4) m(2, 5, 7) + d(0, 4) E23 <----> SD9

 m(3, 5, 7) + d(2, 6) m(1, 4, 7) + d(2, 6) E1 <----> SD20

-1 0 +1

CorrespondenceOutput sum-bit di

Encodings for bit-wise
difference Yi in a method based on
intermediate SD representation

sum Yi (bits Ti, Ri)
Encodings for bit-wise Next carry/borrow Ci as a

of (Ci-1, Ti, Ri)
Canonical SOP expression

Table 1: All possible encodings of the sum (or difference)yi with bits (Ti ;Ri).

2. Encodings

The conventional bit-wise propagate and generate vari-
ables can be viewed as an encoding of the bit-wise (alge-
braic) sumyi = ai + bi which can assume one of the three
valuesf0,1,2g.

Two bits are sufficient to encode these three values. It is
possible to use more than two bits to encode all thebit-wise
information of interestthat is necessary to be propagated.
However, in this paper we only consider schemes that use
two bits to encode the bit-wise information. Let the vari-

ables used in theith bit position be labeledTi andRi to dis-
tinguish them fromPi andGi . In fact, whenPi is defined
to be the bit-wise OR ofai andbi , andGi is the AND (as
is conventionally done), it is just one instance of all possi-
ble encodings wherein (Pi;Gi) = “00” represents a sum (yi)
value of 0, (Pi;Gi) = “10” representsyi = 1 and “11” en-
codesyi = 2.

In all, there are 24 possible encodings that can be used
to represent the sumyi . All 24 encodings are summarized
in Table 1. We examine all of them to determine the ones
that enable multiplexor-based implementations. Each row
of Table 1 shows one encoding which is labeled in the first

23

sub-column of the last column (titled “Correspondence”) by
labels Er ; r = 0;1; � � � ;23. For convenience, encodings are
labeled from 0 onwards. The first (leftmost) multi-column
(consisting of three sub-columns) shows the (Ti ;Ri) encod-
ing used to represent the three possible values of the sumyi

(0, 1, and 2). The next column shows thecanonicalsum-
of-products (SOP) Boolean expression for the carry-out (ci)
in terms of the incoming carryci�1 and the intermediate
bit-wise signalsTi andRi (determined by the encoding in
that row). In the SOP expressions, the decimal labeling of
minterms corresponds to variable order (ci�1;Ti ;Ri), and the
notationm(i; j;k) + d(n; l) indicates that the SOP expres-
sion contains mintermsi; j;k and its value is a don’t-care
corresponding to mintermsn andl .

The next column shows the logical SOP expression for
the final sum output bitdi in terms of (ci�1;Ti ;Ri) for the
encoding in that row.

The don’t cares in columns 2 and 3 (the d(k; l) terms in
the SOP expressions, where 0� k; l � 7) arise because only
three out of the four combinations of two bits (Ti ;Ri) are
needed to encode all possible values ofyi .

As an example, the 9th row shows encoding E8 in which
yi = 0 is encoded by (Ti ;Ri) = “01”, yi = 1 is encoded by
“10” and yi = 2 is encoded by “00”. Under this encod-
ing, the canonical SOP expression for the carry propagation
equation is ci = m(0;4;6)+d(3;7).

Encoding E2 is the conventional carry generate and
propagate encoding withP = ai � bi, while E3 is the con-
ventional carry generate and propagate encoding withP =
ai +bi.

Table 1 is also used to demonstrate the equivalence be-
tween conventional adders and those based on an intermedi-
ate signed–digit representation. The one-to-one correspon-
dence is explained in the next section.

To obtain a compact multiplexor-based look-ahead cir-
cuit, the carry-outci (which is a function ofci�1;Ti andRi)
must be expressible in the form

ci = Siαi +Sici�1 (5)

This expression has the following desirable properties:
(i) The incoming carryci�1 is the late arriving signal and
therefore any expression forci should involve onlyci�1, not
its complement (to avoid extra delay in the inversion). Like-
wise,ci should be available in uncomplemented form (note
that fully restoring complementary static CMOS is inher-
ently “inverting” logic). Finally, it should be possible to
input ci�1 via the shortest (delay) path. All of this is possi-
ble in a transmission-gate-based multiplexor realization of
equation (5) above.
(ii) For the same reason, the load on signalci�1 should be as
small as possible. In a transmission gate multiplexor imple-
mentation of the above equation,ci�1 sees only the drain or

source capacitance which is likely to be smaller than a gate
capacitance.
(iii) The multiplexor control signalsSi and the signalαi

should be derived from the (fewest possible) operand bits,
so that they can be realized with small delay and hardware.
Henceforth in this paper, expressions like the right hand side
of equation (5) are said to be in the “mux-form”.

Having identified the above desirable attributes, the next
logical question is: which of the 24 encodings in Table 1
lead to expressions of the form (5) (which in turn lead to
recursions of the form in equation (11); making it possible
to synthesize a look-ahead-tree using multiplexors as ex-
plained later)?

It can be verified that out of the 24 encodings in Table 1,
the following 16 encodings, viz.,

L = fE0, E2, E4, E5, E7, E8, E9, E10, E13, E14, E15,
E16, E18, E19, E21, E23g

allow a multiplexor-based implementation of the form (5)
where the variableSi is either an XOR or XNOR of the
operand bits. We illustrate this for encoding E0 for which
the multiplexor-based expression forci is

ci = RiTi +Rici�1 (6)

For this encoding, theTi ;Ri are generated from the truth
table in Table 2.

ai bi yi = ai +bi Ti Ri Further simplification
of Ti

0 0 0 0 0 0
0 1 1 0 1 �

1 0 1 0 1 �

1 1 2 1 0 1

Table 2: Derivation ofTi andRi for
Encoding E0 in Table 1.

From Table 2 we obtainRi = ai�bi andTi = ai �bi.
In the last column we show further simplification of theTi

variable: note thatRi is well defined for all combinations
of input operand bits (no don’t cares). This combined with
equation (6) indicates that wheneverRi = 1, the incoming
carry is propagated and the value ofTi is inconsequential
(since it is ANDed withRi which is 0). Hence, whenever
Ri = 1, the actual value ofTi can be replaced by a don’t care
(denoted by�) as shown in the last column of Table 2. With
these don’t cares,Ti can be further simplified to

Ti = ai or Ti = bi (7)

Thus the conventional bit-wise AND (Gi) can be replaced
by one of the operand bits itself, without affecting the rest
of the carry look-ahead tree and the adder structure.

Out of 16 encodings that enable multiplexor-based im-
plementations of the look-ahead recursion, eight encodings,
viz.,

L1 = fE0, E2, E4, E5, E7, E9, E13, E15g

24

make it possible to simplifyTi as indicated above and re-
place it by one of the operand bits. The set of these eight
encodings is henceforth denoted byL1.

In the remaining eight encodings, viz.

L2 = fE8, E10, E14, E16, E18, E19, E21, E23g

Ti can be simplified and set equal to eitherai , orbi , i.e., the
complement of one of the operand bits.

The next question of interest is: can the mux-form re-
cursions in equations (5) and (6) be extended to groups of
bits so that a look-ahead-tree of multiplexors can be con-
structed; and which of the 24 encodings lead to such trees?

It turns out that all the 16 encodings in the setL lead to
multiplexor-based look-ahead trees. For a succinct presen-
tation, it is useful to introduce the“fundamental selection
operator” (fso) denoted by “
” and defined by

(R;T)
 (R̃; T̃) = (R� R̃; T �R+ T̃ �R) (8)

which is analogous to the well-known fundamental carry
operator (explained in the previous section). Note that the
above relation (8) includestwo equations, and one of them
(the second) has the mux-form. It turns out that all mux-
form recursions of interest can be expressed in terms of the
fso operator,
, as shown next.

Starting with bit-wise variables, let

P�i = ai�bi and

Qi 2 fai;bi ;Gig where Gi = ai �bi (9)

i.e., Qi can take any of the 3 valuesai ;bi ;Gi .

Then, it can be shown that all eight encodings in the set
L1 lead to the following recursions:

ci = P�i Qi +P�i ci�1 (10)

(P�i: j ;Qi: j) = (P�i:m;Qi:m)
 (P�v: j ;Qv: j) (11)

where i �m; v�m�1 and i � v> j

ci = P�i: j �Qi: j +P�i: j �cj�1 (12)

TheP�i: j andQi: j in the above expressions, are similar to the
group propagate and generate variables in the conventional
fco operation. In particular, the equations summarized by
relation (11) show that theP andQ signals for a group of
bits [i : j] can be synthesized from theP andQ signals of
two adjacent oroverlappingsubgroups of bits [i : m] and [v :
j] using multiplexor-based selection operation (fso) which
can be employed throughout a look-ahead-tree.

If the bit-wiseP variable is restricted to be the XOR of
the operand bits and the bit-wiseQ variable is restricted to
be the AND, it can be shown that the operators fco (�)
and fso (
) are completely interchangeable, so that they
can be arbitrarily mixed-and-matched as required. In such
a case, one could realize the first few levels of the look-
ahead tree with the fso operation and then switch over to the
conventional fco operation if required (to avoid cascading
too many transmission gates in series, for example).

Even if one starts off withQi = ai (or Qi = bi) and the
fso operation, it is still possible to switch over to the conven-
tional fco operation at any intermediate level of the look-
ahead tree with a small hardware and delay overhead (asso-
ciated with one complex gate operation).

While specific instances of multiplexor-based look-
ahead-trees have been investigated in the literature (for in-
stance [10], [12], etc.) the contributions of this paper are:

(i) A unified treatment and exploration of all possible two-
bit encodings to identify the ones that enable multiplexor-
based look-ahead-tree implementation.
(ii) Simplification of the variable (Qi) and inter-operability
of the fco and fso functions with and without theseQi

simplifications; and
(iii) Demonstration that adopting an intermediate signed-
digit representation simply amounts to selecting one of the
24 possible encodings, which is done in the next section.

Note that Manchester and carry-skip methods in effect
employ recursions (10)–(12) above. In fact, most imple-
mentations, classic [1] as well as recent ones [3, 7, 8, 11,
12, 13], in effect employ the recursions in (1)–(4) or (10)–
(12) whereQi is restricted to be the conventionalGi = ai �bi .

3. Correspondence between Adders Based on
Intermediate Signed-Digit Representations
and Conventional Ones

Several algorithms for addition that employ an interme-
diate Signed-Digit (SD) representation have been proposed
(for instance [5, 12]). In the following we show that these
seemingly different methods simply amount to using a dif-
ferent encoding (from among the 24 shown in Table 1). In
these methods, (A+B) is re-written as

A+B= (A�B�1) modulo 2 (13)

whereB is the one’s complement ofB, obtained by inverting
all the bits ofB:

B= 2n�1�B , wheren is the word-length (14)

The�1 in equation (13) can be taken care of by forcing a
carry (borrow)-incin = �1. The modulo operation simply
amounts to discarding the outgoing borrow, except when
there is an overflow, which can be detected as in conven-
tional addition. Assuming
(i) cn�1 andcn represent the borrow-in and borrow-out of
the most significant bit position, and
(ii) a logical “1” is used to represent a borrow of algebraic
value�1 (which implies that a logical “0” indicates no bor-
row or a borrow of value 0);

it can be shown thatoverflow= cn�cn�1 (15)

as in conventional addition.

Since each of the bits ofA and B can be 0 or 1, a
bit–wise subtraction directly leads to a signed-digit output

25

representing (A�B), where each digityi = ai�bi is in the
rangef�1;0;1g. The bit–wise subtraction can be carried
out in parallel for all the digit positions because there is no
need to propagate signals from one digit position to the next.

The bit-wise differenceyi requires two variables for its
encoding. Let the variable pair used to encode the three val-
ues ofyi be (Ti;Ri). After these intermediate variables are
evaluated, a “borrow”ci is propagated from the least signif-
icant bit to the most significant bit. The algebraic value of
cin is�1. Likewise, borrowci into positioni has a negative
weight, i.e.,ci 2 f�1;0g for i � 0.
The final operation at each of the digit positions is

wi = yi�ci�1: (16)

which can result in any of the four valuesf�2;�1;0;1g.
Here,wi is recoded with two bits:
(1) ci representing the “outgoing borrow”,
(2) the final sum output bitdi

that satisfy the relation

wi = yi�ci�1 = di�2ci (17)

Note that in a conventional addition, the analogous op-
eration at each digit position iswi = yi + ci�1 and hence
wi can assume any of the four valuesf0,1,2,3g, which are
recoded with two bits: (1)ci representing the “outgoing
carry”, and (2) the final sum output bitdi . These two bits
satisfy the relation

wi = yi +ci�1 = di +2ci (18)

The encoding of the final sum-output bitdi is fixed be-
cause the final sum output must be innon redundant two’s
complement format. As a result, equations (17) and (18)
uniquely determinethe algebraic values of ci and di for
each possible value ofwi (abbreviatedwi $ (ci ;di)) as in-
dicated below:

�2$ (�1;0); �1$ (�1;1); 0$ (0;0) and
1$ (0;1)

for adders based on intermediate SD representation;
whereas

0$ (0;0); 1$ (0;1) 2$ (1;0); 3$ (1;1)

for conventional adders.

The only difference that can arise between the two schemes
(conventional versus those that employ intermediate SD
representation) is therefore due to the encoding used to rep-
resent the intermediate resultyi and the resultant Boolean
recursion equations.

There are 24 possible encodings to representyi 2
f�1;0;1g with two bits. For every encoding (and conse-
quently for every recursion) in a scheme that utilizes inter-
mediate SD result, there is a corresponding encoding (and a
corresponding recursion) in the conventional scheme. This
correspondence is summarized in Table 1.

The first column in Table 1 indicates the 24 possible en-
codings that can be used to represent the three values which

the intermediate bit-wise resultyi can assume:f�1;0;1g
in adders based on intermediate signed digits (please refer
to the footing at the bottom of the first column in Table
1); andf0;1;2g in conventional adders. The three sub-
columns in the first column list the bit values of the ordered
pair (Ti;Ri) for yi equal to�1, 0 and +1, respectively, in
a scheme based on intermediate signed digits. The same
three sub-columns also represent the bit values of the pair
(Ti ;Ri) for yi equal to 0, 1 and 2, respectively, in a conven-
tional addition. For instance, the first row corresponds to
an encoding where the pair (Ti ;Ri) = (0,0) represents the in-
termediate resultyi = �1, the pair (0,1) representsyi = 0
and the pair (1,0) representsyi = +1. The same row also
shows an encoding for conventional addition where the bit
pair 00 represents the algebraic value 0, the pair 01 repre-
sents the value 1 and 10 represents the value 2. Encodings
for adders based on signed digits have labels SDr where r
= 0;1; � � � ;23. Thus the first row of the table specifies en-
coding E0 for conventional adders and encoding SD0 for
adders based on intermediate SD result. The last column
indicates the one-to-one correspondence between the two
schemes which is explained next.

The first correspondence (in the first row) indicates that
E0 and SD14 are equivalent. Encoding SD14 corresponds
to the 15th row of the table, showing that under this en-
coding (for adders based on interim SD representation), the
intermediate bit-wise difference valueyi = �1 is encoded
by (Ti ;Ri) = (1,0);yi = 0 is encoded by “01” whileyi =+1
is encoded by “00”. Here,ci represents the “borrow-out” of
positioni while di denotes the final output bit at positioni.
With this encoding, it can be verified that

ci = f (ci�1;Ti ;Ri) = m(2;5;6)+d(3;7) (19)

di = f (ci�1;Ti ;Ri) = m(0;2;5)+d(3;7) (20)

Note that the canonical SOP expression (19) for the
borrow-out (under this encoding, viz. SD14) is identical to
the expression for the carry-out under encoding E0 for con-
ventional adders (as seen in the first row of Table 1). The
expression fordi under encoding SD14 is the complement
of the expression fordi under E0 (this happens because one
of the operand bits is complemented before generating the
bit-wise difference, in the scheme based on intermediate SD
representation).

All the equivalences (Ek ! SDm) listed in the last col-
umn of Table 1 hold in the same sense, viz.,

(i) Canonical SOP expressions forci are identical under en-
coding SDm for adders based on intermediate SD represen-
tation, and encoding Ek for conventional adders; while

(ii) The expression fordi under encoding SDm is the com-
plement of the corresponding one under encoding Ek.

The encodings turn out to be symmetric in the sense that
Ei ! SDj and Ej ! SDi for 0� i; j � 23.

26

In view of this one-to-one correspondence, it is readily
seen that 16 out of the 24 SD encodings viz.

M = fSD0, SD2, SD4, SD5, SD7, SD8, SD9, SD10, SD13,
SD14, SD15, SD16, SD18, SD19, SD21, SD23g

also allow multiplexor-based implementations like the con-
ventional adders.
Similarly, exactly half of these sixteen encodings enable
further simplification ofTi to equal one of the operand bits
ai or bi . These are the encodings
M1=fSD8, SD10, SD14, SD16, SD18, SD19, SD21,

SD23g.

In the remaining eight encodings viz.,

M2 = fSD0, SD2, SD4, SD5, SD7, SD9, SD13, SD15g

Ti can be simplified to equal the complement of one of the
two operand bits (requiring an inverter).

It is likely that a similar one-to-one correspondence also
exists between encodings of intermediate variables in con-
ventional addition and stored-carry/borrow or carry-sum [9]
representations.

4. Other Variants of Carry look-ahead
Addition

The outgoing carry,ci , is a meaningful signal/variable
and hence is the variable of choice for expressing the funda-
mental carry recursion. However, in theory, other Boolean
variables can be defined and propagated in the look-ahead
tree, instead of the carry variable. Doran [2] investigated all
possible Boolean variables that can be used to express the
fundamental carry recursion and showed a methodology to
systematically derive the recursive Boolean equations when
expressed in terms of the chosen variables. The main goal
of his work was to identify forms of recursion which enable
more compact and faster implementation of the look-ahead
signal generation for a group of four bits. This was inspired
by Ling’s adder [6] in which instead of propagating the car-
ries, Ling defines

Hi = ci +ci�1 (21)

i.e., Hi = 1 if there is a carry in or out of positioni. One
possible interpretation ofHi is that it is true if “something
interesting” happens at positioni. Ling’s adder propagates
this variableH by expressing fundamental carry recursions
in terms ofH and operand bits in positionsi and (i � 1)
and evaluates the sum output bitdi in terms of this variable
H [2, 6].

Hi = Gi +Zi�1Hi�1 where, (22)

Gi = ai �bi and Zi = ai +bi

di = Zi�Hi +GiZi�1Hi�1 (23)

In contrast, the conventional adder implements

ci = Gi +Pici�1 where (24)

Gi = ai �bi and Pi = ai�bi

di = Pi�ci�1 (25)

The only difference between the recursions (in thec andH
variables) lies in the coefficient of the propagated variable.
In the conventional case, the coefficient ofci�1 (in equation
(24)) is derived solely from operands from bit positioni,
whereas in Ling’s case the coefficient ofHi�1 (in equation
(22)) is derived only from operands in position (i�1). This
seemingly small difference leads to a substantial advantage
when the recursion is unrolled to four bit positions to eval-
uate the groupH andG variables:

Gi:i�3 = Gi +PiGi�1+PiPi�1Gi�2

+PiPi�1Pi�2Gi�3 (26)

Hi:i�3 = Gi +Zi�1Gi�1+Zi�1Zi�2Gi�2

+Zi�1Zi�2Zi�3Gi�3

= Gi +Gi�1+Zi�1Gi�2

+Zi�1Zi�2Gi�3 sinceZ �G= G (27)

It is seen thatHi:i�3 requires a smaller expression, making
it faster to evaluate thanGi:i�3. The expression for the fi-
nal sum output bitdi in Ling’s scheme is more complex,
but that penalty was deemed worthwhile (for the imple-
mentation technology which was available at that time) in
exchange for speeding up the look-ahead signal generation
for a group of four bits.

Doran identified the desirable properties in Ling’s recur-
sion:
(i) Only Hi�1 appears, not its complement (this avoids in-
version delays).
(ii) The coefficient ofHi�1 is derived from operands in bit
position (i�1) alone.
He then showed thatH is not the only variable which has
all these desirable properties. He systematically arrived at
all possible recursions which have the same properties as
Ling’s recursion (and hence are equivalent from a hardware
implementation viewpoint). These are reproduced for con-
venience in Table 3 (on the next page) where Adder 1 is
Ling’s adder.

The main difference from the conventional adders is that
the bit-wiseP;G or Z signals from two positions,i and (i�
1), are used in the fundamental recursion (in row 1 of Table
3). The issue of interest is whether any of these recursions
lend themselves to mux-form expressions (such as those in
equations (5) or (11)) which can be implemented by a single
multiplexor.

To this end, a cascaded mux-form representation (one of
the several possible) is shown below for each of the four
recursions in Table 3.

Adder1: Xi = Gi �1+Gi(Pi�1Qi�1+Pi�1Xi�1) (28)

Adder2: Xi = Pi �1+Pi(Pi�1Qi�1+Pi�1Xi�1) (29)

Adder3: Xi = Zi �1+Zi(Gi�1 �0+Gi�1Xi�1) (30)

Adder4: Xi = Pi �1+Pi(Gi�1 �0+Gi�1Xi�1) (31)

27

Adder 1 Adder 2 Adder 3 Adder 4

Recursion: Xi = Gi +Zi�1Xi�1 Pi +Zi�1Xi�1 Zi +Gi�1Xi�1 Pi +Gi�1Xi�1

Relation to carries: Xi = Gi +ci�1 Pi +ci�1 Zi +ci�1 Pi +ci�1

Sum output bit: di = Zi �Xi + Xi + (Gi �Xi) � Xi �

GiZi�1Xi�1 PiZi�1Xi�1 ZiGi�1Xi�1 PiGi�1Xi�1

Table 3: The four recursions derived by Doran [2].

where, Qi�1 can take any of the three values
fai�1;bi�1;Gi�1g.

Equation (28) was obtained by starting from the defini-
tion Xi = Gi + ci�1. From this, it is possible to obtain the
expressionXi = Gi +Gi�1+Zi�1ci�1. Substitutingci�1 =
Zi�1Xi�1, along withGi�1 = Pi�1Gi�1 andZi�1 = Pi�1Zi�1

yields the result. Equation (29) can be derived likewise.

Each of the above equations (28)–(31) can be imple-
mented as a cascade of two muxes, where the expression in
parenthesis is implemented by the first multiplexor, whose
output is one of the select lines of the second multiplexor.
In CMOS, it is possible (and might be advantageous) to use
AOI, OAI and complex gates instead of multiplexors; and
directly implement the fundamental recursion expressions
in Table 3. However, the main issue we are addressing is
not finding out the most efficient implementation of Doran’s
recursions. Rather, the relevant question is whether Doran-
style recursions can be realized using asingleMUX (if not,
then these recursions don’t ”fit” as well with MUX trees as
some other recursions identified above). To the best of our
knowledge, the answer is no.

This can be seen by exploring the generator equa-
tions underlying the above recursions. Following Doran’s
method of analysis, let

Xi = ψ(ai ;bi)ci�1+φ(ai;bi)ci�1 (32)

be the generic expression for the recursion variableX. Since
A+B= B+A, the functionsψ(ai ;bi) andφ(ai ;bi) must be
symmetric inai andbi . There are eight symmetric Boolean
functions ofai andbi which fall under two classes [2] as
shown next:

f1=aibi +aibi =Pi +0 f5=Pi =aibi +aibi

= f 1=Pi �1

f2=ai +bi =Pi +Gi f6=aibi = f 2=PiGi

f3=ai +bi =Pi +Zi f7=aibi = f 3=PiZi

f4=1=Pi +Pi f8=0= f 4=PiPi

Class I Pi � fi Class II Pi � f i (33)

It can be said thatPi � fi ; i = 1;2;3;4, i.e., wheneverPi = 1,
all the functionsf1; f2; f2; f4 are also 1. Likewise,Pi = 1 im-
plies that the remaining four functionsf5; f6; f7; f8 all take

the value 0 (f4 and f8 are constant functions and included
only for the sake of completeness. obviously, they are not
used anywhere).

Thus there are 64 pairs ofψ andφ functions and 64 pos-
sible recursions. Not all of these are useful: many of them
do not form an adder. In other words, for these definitions
of Xi , the final sum output bit cannot be retrieved fromXi

and operand bits at positioni (φ = ψ = 0, yieldingXi = 0
is such an example). Furthermore, it can be shown that if
ψ andφ belong to the same class (Class I or II in equation
(33) above), then the resultantXi does not form an adder [2].
That rules out 32 (16+16) possibilities. The remaining 32
recursions form adders (i.e., variableXi can be utilized in-
stead of the carry variable to express the fundamental carry
recursions). These recursions fall into two classes whose
generator equations are

Class I: Xi = (Pi +u)ci�1+vci�1 (34)

ci = Gi +PiXi = Gi +ZiXi (35)

= GiXi +ZiXi and

Class II: Xi = uci�1+(Pi +v)ci�1 (36)

ci = Gi +PiXi = Gi +ZiXi (37)

= GiXi +ZiXi

where, u;v2 f0;Zi ;Gi ;Pig (38)

We illustrate the analysis method for the first recurrence
only, the second recursion in equation (36) can be handled
in an identical manner. The first generator equation (34)
leads to the recursion

Xi = (Pi +u)
�
Zi�1Xi�1+Gi�1Xi�1)

�

+v
�
Zi�1Xi�1+Gi�1Xi�1

�

=
�
(Pi +u)Zi�1+vZi�1

�
Xi�1

+
�
(Pi +u)Gi�1+vGi�1

�
Xi�1 (39)

To enable multiplexor-based implementation, onlyXi�1 or
its complementXi�1, but not both, should appear in the
above recurrence. For illustration, consider the case in
which Xi�1 appears, and not it’s complement. This hap-
pens only if the term inXi�1 can be absorbed into the term
in Xi�1 in equation (39) above, which in turn happens if�
(Pi +u)Gi�1+vGi�1

�
�

�
(Pi +u)Zi�1+vZi�1

�

i.e., if

28

�
(Pi +u)Gi�1+vPi�1+vZi�1

�
�

�
(Pi +u)Gi�1+(Pi +u)Pi�1+vZi�1

�
(40)

after substitutingGi�1 = Pi�1+Zi�1 and
Zi�1 = Gi�1+Pi�1; the above holds if
vPi�1� (Pi +u)Pi�1

sinceGi�1;Pi�1 andZi�1 are disjoint, i.e., only one of them
can take the value 1. This condition finally leads to

v� Pi +u i.e., v� u since u;v� Pi (41)

This condition leads to the simplifications

Xi = v+(Pi +u)ci�1 and the recursion to

Xi = (Pi +u)Gi�1+v+[(Pi +u)Zi�1+v]Xi�1

= (Pi +u)Gi�1+v+[(Pi +u)Zi�1]Xi�1 (42)

The above expression can be implemented as a single multi-
plexor only if (Pi +u)Gi�1 can be expressed in the form

(Pi +u)Zi�1 �µ (43)

where µ can be some Boolean function of operand bits
fai;bi ;ai�1;bi�1g. For theu andv choices dictated by con-
straints (38) and (41) it can be verified that an expression
of the form required by (43) is not feasible, which leads to
the conclusion that Doran’s recursions cannot be expressed
using a single multiplexor.

In other words, involving operands from two bit posi-
tions (i and i � 1) in fundamental carry recursion expres-
sions may be beneficial if complex gates are to be used in
the hardware realization; however, it is not advantageous in
multiplexor-based implementations.

5. Conclusion

We investigated all possible two-bit encodings for the in-
termediate bit-wise variables in two operand addition and
identified the ones that enable fast and compact multiplexor-
based implementations. This analysis shows that adopting
an intermediate signed-digit representation simply amounts
to selecting one of the possible encodings. This was demon-
strated via a one-to-one correspondence between the two
schemes. It is intuitively clear that carry-save, carry-sum,
stored carry/borrow and other types of schemes will also
turn out to be equivalent to conventional adders, i.e., every
encoding in our table will correspond to some encoding in
each of those schemes.

Doran has proposed a general framework for look-ahead
recursions leading to several variants of look-ahead adders
that were faster to implement (in the technology in-vogue at
that time). We examined those variants and found that they
do not enable efficient multiplexor-based implementations.

References

[1] R. P. Brent and H. T. Kung. A regular layout for paral-
lel adders.IEEE Trans. on Computers, TC-31(3):260–264,
Mar. 1982.

[2] R. W. Doran. Variants of an improved carry look-ahead
adder. IEEE Trans. on Computers, 37:1110–1113, Sept.
1988.

[3] V. Kantabutra. A recursive carry–look–ahead/carry–select
hybrid adder. IEEE Trans. on Computers, 42(12):1495–
1499, Dec. 1993.

[4] I. Koren. Computer Arithmetic Algorithms. Brookside Court
Publishers, Amherst, Massachusetts, 1998.

[5] S. Kuninobu, T. Nishiyama, H. Edamatsu, T. Taniguchi, and
N. Takagi. Design of high speed MOS multiplier and divider
using redundant binary representation.Proc. of the 8th Sym-
posium on Computer Arithmetic, pages 80–86, 1987.

[6] H. Ling. High-speed binary adder.IBM Journal of Research
and Development, 25:156–166, May 1981.

[7] T. Lynch and E. E. Swartzlander. A Spanning Tree Carry
Lookahead Adder.IEEE Trans. on Computers, 41(8):931–
939, Aug. 1992.

[8] M. Suzuki and Ohkubo, N., et. al. A 1.5-ns 32-b CMOS
ALU in Double Pass-Transistor Logic.IEEE Journal of
Solid-State Circuits, 28(11):1145–1150, Nov. 1993.

[9] C. Nagendra, R. M. Owens, and M. J. Irwin. Unify-
ing Carry-Sum and Signed-Digit Number Representations.
Technical Report CSE–96–036, Computer Science and En-
gineering Department, Pennsylvania State University, 1996.

[10] V. Oklobdzija. Simple and Efficient CMOS Circuit for Fast
VLSI Adder Realization. InProf. of IEEE Int. Sym. on Cir-
cuits and Systems (ISCAS’88), volume I, pages 235–238,
1988.

[11] T. Sato, M. Sakate, H. Okada, T. Sukemura, and G. Goto.
An 8.5-ns 112-b Transmission Gate Adder with a Conflict-
Free Bypass Circuit.IEEE Journal of Solid State Circuits,
27(4):657–659, April 1992.

[12] H. R. Srinivas and K. K. Parhi. A fast VLSI adder architec-
ture. IEEE Journal of Solid-State Circuits, SC-27:761–767,
May 1992.

[13] S. M. Yen, C. S. Laih, C. H. Chen, and J. Y. Lee. An Ef-
ficient Redundant–Binary Number to Binary Number Con-
verter. IEEE Journal of Solid State Circuits, SC-27(1):109–
112, Jan. 1992.

29

