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ABSTRACT

The encoding problem [1] is an important canonical problem. It has widely been used as a
benchmark. Here, we have analytically derived minimal-sized nets necessary and sufficient
to solve encoding problems of arbitrary size. The proofs are constructive: we construct
n — 2 —n encoders and show that 2 hidden units are also necessary for n > 2. Moreover, the
geometrical approach employed is general and has much wider applications. For example,
this method has also helped us derive lower bounds on redundancy necessary for achieving

complete fault tolerance [2, 3].

1 Introduction

The encoding problem is an important canonical problem for neural networks [1]. In this
problem, a set of orthogonal input patterns are mapped onto a set of orthogonal output patterns
through a (small) set of hidden units. Typically, the inputs and outputs are assumed to be binary.
There are n input units; n output units and m hidden units where m =~ log, n . The hidden units
are generally arranged in a single layer resulting in three layers of units. There are n input/output
patterns. The hidden units are expected to form some sort of compact code for each of the
patterns. Henceforth, we refer to an encoding problem of size n by the acronym n x n problem
and a net for a problem of this size that has m hidden units as an n — m — n encoding net.

The inputs and outputs of the units are continuous valued. That raises the question : are
log,n  hidden units necessary to solve an n x n problem 7 If less units can do the job, what is

the minimum number of units needed for an n x n encoding problem ?

We have analytically derived this minimum number of hidden units and established the ca-
pabilities of n — m — n encoding nets. The next section describes the topology and states the
assumptions. Section III presents and proves the results on the bounds and related parameters.

The following sections present discussion and conclusion.

x Appears in Neural Computation, vol. 5, no. 5, Sept. 1993, pp 783-794.
1 D. S. Phatak is now with the EE Department, State Univ. of New York, Binghamton, NY 13790-6000



I1 Topology

The network is arranged into 3 layers as shown in Figure 1. Every unit in a layer feeds all other
units in the next layer. There are no layer-skipping connections. Besides the incoming weights,
each unit (in the hidden and output layers) has one more independently adjustable parameter,

i.e., threshold or bias. The units are assumed to be sigmoidal and the output of the ith unit is

given by
output; = S(resultant_input;)  where  S(u) = ﬁ and
1+e
resultant_anput; = netinput; — bias; and netinput; = Z;-:l W;;0; (1)

Here, r is the number of units that feed unit ¢ and w;; is the weight of the link from unit j (sender)
to i (receiver). The output is considered to be on or at logical level “1” if it is greater than
or equal to 0.50 ; and off or at level “0” if it is less than 0.50 . The input patterns are the
rows of n x n identity matrix. The target outputs are identical to the inputs, i.e., the hidden
units are expected to simply replicate the input pattern onto the output layer. The hidden layer
encodes each of the n patterns with m < n units and the output layer decodes the compact codes
developed by the hidden units back to original patterns.

I11 Results

With the above topology and assumptions we now proceed to state the following results.

Theorem 1 : An encoding net with one single hidden unit (i.e., m = 1) can learn at most

2 x 2 encoding problem.

Proof : That it can learn 1 x 1 and 2 x 2 problems can be demonstrated by giving an example.
In Figure 2, a 2 — 1 — 2 net is illustrated along with all the weights and biases. Unit numbers are
shown in parenthesis and the bias values are indicated inside the circles representing the units.
Units 4 and 5 constitute the input layer and 1 and 2 belong to the output layer. It can be verified
that wg = wy =0y = by =5.0; w; =wy =10.0 along with the signs indicated in the figure lead
to correct reproduction of the two input patterns (viz. {1,0} and {0,1}) at the output layer. This

is one of the infinitely many sets of weight and bias values that lead to correct outputs.

We now prove that it is impossible to reproduce 3 x 3 patterns using only one hidden unit.
Here, the hidden unit must have 3 distinct outputs, one corresponding to each of the 3 input
patterns, otherwise the output units can not distinguish between those patterns that map onto
the same output value of the hidden unit. Denote the 3 distinct outputs of the hidden unit as
01,09 and o3 respectively, where without loss of generality, o; > 0y > 03 . Let the weights from
the hidden units to the output units be wy, ws and ws and biases of the output units be 6, 5 and
03, respectively. Then, the resultant input to the ith output unit (denoted by ;) is given by

y; = w;x — 6; where 1=1,2,3 and 1z = 01,09,0;3 (2)



Here, = denotes the output of hidden unit(s). Note that the functions

1 .
fi(z) = Slyi(x)] = T (w0 where i =1,2,3 and x = 01,09, 03 (3)

are monotonic. Without loss of generality, the input patterns are assumed to be {1,0,0}, {0,1,0},
and {0,0,1}. These same patterns should be reproduced at the output, which implies

filo1) =177 fi(oo) = “07; fi(o3) = “07, e, fi(o1) >0.5; fi(o2) <0.5 fi(o3) <05 (4)
f2(01) = “0”; f2(02) == “1”; f2(03) == “0”, i.e., f2(01) < 05 fQ(OQ) > 05, f2(03) < 0.5 (5)
fs(01) = 707y f3(00) = “07; fi(o3) = “17, e, fi(o1) <0.5; fi(02) < 0.5 fi(o3) >0.5 (6)

From (3) it is seen that constraints (4) and (6) can be satisfied since they obey monotonicity.
Constraints (5), however, cannot be satisfied since the function on the left-hand side is monotonic
while the required outputs on the right—hand side are not monotonic. It can be verified that for
any permutation of input patterns and output values, the constraints on one of the three units
are impossible to satisfy since the inputs to that unit are monotonic but the target outputs are

not monotonic. Thus the 3 x 3 problem cannot be solved by just one hidden unit.

The proof for the n x n sized problem with n > 3 is identical to the above proof for 3 x 3 case.
Q.E.D.

There is a geometrical interpretation of the above result which is illustrated in Figure 3. This
interpretation is critical for the proof of the next theorem which establishes a bound for the general
n X n problem. For a 2 — 1 — 2 net, the output of the hidden unit corresponding to each of
the (input) patterns can be represented by a point along 1 dimension or a line. Without loss of
generality, Choose that line to be the x axis. Then, the output of the hidden unit corresponding
to each of the 2 input patterns is a point between [0,1] on the z axis, as illustrated by points P;
and P, in Figure 3. Because of the one-to—one mapping from the input patterns to the points
representing the outputs of hidden units, the symbols P; and P, will also be used to refer to the
patterns. The resultant input to the ith unit is given by equation (2), where i = 1,2 and w;
and #; are the weight and bias associated with the ith unit. Note that these equations represent
straight lines (hyperplanes in general) in the z-y plane, as illustrated by lines [; and [y in Figure 3.
Henceforth, we just use the labels 1 and 2 to refer to the output units as well as the corresponding
lines (hyperplanes) implemented by the units. A point z is considered to be on the positive side
of the line y = wx — 0 if wxy— 0 > 0; and on the negative side of the line if wzy — 60 < 0. For
example, in Figure 3, all points (on the x axis) to the right of point Q are on the positive side of line
1 and on the negative side of line l5. The vertical distance P; A between point P; and the line [;
represents the resultant_input to output unit 1 for pattern P;. Similarly, distance P; B represents
the resultant_input to unit 2 for pattern P;. It is useful to think of directed distance from the
points Pj, P, to lines [y, ly. If the direction is upwards (along +y axis), then the corresponding
resultant_input is positive (i.e., the output of the unit is “1” ), while a downwards (along —y

axis) distance implies a negative resultant_input ( “0” output). For the patterns (points) on the



positive side of the line, the resultant input to the corresponding unit is positive and the unit
output is on or “1” . Conversely, a unit is on only if the pattern lies on the positive side of the
line it implements. Similarly, a unit is off if and only if the pattern lies on the negative side of

the line corresponding to the unit.

Learning implies finding weights and biases that satisfy the constraints

y1(o1) >0 ; yi(02) <0 5 yalo1) <0 ; y2(02) >0 (7)

The first two inequalities say that points P; and P, must be on positive and negative sides of
line {1, because unit 1 should be on for pattern 1 and off for pattern 2. The interpretation of the
last two inequalities is similar. Together, the constraints imply that both lines [; and [y intersect
the z axis between P; and P, and that one of them has a positive slope and the other has a
negative slope. Figure 3 illustrates a case where the points Py, P, and lines [y, [; satisfy the above
constraints. In this figure, both [, and [, intersect the x axis at the same point (). In general, this
may not be the case, as long as the constraints are satisfied.

In general, learning implies constraints similar to (7). The constraints are such that

1. An output unit is on for only one pattern. This means that the weight(s) and bias associated
with that unit define a hyperplane which is such that only one of the points P; is on its positive

side, all others are on its negative side.

2. Each point P, is such that for the corresponding input pattern, only one output unit is on
and this unit stays off for all other input patterns. This means that each of the points P; it

is on the positive side of exactly one hyperplane and on the negative side of all others.

In Figure 3, P, is on positive side of only one line viz. [ and P, is on positive side of only one
line viz. ly . Similarly line /; has only one point on its positive side viz. P; and line Iy has only

one point on its positive side viz. Ps.

For the n x n encoding problem, it may be expected that the minimum number of hidden units
required is a function of n. Contrary to this expectation, however, it turns out that only 2 hidden
units are sufficient to solve any n x n problem for arbitrarily large n.

Theorem 2 : Only 2 hidden units are sufficient to encode and decode n x n patterns for any

positive integer n.

Proof : We prove this by a geometrical construction similar to the one illustrated above for the
2 — 1 — 2 case. Here the network is n — 2 — n, i.e., there are n input units, 2 hidden units and n
output units. For each input pattern, the hidden units develop outputs that can be represented
by a distinct point in the x-y plane, where the x coordinate denotes the output of the 1st hidden
unit and the y coordinate denotes the output of the 2nd hidden unit. These points are denoted
by P, ; 1=1,2..n.

The hidden units feed all the output units. Let the weight associated with the link between
hidden unit 1 and output unit i be denoted by w, . The weight from hidden unit 2 to output unit



i is denoted by w?. Let the bias of the output unit i be denoted by ;. Then, the resultant input
to the ith output unit (denoted by z;) is given by

zi = w;x +wly — 0 where i=1,---,n and (v,y)= (0},0}), -, (0}, 02) (8)

nn

Here, x and y correspond to the axes or dimensions representing the outputs of the hidden units,
and z represents the dimension that corresponds to the resultant_input to the output units.
These equations represent (hyper) planes in the 3-D space and that will henceforth be denoted by
IT; wherei=1,---,n. These planes are the decision surfaces implemented by the corresponding

units. We say that a point (zg, yo) is on the positive side of plane II; if
20 = w;xg + wiyo — 0; > 0 (9)

and on the negative side if

2o = w,; g +wiyy —0; <0 (10)

In order to map the input patterns onto the output patterns, the points P, and the planes II;
have to satisfy constraints similar to those listed above in the exposition on geometrical interpre-
tation. Once again we observe that each plane II; defines the output of one of the units in the
output layer, and each of the points P, corresponds to a pattern. An output unit is on only for
one of the n patterns and off for others. Similarly, each pattern has exactly one output unit on

and all others off . These constraints can be geometrically interpreted as follows :

1. Each plane II; has only one point on its positive side, all other points are on its negative
side.

2. Each point P is on the positive side of only one plane and on the negative side of all other

planes.

If there exist points P, and planes II; ; 4,k = 1,2..,n that satisfy the above constraints, then
they constitute a valid solution for the n x n problem using only 2 hidden units. Figure 4 shows
the geometrical construction that proves the existence of such solution(s). It shows a 6 —2 — 6

case for the purpose of illustration, but the procedure can be applied to any n — 2 — n problem.

As a first step toward the solution of the n — 2 — n problem, a regular polygon of n sides is
constructed in the z-y plane. This is illustrated by the hexagon with vertices (a,b,c,d,e,f) drawn in
solid linestyle in Figure 4. Next, every edge is extended beyond the vertex up to a point where it
meets the extension of some other edge of the polygon, so that (isoceles) triangles are obtained on
the exterior of the original polygon, with the edges of the polygon as the bases of these triangles.
This is illustrated by the shaded triangles in Figure 4. Now consider the original polygon as
the base of a pyramid or a cross section of the pyramid along the z-y plane. The faces of the
pyramid intersect at a point directly (vertically) below (along the —z direction) the center of the

circumcircle of the polygon. In Figure 4, for example, the center of the circumcircle is labeled



as V. The vertex of the hexagonal pyramid lies directly (vertically) below the point V (i.e., on a
line in the —z direction, directed into the page from point V). The n faces of the pyramid define
the n planes II;. The points P, have to be located within the isoceles triangles on the exterior
of the polygon in the z-y plane, in order to satisfy the two constraints mentioned above. One
point is placed inside each triangle, as illustrated by points Py, - - -, Py inside the shaded triangles
in Figure 4.

With this construction, each plane II; is such that only one point is on its positive side and
all other points are on its negative side. For example, in Figure 4, the plane II; passing through
the vertex of the pyramid and edge ab is such that only one point, viz., P; is on its positive side
while all others are on its negative side. Similarly, each point is on positive side of exactly one
plane and negative side of all others. In Figure 4, for example, point P, is on the positive side of
plane Iy only, and is on the negative side of all other planes.

Thus the points and planes satisfy all the above constraints and represent a valid solution.
The outputs of all the units have to be in [0,1]. This means that the entire diagram should be
within the unit square in the z-y plane, which is bounded by vertices (0,0), (0,1), (1,0), (1,1).
This is always possible to do since the polygon can be shrunk to any desired size so that the entire
diagram can fit inside the unit square. This proves that a solution (in fact infinitely many of

them) always exists to the n — 2 — n problem and can be obtained by the above construction.

Q.E.D.
| AY Discussion

Above results hold for the complementary encoding problem (0’s and 1’s are interchanged) as
well. For a complementary encoding problem, the vertex of the pyramid in the above construction
lies directly (vertically) above the circumcenter V, which is in the z-y plane. Also note that the

I/O patterns for the complementary encoding problem are not mutually orthogonal.

In the above construction, the points corresponding to the outputs of the hidden units must
lie within the triangles formed on the edges of the polygon. Hence the area of the triangles is, in a
crude sense, related to the probability of finding a valid solution. The larger the area, the higher
is the probability that the gradient descent will latch on to a valid solution. Note that the outputs
of the hidden units are confined to be between two circles, viz., an inner circle which touches (is
tangent to) each edge of the polygon and an outer circle that passes through the tips of all the
triangles on the exterior of the polygon. Both these circles are drawn in dotted linestyle in Figure
4. For a given n, the triangles have the largest area when the outer circle is as large as possible,
i.e. it touches the edges of unit square in the x — y plane. Hence the net is more likely to hit upon
this solution. This is consistent with the observation that neural nets tend to stabilize at vertices
or corners of the solution space.

As n — oo , the circles approach each other and in the limit they coincide. This means that
the volume (area in this case) of the solution space approaches 0 and therefore, the probability

that the search algorithm converges to a valid solution also approaches 0, as expected.



The distance (along the z direction) between the point P, and the corresponding plane II,
represents the resultant input to a unit. In the limit as n — oo , the points P; approach planes
IT;, and the vertical distance between the planes and the points approaches 0 as well. This means
that the resultant inputs to the output units approaches 0. Hence the outputs of units that
are on approach 0.5 from above, i.e., output values indicating a logical level “17 — 0.5+
and the outputs of the units that are off approach the limit 0.5 from the other side, i.e., logical

“0” — 0.5—

If the output tolerances are are specified (for example a “1” cannot be below 0.75 and a
“0” cannot be above 0.25) then, in the above construction, it is possible to find out the maximum
value of n that will deliver the outputs within the desired tolerances, for a given m. Conversely,
given an n, the number of hidden units m required to deliver the outputs within the specified
tolerance can be also calculated from the above construction.

If n < 4, the “allowable” regions for the points P; are no longer triangles since the edges
of a regular polygon with n < 4 sides when extended beyond the vertices, do not intersect the

extensions of any of the other edges.

It should also be noted that in the above construction, the polygon need not be regular. If the
polygon is not regular, however, some of the “allowable” areas shrink and others expand. Also, the
planes Pi; need not intersect at the same point or need not form a pyramid, as long the relative

placement of the planes and the points satisfy the two constraints mentioned above.

The unbounded allowable areas for points P; that arise due to n < 4 or due to irregularity of
the underlying polygon, as well as the asymmetry in allowable areas that arises when the polygon
is irregular is illustrated in Figure 5. Note that the construction remains the same in all these
cases. The points P; still have to be in the regions exterior to the polygon, and between the lines
obtained by extending the edges of the polygon beyond the vertices. This is illustrated by the
shaded regions in Figure 5. If the quadrilateral shown in Figure 5 was regular, i.e., it was a square,
then all the “allowable” regions for points P; would be identical in shape and unbounded on one
side. Because the quadrilateral is irregular, some allowable regions have shrunk and others have
grown. For example, the shaded region to the left of plane II, has shrunk from a rectangular
strip unbounded on left side, to a bounded and triangular region shown in the figure. Similarly
the shaded region to the right of II, has expanded from a rectangular strip to to an unbounded
quadrilateral.

It seems that the symmetric solution is more fault tolerant. The reasoning is as follows. The
edges and planes of the polygon can be jiggled without changing the classification or logical output
of the network. This corresponds to changing the weights and biases of the units represented by
the planes. How much change is allowed in the weight and bias values depends on n and other
factors. For the symmetric solution, it is evident that whatever tolerance applies to a point or
a plane also applies to all other points or planes. In contrast, if the polygon is not regular or
if the planes do not form a pyramid, then some points and planes must be confined to smaller
tolerances (smaller than the corresponding one in the symmetric case) while others can have larger



tolerance. The total amount of deviation allowed can be measured by the volume enclosed between
the original positions of the planes and the extreme positions after large deviations in parameters
(or faults), at which the solution (relative placement of planes and points) still satisfies the above
constraints. It is conjectured that the total of such “fault—tolerance volumes” is maximum for the

symmetric case, or in other words, a symmetric solution is more fault—tolerant.
A\ Conclusion

Bounds have been established for the solution of the encoding problem using a feedforward
network with one layer of hidden units. Existence of solution(s) is demonstrated by constructive
proofs, leading to the actual solutions. The discussion reveals interesting connections to limiting
cases, fault tolerance, probability of finding a valid solution and other issues. The geometrical
interpretation is general and applicable to other problems as well. For instance, this approach
was employed in [2, 3]. to derive lower bounds on the redundancy necessary to achieve complete
fault tolerance for all single faults. The encoding problem directly reflects on the ability of the net
to develop distributed representations among the hidden units and map them back onto localized
representations on the output units. These results will possibly help to define a meaningful measure
of the distributedness of representations.
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Output layer, n units

Hidden layer, m units

Input layer, n units

Figure 1: An n — m —n encoding net.



(1) (2)

(4) (5)

Figure 2: A 2—1—2 encoding net with weights and biases
w; and b; > 0 for all 7. Unit indices are shown in parenthesis.
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Figure 3 : A geometrical interpretation of the 2 — 1 — 2 encoding problem.
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Figure 4 : The geometrical construction to obtain the weights and biases fora 6 —2 — 6
(or n—2—n in general) encoding net.
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Figure 5 : The construction for the case when n < 4 and the polygon is not regular.
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