
Construction of Minimal n{2{n Encoders for Any n �D. S. Phataky H. Choi and I. KorenDepartment of Electrical and Computer EngineeringUniversity of Massachusetts, Amherst, MA 01003ABSTRACTThe encoding problem [1] is an important canonical problem. It has widely been used as abenchmark. Here, we have analytically derived minimal{sized nets necessary and su�cientto solve encoding problems of arbitrary size. The proofs are constructive: we constructn� 2�n encoders and show that 2 hidden units are also necessary for n > 2. Moreover, thegeometrical approach employed is general and has much wider applications. For example,this method has also helped us derive lower bounds on redundancy necessary for achievingcomplete fault tolerance [2, 3].I IntroductionThe encoding problem is an important canonical problem for neural networks [1]. In thisproblem, a set of orthogonal input patterns are mapped onto a set of orthogonal output patternsthrough a (small) set of hidden units. Typically, the inputs and outputs are assumed to be binary.There are n input units; n output units and m hidden units where m � log2 n . The hidden unitsare generally arranged in a single layer resulting in three layers of units. There are n input/outputpatterns. The hidden units are expected to form some sort of compact code for each of thepatterns. Henceforth, we refer to an encoding problem of size n by the acronym n � n problemand a net for a problem of this size that has m hidden units as an n�m� n encoding net.The inputs and outputs of the units are continuous valued. That raises the question : arelog2 n hidden units necessary to solve an n � n problem ? If less units can do the job, what isthe minimum number of units needed for an n� n encoding problem ?We have analytically derived this minimum number of hidden units and established the ca-pabilities of n � m � n encoding nets. The next section describes the topology and states theassumptions. Section III presents and proves the results on the bounds and related parameters.The following sections present discussion and conclusion.� Appears in Neural Computation, vol. 5, no. 5, Sept. 1993, pp 783-794.y D. S. Phatak is now with the EE Department, State Univ. of New York, Binghamton, NY 13790-6000



II TopologyThe network is arranged into 3 layers as shown in Figure 1. Every unit in a layer feeds all otherunits in the next layer. There are no layer-skipping connections. Besides the incoming weights,each unit (in the hidden and output layers) has one more independently adjustable parameter,i.e., threshold or bias. The units are assumed to be sigmoidal and the output of the ith unit isgiven byoutputi = S(resultant inputi) where S(u) = 11 + e�u andresultant inputi = netinputi � biasi and netinputi = Prj=1 wijoj (1)Here, r is the number of units that feed unit i and wij is the weight of the link from unit j (sender)to i (receiver). The output is considered to be on or at logical level \1" if it is greater thanor equal to 0.50 ; and o� or at level \0" if it is less than 0.50 . The input patterns are therows of n � n identity matrix. The target outputs are identical to the inputs, i.e., the hiddenunits are expected to simply replicate the input pattern onto the output layer. The hidden layerencodes each of the n patterns with m < n units and the output layer decodes the compact codesdeveloped by the hidden units back to original patterns.III ResultsWith the above topology and assumptions we now proceed to state the following results.Theorem 1 : An encoding net with one single hidden unit (i.e., m = 1) can learn at most2 � 2 encoding problem.Proof : That it can learn 1� 1 and 2� 2 problems can be demonstrated by giving an example.In Figure 2, a 2� 1� 2 net is illustrated along with all the weights and biases. Unit numbers areshown in parenthesis and the bias values are indicated inside the circles representing the units.Units 4 and 5 constitute the input layer and 1 and 2 belong to the output layer. It can be veri�edthat w3 = w4 = b1 = b2 = 5:0; w1 = w2 = 10:0 along with the signs indicated in the �gure leadto correct reproduction of the two input patterns (viz. f1,0g and f0,1g) at the output layer. Thisis one of the in�nitely many sets of weight and bias values that lead to correct outputs.We now prove that it is impossible to reproduce 3 � 3 patterns using only one hidden unit.Here, the hidden unit must have 3 distinct outputs, one corresponding to each of the 3 inputpatterns, otherwise the output units can not distinguish between those patterns that map ontothe same output value of the hidden unit. Denote the 3 distinct outputs of the hidden unit aso1; o2 and o3 respectively, where without loss of generality, o1 > o2 > o3 . Let the weights fromthe hidden units to the output units be w1; w2 and w3 and biases of the output units be �1; �2 and�3, respectively. Then, the resultant input to the ith output unit (denoted by yi) is given byyi = wix� �i where i = 1; 2; 3 and x = o1; o2; o3 (2)
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Here, x denotes the output of hidden unit(s). Note that the functionsfi(x) = S[yi(x)] = 11 + e�(wix� �i) where i = 1; 2; 3 and x = o1; o2; o3 (3)are monotonic. Without loss of generality, the input patterns are assumed to be f1,0,0g, f0,1,0g,and f0,0,1g. These same patterns should be reproduced at the output, which impliesf1(o1) = \1"; f1(o2) = \0"; f1(o3) = \0"; i.e., f1(o1) > 0:5; f1(o2) < 0:5; f1(o3) < 0:5 (4)f2(o1) = \0"; f2(o2) = \1"; f2(o3) = \0"; i.e., f2(o1) < 0:5; f2(o2) > 0:5; f2(o3) < 0:5 (5)f3(o1) = \0"; f3(o2) = \0"; f3(o3) = \1"; i.e., f3(o1) < 0:5; f3(o2) < 0:5; f3(o3) > 0:5 (6)From (3) it is seen that constraints (4) and (6) can be satis�ed since they obey monotonicity.Constraints (5), however, cannot be satis�ed since the function on the left{hand side is monotonicwhile the required outputs on the right{hand side are not monotonic. It can be veri�ed that forany permutation of input patterns and output values, the constraints on one of the three unitsare impossible to satisfy since the inputs to that unit are monotonic but the target outputs arenot monotonic. Thus the 3� 3 problem cannot be solved by just one hidden unit.The proof for the n�n sized problem with n > 3 is identical to the above proof for 3� 3 case.Q.E.D.There is a geometrical interpretation of the above result which is illustrated in Figure 3. Thisinterpretation is critical for the proof of the next theorem which establishes a bound for the generaln � n problem. For a 2 � 1 � 2 net, the output of the hidden unit corresponding to each ofthe (input) patterns can be represented by a point along 1 dimension or a line. Without loss ofgenerality, Choose that line to be the x axis. Then, the output of the hidden unit correspondingto each of the 2 input patterns is a point between [0,1] on the x axis, as illustrated by points P1and P2 in Figure 3. Because of the one{to{one mapping from the input patterns to the pointsrepresenting the outputs of hidden units, the symbols P1 and P2 will also be used to refer to thepatterns. The resultant input to the ith unit is given by equation (2), where i = 1; 2 and wiand �i are the weight and bias associated with the ith unit. Note that these equations representstraight lines (hyperplanes in general) in the x-y plane, as illustrated by lines l1 and l2 in Figure 3.Henceforth, we just use the labels 1 and 2 to refer to the output units as well as the correspondinglines (hyperplanes) implemented by the units. A point x0 is considered to be on the positive sideof the line y = wx� � if wx0 � � > 0; and on the negative side of the line if wx0 � � < 0. Forexample, in Figure 3, all points (on the x axis) to the right of point Q are on the positive side of linel1 and on the negative side of line l2. The vertical distance P1A between point P1 and the line l1represents the resultant input to output unit 1 for pattern P1. Similarly, distance P1B representsthe resultant input to unit 2 for pattern P1. It is useful to think of directed distance from thepoints P1; P2 to lines l1; l2. If the direction is upwards (along +y axis), then the correspondingresultant input is positive (i.e., the output of the unit is \1" ), while a downwards (along �yaxis) distance implies a negative resultant input ( \0" output). For the patterns (points) on the3



positive side of the line, the resultant input to the corresponding unit is positive and the unitoutput is on or \1" . Conversely, a unit is on only if the pattern lies on the positive side of theline it implements. Similarly, a unit is o� if and only if the pattern lies on the negative side ofthe line corresponding to the unit.Learning implies �nding weights and biases that satisfy the constraintsy1(o1) > 0 ; y1(o2) < 0 ; y2(o1) < 0 ; y2(o2) > 0 (7)The �rst two inequalities say that points P1 and P2 must be on positive and negative sides ofline l1, because unit 1 should be on for pattern 1 and o� for pattern 2. The interpretation of thelast two inequalities is similar. Together, the constraints imply that both lines l1 and l2 intersectthe x axis between P1 and P2 and that one of them has a positive slope and the other has anegative slope. Figure 3 illustrates a case where the points P1; P2 and lines l1; l2 satisfy the aboveconstraints. In this �gure, both l1 and l2 intersect the x axis at the same point Q. In general, thismay not be the case, as long as the constraints are satis�ed.In general, learning implies constraints similar to (7). The constraints are such that1. An output unit is on for only one pattern. This means that the weight(s) and bias associatedwith that unit de�ne a hyperplane which is such that only one of the points Pi is on its positiveside, all others are on its negative side.2. Each point Pi is such that for the corresponding input pattern, only one output unit is onand this unit stays o� for all other input patterns. This means that each of the points Pi itis on the positive side of exactly one hyperplane and on the negative side of all others.In Figure 3, P1 is on positive side of only one line viz. l1 and P2 is on positive side of only oneline viz. l2 . Similarly line l1 has only one point on its positive side viz. P1 and line l2 has onlyone point on its positive side viz. P2.For the n�n encoding problem, it may be expected that the minimum number of hidden unitsrequired is a function of n. Contrary to this expectation, however, it turns out that only 2 hiddenunits are su�cient to solve any n� n problem for arbitrarily large n.Theorem 2 : Only 2 hidden units are su�cient to encode and decode n � n patterns for anypositive integer n.Proof : We prove this by a geometrical construction similar to the one illustrated above for the2� 1� 2 case. Here the network is n� 2� n, i.e., there are n input units, 2 hidden units and noutput units. For each input pattern, the hidden units develop outputs that can be representedby a distinct point in the x-y plane, where the x coordinate denotes the output of the 1st hiddenunit and the y coordinate denotes the output of the 2nd hidden unit. These points are denotedby Pi ; i = 1; 2::n .The hidden units feed all the output units. Let the weight associated with the link betweenhidden unit 1 and output unit i be denoted by w1i . The weight from hidden unit 2 to output unit4



i is denoted by w2i . Let the bias of the output unit i be denoted by �i. Then, the resultant inputto the ith output unit (denoted by zi) is given byzi = w1i x+ w2i y � �i where i = 1; � � � ; n and (x; y) = (o11; o21); � � � ; (o1n; o2n) (8)Here, x and y correspond to the axes or dimensions representing the outputs of the hidden units,and z represents the dimension that corresponds to the resultant input to the output units.These equations represent (hyper) planes in the 3-D space and that will henceforth be denoted by�i where i = 1; � � � ; n. These planes are the decision surfaces implemented by the correspondingunits. We say that a point (x0; y0) is on the positive side of plane �i ifz0 = w1i x0 + w2i y0 � �i > 0 (9)and on the negative side ifz0 = w1i x0 + w2i y0 � �i < 0 (10)In order to map the input patterns onto the output patterns, the points Pk and the planes �ihave to satisfy constraints similar to those listed above in the exposition on geometrical interpre-tation. Once again we observe that each plane �i de�nes the output of one of the units in theoutput layer, and each of the points Pk corresponds to a pattern. An output unit is on only forone of the n patterns and o� for others. Similarly, each pattern has exactly one output unit onand all others o� . These constraints can be geometrically interpreted as follows :1. Each plane �i has only one point on its positive side, all other points are on its negativeside.2. Each point Pk is on the positive side of only one plane and on the negative side of all otherplanes.If there exist points Pk and planes �i ; i; k = 1; 2::; n that satisfy the above constraints, thenthey constitute a valid solution for the n� n problem using only 2 hidden units. Figure 4 showsthe geometrical construction that proves the existence of such solution(s). It shows a 6 � 2 � 6case for the purpose of illustration, but the procedure can be applied to any n� 2� n problem.As a �rst step toward the solution of the n � 2 � n problem, a regular polygon of n sides isconstructed in the x-y plane. This is illustrated by the hexagon with vertices (a,b,c,d,e,f) drawn insolid linestyle in Figure 4. Next, every edge is extended beyond the vertex up to a point where itmeets the extension of some other edge of the polygon, so that (isoceles) triangles are obtained onthe exterior of the original polygon, with the edges of the polygon as the bases of these triangles.This is illustrated by the shaded triangles in Figure 4. Now consider the original polygon asthe base of a pyramid or a cross section of the pyramid along the x-y plane. The faces of thepyramid intersect at a point directly (vertically) below (along the �z direction) the center of thecircumcircle of the polygon. In Figure 4, for example, the center of the circumcircle is labeled5



as V. The vertex of the hexagonal pyramid lies directly (vertically) below the point V (i.e., on aline in the �z direction, directed into the page from point V). The n faces of the pyramid de�nethe n planes �i. The points Pk have to be located within the isoceles triangles on the exteriorof the polygon in the x-y plane, in order to satisfy the two constraints mentioned above. Onepoint is placed inside each triangle, as illustrated by points P1; � � � ; P6 inside the shaded trianglesin Figure 4.With this construction, each plane �i is such that only one point is on its positive side andall other points are on its negative side. For example, in Figure 4, the plane �1 passing throughthe vertex of the pyramid and edge ab is such that only one point, viz., P1 is on its positive sidewhile all others are on its negative side. Similarly, each point is on positive side of exactly oneplane and negative side of all others. In Figure 4, for example, point P2 is on the positive side ofplane �2 only, and is on the negative side of all other planes.Thus the points and planes satisfy all the above constraints and represent a valid solution.The outputs of all the units have to be in [0,1]. This means that the entire diagram should bewithin the unit square in the x-y plane, which is bounded by vertices (0,0), (0,1), (1,0), (1,1).This is always possible to do since the polygon can be shrunk to any desired size so that the entirediagram can �t inside the unit square. This proves that a solution (in fact in�nitely many ofthem) always exists to the n� 2� n problem and can be obtained by the above construction.Q.E.D.IV DiscussionAbove results hold for the complementary encoding problem (0's and 1's are interchanged) aswell. For a complementary encoding problem, the vertex of the pyramid in the above constructionlies directly (vertically) above the circumcenter V, which is in the x-y plane. Also note that theI/O patterns for the complementary encoding problem are not mutually orthogonal.In the above construction, the points corresponding to the outputs of the hidden units mustlie within the triangles formed on the edges of the polygon. Hence the area of the triangles is, in acrude sense, related to the probability of �nding a valid solution. The larger the area, the higheris the probability that the gradient descent will latch on to a valid solution. Note that the outputsof the hidden units are con�ned to be between two circles, viz., an inner circle which touches (istangent to) each edge of the polygon and an outer circle that passes through the tips of all thetriangles on the exterior of the polygon. Both these circles are drawn in dotted linestyle in Figure4. For a given n, the triangles have the largest area when the outer circle is as large as possible,i.e. it touches the edges of unit square in the x�y plane. Hence the net is more likely to hit uponthis solution. This is consistent with the observation that neural nets tend to stabilize at verticesor corners of the solution space.As n!1 , the circles approach each other and in the limit they coincide. This means thatthe volume (area in this case) of the solution space approaches 0 and therefore, the probabilitythat the search algorithm converges to a valid solution also approaches 0, as expected.6



The distance (along the z direction) between the point Pr and the corresponding plane �rrepresents the resultant input to a unit. In the limit as n!1 , the points Pi approach planes�i and the vertical distance between the planes and the points approaches 0 as well. This meansthat the resultant inputs to the output units approaches 0. Hence the outputs of units thatare on approach 0.5 from above, i.e., output values indicating a logical level \1" ! 0:5+and the outputs of the units that are o� approach the limit 0.5 from the other side, i.e., logical\0" ! 0:5� .If the output tolerances are are speci�ed (for example a \1" cannot be below 0.75 and a\0" cannot be above 0.25) then, in the above construction, it is possible to �nd out the maximumvalue of n that will deliver the outputs within the desired tolerances, for a given m. Conversely,given an n, the number of hidden units m required to deliver the outputs within the speci�edtolerance can be also calculated from the above construction.If n � 4, the \allowable" regions for the points Pi are no longer triangles since the edgesof a regular polygon with n � 4 sides when extended beyond the vertices, do not intersect theextensions of any of the other edges.It should also be noted that in the above construction, the polygon need not be regular. If thepolygon is not regular, however, some of the \allowable" areas shrink and others expand. Also, theplanes Pii need not intersect at the same point or need not form a pyramid, as long the relativeplacement of the planes and the points satisfy the two constraints mentioned above.The unbounded allowable areas for points Pi that arise due to n � 4 or due to irregularity ofthe underlying polygon, as well as the asymmetry in allowable areas that arises when the polygonis irregular is illustrated in Figure 5. Note that the construction remains the same in all thesecases. The points Pi still have to be in the regions exterior to the polygon, and between the linesobtained by extending the edges of the polygon beyond the vertices. This is illustrated by theshaded regions in Figure 5. If the quadrilateral shown in Figure 5 was regular, i.e., it was a square,then all the \allowable" regions for points Pi would be identical in shape and unbounded on oneside. Because the quadrilateral is irregular, some allowable regions have shrunk and others havegrown. For example, the shaded region to the left of plane �2 has shrunk from a rectangularstrip unbounded on left side, to a bounded and triangular region shown in the �gure. Similarlythe shaded region to the right of �4 has expanded from a rectangular strip to to an unboundedquadrilateral.It seems that the symmetric solution is more fault{tolerant. The reasoning is as follows. Theedges and planes of the polygon can be jiggled without changing the classi�cation or logical outputof the network. This corresponds to changing the weights and biases of the units represented bythe planes. How much change is allowed in the weight and bias values depends on n and otherfactors. For the symmetric solution, it is evident that whatever tolerance applies to a point ora plane also applies to all other points or planes. In contrast, if the polygon is not regular orif the planes do not form a pyramid, then some points and planes must be con�ned to smallertolerances (smaller than the corresponding one in the symmetric case) while others can have larger7



tolerance. The total amount of deviation allowed can be measured by the volume enclosed betweenthe original positions of the planes and the extreme positions after large deviations in parameters(or faults), at which the solution (relative placement of planes and points) still satis�es the aboveconstraints. It is conjectured that the total of such \fault{tolerance volumes" is maximum for thesymmetric case, or in other words, a symmetric solution is more fault{tolerant.V ConclusionBounds have been established for the solution of the encoding problem using a feedforwardnetwork with one layer of hidden units. Existence of solution(s) is demonstrated by constructiveproofs, leading to the actual solutions. The discussion reveals interesting connections to limitingcases, fault tolerance, probability of �nding a valid solution and other issues. The geometricalinterpretation is general and applicable to other problems as well. For instance, this approachwas employed in [2, 3]. to derive lower bounds on the redundancy necessary to achieve completefault tolerance for all single faults. The encoding problem directly re
ects on the ability of the netto develop distributed representations among the hidden units and map them back onto localizedrepresentations on the output units. These results will possibly help to de�ne a meaningful measureof the distributedness of representations.References[1] D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing, vol. 1 : Foundations.MIT Press, 1986.[2] D. S. Phatak and I. Koren, \Fault Tolerance of Feedforward Neural Nets for Classi�cationTasks," in Proceedings of International Joint Conference on Neural Nets (IJCNN), Baltimore,MD, vol. II, pp. II{386 { II{391, Jun. 1992.[3] D. S. Phatak and I. Koren., \Complete and Partial Fault Tolerance of Feedforward NeuralNets," Tech. Rep. TR-92-CSE-26, Electrical and Computer Engineering Department, Univer-sity of Massachusetts, Amherst, July 1992.
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Figure 1 : An n�m� n encoding net.
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Figure 2 : A 2� 1� 2 encoding net with weights and biaseswi and bi > 0 for all i. Unit indices are shown in parenthesis.
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Figure 3 : A geometrical interpretation of the 2� 1� 2 encoding problem.
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Figure 4 : The geometrical construction to obtain the weights and biases for a 6� 2� 6(or n� 2� n in general) encoding net.
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Figure 5 : The construction for the case when n � 4 and the polygon is not regular.
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