
EÆcient Arithmetic Implementations Based on Carry-Save

Representations

Dhananjay S. Phataka, Tom Goffa and Israel Korenb

a Electrical Engr. Dept. State Univ. of New York
Binghamton, NY 13902-6000, U.S.A.

b Electrical and Computer Engr. Dept.
Univ. of Massachusetts, Amherst, MA 01003, U.S.A.

ABSTRACT

This paper presents arithmetic implementations which use binary redundant numbers based on carry-save representations. It is
well-known that constant-time addition, in which the execution delay is independent of operand length, is feasible only if the
result is expressed in a redundant representation. Carry-save based formats are one type of a redundant representation which
can lead to highly efficient implementations of arithmetic operations. In this paper, we discuss two specific carry-save formats
that lead to particularly efficient realizations. We illustrate these formats, and the “equal-weight grouping” (EWG) mechanism
wherein bits having the same weight are grouped together during an arithmetic operation. This mechanism can reduce the
area and delay complexity of an implementation. We present a detailed comparison of implementations based on these two
carry-save formats including measurements from VLSI cell layouts. We then illustrate the application of these VLSI cells for
multi-operand additions in fast parallel multipliers. Finally, we also indicate the relationship with previous results. 1

Keywords: Redundant number systems, carry-save, VLSI cells, addition.

1. INTRODUCTION

A positional radix-β number system represents an n-digit value V as a string of digits, (dn�1;dn�2; � � �d0), where

n�1

∑
i=0

di �βi =V

The value that each digit, di , can assume is determined by the digit set for that position D i , such that di 2 Di . In conventional
representations, the digit set is the same for all positions and is defined by D = fdj0 � d � β� 1g. A number system is
redundant if there is some value which does not have a unique representation. In other words, there exists an n-digit number
which satisfies

n�1

∑
i=0

di �βi =
n�1

∑
i=0

d0i �β
i
; di;d

0

i 2 Di

and there is some position j where d j 6= d0j . This implies that there is at least one digit position for which the cardinality of the
set Di satisfies jDi j> β. We call such a position, a redundant digit position.

Addition can be thought to be an instance of the digit set conversion problem. 2–4 In this context, we consider the addition
of two operands X and Y yielding the result Z = X +Y. The digit set D x

i +Dy
i can be thought of as the input digit set for

position i, and Dz
i as the output digit set. Given this, addition is then the operation of converting from one digit set to another.

In most cases the range of D x
i +Dy

i is larger than Dz
i making carry propagation necessary. This results in the carry relationship

zi +β �ci = xi +yi +ci�1 (1)

where ci�1 is the carry-in to position i, ci is the carry-out, and both are members of a carry set C .

An alternate treatment of addition based on digit-set operations can be found in 1 which provides a framework for designing
adders based on contiguous sets.

E-mails: phatak@ee.binghamton.edu, tomgoff@ibm.net, koren@ecs.umass.edu

Advanced Signal Processing Algorithms, Architectures, and Implementations X, Franklin T. Luk,
Editor, Proceedings of SPIE Vol. 4116 (2000) © 2000 SPIE · 0277-786X/00/$15.00258

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/22/2015 Terms of Use: http://spiedl.org/terms

1.1. Constant-Time Addition

Constant-time addition is possible at a redundant digit position i if the value of ci can be determined by considering only a
fixed number of previous input digits, making it independent of c i�1. The number of previous digits required constitutes a right
context, or look-back2–4 and is henceforth denoted by L . The operation of constant-time addition at redundant digit positions
can be explained conceptually as the two-step process described below.

Step 1: Based on its fixed right context, every redundant digit position generates an intermediate sum σ i and an interme-
diate carry-out ci , where

σi +β �ci = xi +yi = θi (2)

In other words, Equation (2) expresses the sum of operand digits θ i = xi +yi as the pair (ci ;σi).

Step 2: The final sum zi is formed by zi = σi +ci�1 where σi +ci�1 2Dz
i .

If there are non-redundant digit positions in the result Z, carries must ripple through them 5,6 and they are determined by (1).

As described in2–4 , the carry-out of a digit position can be dependent on the input operands and the output digit set at that
position, as well as those (operands and output digit sets) at all the digit positions that fall within the fixed-length right and left
contexts. If a left context is actually used, this means that the carry-in to some position can be dependent on the input digits at
that position.

1.2. Radix-2 Redundant Representations

Radix-2 representations are the most commonly used, and hence are fundamental. Several radix-2 redundant digit sets can be
used, these are summarized below:

D(SD) = f�1;0;1g (3)

D(SD3h�i) = f�2;�1;0;1g (4)

D(SD3h+i) = f�1;0;1;2g (5)

D(CS2) = f0;1;2g (6)

D(CS3) = f0;1;2;3g (7)

Note that a redundant binary digit needs at least two bits to represent it. In fact, all the redundant digit sets listed above need
exactly two bits to represent their digit values. In essence, several redundant representations where some digit positions have
two bits allocated to them can accomplish constant time addition and simultaneous format conversion. The interesting question
is given this basic redundancy (i.e., redundant digits), which number representations lead to the most efficient implementations
and best exploit the redundancy made available by the extra bits?

A detailed theoretical analysis of constant time addition and simultaneous format conversion in number representations
based on the above digit sets6,7 answers this question, showing that the carry-save representation it the best for fast and efficient
implementation of word-parallel operations.6,7 In general, two types of number systems based on each of these digit sets are
possible: a fully redundant system and a partially-redundant system. A fully redundant system is one in which all digit positions
of a number are redundant and the characteristics of such systems are well known. 8–11 In a partially redundant system only
some digit positions are redundant and further details about such systems can be found in. 5–7

In this paper we concentrate on two fully redundant (i.e., each digit position is redundant) number systems based on the
carry-save representation, viz., the digit sets D (CS2) and D(CS3) . We illustrate these formats, and the “equal-weight grouping”
(EWG) mechanism wherein bits having the same weight are grouped together during an arithmetic operation. We present a
detailed comparison of implementations based on these two carry-save formats including measurements from VLSI cell layouts.
We then illustrate applications which use these VLSI cells as building blocks.

We also show connections with prior work1 which does not address constant-time addition using the CS2 number system
(see Section 5).

Proc. SPIE Vol. 4116 259

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/22/2015 Terms of Use: http://spiedl.org/terms

1.3. Redundant Binary Encodings

The number systems of interest (based on digit sets D (CS2) and D(CS2)) need two bits to represent each redundant digit.
While many encodings of two bits can be used to denote digit values, specific encodings lend themselves to efficient imple-
mentations.6,7 Consider the encoding of an operand X as (x̂n�1; x̂n�2; � � � x̂0), where x̂i is the radix-2 redundant digit in the i-th
position (a hat notation, x̂i , indicates that the i-th digit of X is redundant and is encoded using two bits). The bits representing
a redundant digit x̂i can be thought of as having higher and lower significant bits (xh

i ;x
l
i), respectively. Note that arbitrary bit

combinations can be used to represent redundant digit values, but we concentrate on encodings that satisfy the relationship

value of digit x̂i =�2 �xh
i �xl

i (8)

It will be shown that such encodings lead to efficient implementations.

In carry-save redundant representations, following the literature, we refer to the higher significant bit, x h
i , as the carry bit

and the lower significant bit, xl
i , as the sumbit. Here, the sum bit has a weight of 1 and the carry bit has a relative weight of +2.

Thus, x̂i = 2 �xh
i +xl

i , which yields the following encoding:

D(CS3) : (0;0)� 0; (0;1)� 1; (1;0)� 2; (1;1)� 3 (9)

D(CS2) does not include the digit 3 which makes the bit pattern (xh
i ;x

l
i) = (1;1) invalid for the CS2 representation.

1.4. Equal-Weight Grouping

The encoding of both signed-digit and carry-save redundant digits ensures that x l
i and xh

i�1 have the same weight, i.e., the digits
x̂i and x̂i�1 overlapeach other. This overlap provided by the chosen encodings can be exploited to reduce the range of digit
sums that must be generated, and to predict the range of an incoming carry when two numbers are added. Figure 1 shows two
redundant digits, x̂i and x̂i�1, of a number X drawn as squares. The arrows are used to indicate the individual bits that make
up each digit. The bits (xl

i and xh
i�1), both have a weight of 2 i and can be grouped to form an alternate interpretation of the

bits. Instead of having digits of the form x̂i = 2 �xh
i +xl

i the bits can create “Equal-Weight-Grouped” (EWG) digits of the form
x̂0i = xl

i +xh
i�1, without affecting the value of the original operand X .

x̂0i

x̂i x̂i�1

i�1i

xh
i xl

i xl
i�1xh

i�1

X

Figure 1. Equal-weight grouping.

To illustrate the impact of equal-weight grouping, consider adding the digits of two CS3 (i.e., conventional carry-save
format) numbers X and Y, where the digit set is D (CS3) = f0;1;2;3g. Normally the digit sum θi = 2 �xh

i +xl
i +2 �yh

i +yl
i would

be in the range 0 � θi � 6 which must be expressed as a final sum 0 � zi � 3 and a carry-out, ci , which would be larger then
1. If EWG digits are added instead, the digit sum θ0i = xl

i +xh
i�1 +yl

i +yh
i�1 is restricted to the range 0 � θ0i � 4, which is still

expressed with a final sum of 0� zi � 3 but the carry-out, ci , will be at most 1. As a result, the number of values needed for the
carry-out is reduced.

Another benefit of working with bits originally belonging to distinct digits arises when considering digit sets which exclude
some bit patterns, as in CS2. In these cases, the higher-significant bits from the less-significant digits, xh

i�1 and yh
i�1, provide

some information about what range the less-significant intermediate sum, θ i�1, is in and therefore the range of the incoming
carry. Note however that in these cases, the range of the intermediate sum is not affected by the equal-weight grouping.

Figure 2 illustrates the operation of the previously described constant-time addition process with the result expressed in a
fully-redundant form. At position i, the EWG digits x̂0i and ŷ0i are added together to form the group sum θ i . Based on θi and the

Proc. SPIE Vol. 4116260

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/22/2015 Terms of Use: http://spiedl.org/terms

ci�1 ci�2

zi zi�1 zi�2

� � �

� � �

� � �

i�1i

Z

X

Y

ci

θi θi�1

+

Figure 2. Constant-time addition without format conversion.

previous group sums (θi�1;θi�2; � � �) that make up the right context of position i, a carry-out ci and intermediate sum σi which
satisfy (2), are chosen. The final sum zi is formed by adding σi and ci�1, the carry-in from the previous position.

Given this framework for constant-time addition, we consider next the specific instances of the redundant radix-2 fully
redundant number systems based on digit sets D (CS2) and D(CS3) . In Sections 2 and 3, we discuss the rules for constant-time
addition of redundant Carry-Save format numbers. In Section 4 we compare the two number systems. We then show VLSI
implementations of adder cells and present the corresponding cell delays. We also discuss parallel multipliers based on these
two representations. Section 5 presents a discussion of some theoretical issues and conclusions.

2. CS2 ADDITION

This section considers CS2 constant-time addition. The digit set at each redundant position is D (CS2) = f0;1;2g, and as
mentioned earlier, the encoding prevents the bit combination (xh

i ;x
l
i) = (1;1) from occurring. To find the carry values needed,

note that the sum of EWG bits of weight 2 i must be expressible in terms of a sum digit and a carry-out:

θi +ci�1 = xl
i +yl

i +xh
i�1 +yh

i�1 +ci�1 � zimax
+ci �2 where zimax

= 2 (10)

Without restricting xl
i and yl

i , the carry-out can be limited to ci 2 f0;1g if

xh
i�1 +yh

i�1 +ci�1 � 2 (11)

If one or both bits xh
i�1 and yh

i�1 are 0 then condition (11) is obviously satisfied. The only case that needs further scrutiny is
when both xh

i�1 = yh
i�1 = 1. In this case it can be shown that the carry ci�1 must be 0 as summarized by the following lemma.

Lemma 1: For the CS2 encoding, if xh
i�1 �y

h
i�1 = 1 then ci�1 = 0. In other words, if the upper bits of an EWG digit are both 1,

there will be no carry-in to that place.

Proof:

Denote θh
i = xh

i�1 + yh
i�1. Because of the CS2 encoding, θh

i = 2 implies xl
i�1 = yl

i�1 = 0 and as a result θi�1 2
f0;1;2g. θi�1 2 f0;1g will never produce a carry-out of 2. The only concern is when θ i�1 = 2, which in turn,

Proc. SPIE Vol. 4116 261

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/22/2015 Terms of Use: http://spiedl.org/terms

implies θi�2 2 f0;1;2g. Consequently, position i� 1 could produce a carry-out of 2 only if θ i�2 = 2. This is
now a recursive/circular argument since position i� 2 can produce a carry-out of 2 only if θ i�3 = 2, and so on.
Since all the numbers being considered are assumed to be of some fixed length, the question becomes; can a string
of intermediate sums θh

i θi�1 θi�2 � � � θi�w = 2 2 2 � � � θi�w terminate with θi�w > 2. Such a string can only
occur when θh

i�1 θh
i�2 � � � θ

h
i�w+1 = 2 2 � � � 2 which means that (xh

i�w;y
h
i�w) = (1;1) which in turn, implies that

(xl
i�w;y

l
i�w) = (0;0) (because of the CS2 encoding). This results in θ i�w 2 f0;1g (since the string of 2’s terminates

with θi�w, θi�w 6= 2).

In essence, a string of EWG digit-sums of value 2 must eventually terminate in some position i�w with θ i�w 2
f0;1g. This means position i�w can never produce a carry-out, therefore positions i�w+1 through i can leave
their intermediate sums as σ = 2, thereby implying that ci�1 = 0 2

This means that the carry set C (CS2) = f0;1g is sufficient. Given this, the rules for CS2 addition without any format conversion
can be simplified as shown in Table 1.

θi xh
i�1 + yh

i�1 ci σi

0 � 0 0
1 � 0 1

2
2 0 2

otherwise 1 0
3 � 1 1
4 � 1 2

Table 1. Rules for CS2 Addition

Note that there is no need to look back at any previous digits, in other words, the (intermediate) carry-out of a position
depends only on the sum of bits in that position. Hence the context or the look-back is L = 0.

It can be verified that if the equal weight grouping is not done, then a carry of value 2 is required, resulting in the carry-set
f0,1,2g which implies that two bits are needed to encode the carry if EWG is not employed. This demonstrates the advantage
of the EWG scheme.

3. CS3 ADDITION

Here, every output digit position is redundant and can assume any of the values f0;1;2;3g. Since 3 is an allowable digit, the
carry-relationship

θimax
+ci�1max

� zimax
+2 �cimax

(12)

simplifies to cimax
� 1 (assuming ci�1max

= cimax
). This makes the carry set C (CS3) = f0;1g sufficient for CS3 addition without

format conversion. The rules for determining σ i and ci are given in Table 2. Again, they are stated only in terms of θ i , without
any dependency on the previous group sum which makes the look-back L = 0.

Once again it can be verified that if the equal weight grouping is not utilized, then a carries of value 2 and 3 must also
be allowed resulting in the carry-set f0,1,2,3g. Such a scheme would require two bits to encode the carry and will have more
complex logic. Hence, it is advantageous to use the EWG scheme.

4. COMPARISON

Table 3 summarizes the look-back distances, L , and carry sets needed for the two types of redundant binary addition considered.
The table clearly shows that equal-weight grouping can lead to smaller carry sets and a smaller look-back.

Table 3 shows that the minimum look-back occurs only when the proposed equal-weight-grouping is employed. In the
table, the representation requiring the smallest carry-set should be selected because a smaller carry set usually implies less

Proc. SPIE Vol. 4116262

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/22/2015 Terms of Use: http://spiedl.org/terms

θi ci σi

0 0 0
1 0 1

2
1 0

or
0 2

3 1 1
4 1 2

Table 2. CS3 Addition

Operation
Carry-Set

Look-Back L
(Number of radix-2 digits)

Equal-Weight Grouping
No EWG EWG No EWG

(EWG)

CS2+CS2!CS2 f0;1g f0;1;2g 0 1
CS3+CS3!CS3 f0;1g f0;1;2;3g 0 1

Table 3. Comparison of binary constant-time addition techniques.

complex logic which should translate into smaller area and critical path delay. Applying these criteria, it is seen that the CS2
and CS3 representations are roughly equivalent (same carry set and context with EWG). However, Table 3 compares the number
representations only at an abstract level, in terms of the size of the carry-set and the look-back L . While this comparison can
provide a good high-level assessment, actual VLSI implementations are necessary to gauge the relative merits and disadvantages
of the redundant representations. In the next subsection, we show simulation measurements on VLSI layouts of adder cells for
these two representations.

4.1. Implementation

In order to verify some of the comparison results included in Table 3, we designed (whenever required), laid out and simulated
the VLSI adder cells for both the above representations. Note that the cell that implements CS3+CS3 ! CS3 accepts four
bits of equal weight as inputs (two sum bits and two carry bits, one from each of the two operands). It also accepts a carry-in
from the adjacent position and generates an output in the carry-save format (i.e., two output bits) and a carry-out which is
independentof the carry-in. This is nothing but a 4:2 compressor employed in conventional multipliers. The 4:2 compressor
presented in12 is extremely efficient and hence we laid out this compressor (For the sake of brevity, the gate diagram and details
of this cell are omitted, those can be found in12).

The cell to implement CS2+CS2!CS2 was newly designed. Its gate diagrams is shown in Figure 3. In the figure, it is
seen that the carry-out is generated based only on the bits of the currentgroup, i.e., there is no look-back.

VLSI layouts of both the cells were simulated in the TSMC SCN025 0.25 micron technology process (available from
MOSIS) with a 2.5 volt supply. The designs were first verified at the logic level. Berkeley SPICE 3f5 was used to estimate the
critical path delay of each cell, which included appropriate fan-in as well as fan-out loading for all components. The results are
summarized in Table 4.

Adder Cell Critical Path Delay (ns)

CS2 0.66100

CS3 0.46580

Table 4. The delay of the critical path through one cell from SPICE simulations.

Proc. SPIE Vol. 4116 263

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/22/2015 Terms of Use: http://spiedl.org/terms

1

0
MUX

1

0
MUX

1

0
MUX

1

0
MUX

1

0
MUX

1

0
MUX

xc
i�1

yc
i�1

ci

σs
i

σc
i

ci�1

ys
i

xs
i

zs
i

zc
i

Figure 3. Cell for CS2+CS2!CS2, i.e., a 4:2 compressor for the CS2 representation. (x l
i ;y

l
i ;x

h
i�1;y

h
i�1) are the four input

operand bits of equal weight. The carry ci 2 f0;1g needs a single bit line. σi 2 f0;1;2g is the intermediate sum encoded by the
bits (σh

i ;σl
i), with σi = 2 �σh

i +σl
i . The output is encoded by (zh

i ;z
l
i) and can assume any of the three values f0;1;2g.

It should be noted that the SPICE simulation results are highly layout dependent. These layouts were done for a relative
comparison of the redundant adder cells. Hence, as long as the same layout strategy was adopted in both designs, the relative
comparison is informative. However such a “uniform” layout strategy rules out fine tuning; in particular, the CS2 cell could be
made more compact which might have a significant impact on the overall delay.

In light of the above results, it can be seen that for a multiply operation, using the CS3 representation with the compressor
presented in,12 is likely to yield faster implementations. Note that converting partial products from two’s complement format
to CS3 format is trivial; it requires no gates at all. This is illustrated in Figure 4 which shows that merely grouping the bits
appropriately leads to a valid output in the CS3 representation.

� � �� � �

xi�2xi�1xi

yiyi+1 yi�1

xi+1

yi+2

Figure 4. Combining two’s complement operands to generate an output in CS3 format.

In contrast, if the CS2 (or conventional SDrepresentation) is employed, two’s complement partial products must be added
to generate outputs in their respective formats. In each of these cases, a small delay worth about one full adder is required to
achieve this conversion. For the CS2 format, this need is straightforward; a 1+ 1 must be converted into a (1;0), since the
pattern (1;1) is not allowed. Furthermore, the 4:2 compressor that performs CS3+CS3!CS3 is smaller and faster than other
cells. These two factors together imply that multipliers based on CS3 are expected to outperform multipliers based on the CS2
representation.

Proc. SPIE Vol. 4116264

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/22/2015 Terms of Use: http://spiedl.org/terms

5. DISCUSSION AND CONCLUSIONS

In this section, we show the relationship of this work to some results presented in 1 and present concluding remarks. The
examples of constant-time addition that we have described can be re-written using the notation from 1 as shown below.

CS2 : 2h10i+ h20i (h10i+ h10i+ h10i+ h10i+ h10i

CS3 : 2h10i+ h30i (h10i+ h10i+ h10i+ h10i+ h10i

The notation shows that the sum of digit sets to the right of the decomposition operator (() is expressed using the digit sets to
the left of the operator. A digit set hδωi is characterized by its diminished cardinality, δ, and negative offset from zero, ω. This
represents digits in the range [�ω;�ω+δ] and must include 0 (further details regarding the notation and decompositions can
be found in1).

The analysis in1 requires that the total diminished cardinality to the left of the decomposition operator, δout, be greater
than or equal to the total diminished cardinality of the right side, δ in. The condition that δout � δin is satisfied by the CS3
representation. However, for the CS2 representation δout = 4 and δin = 5; violating the diminished cardinality condition.
Therefore, CS2 addition presented in this paper lies outside the framework developed in. 1

In conclusion, this paper presents a comprehensive analysis of constant-time addition based on the CS2 and CS3 redundant
representations. We used the notion of “equal-weight grouping” (EWG), wherein bits having the same weight are grouped
together during the constant-time addition operation. The analysis and data show that EWG leads to efficient implementations.
We illustrated the relationship of our work to prior results in 1 and showed that the CS2 format considered here has interesting
properties which transcend the framework for redundant representations presented in. 1

Possible future work includes finding redundancy metrics which also capture the complexity of hardware implementations
based on the redundant format under consideration. As shown in, 6,7 merely utilizing all possible combinations of bits available
to encode a digit to represent distinct values does not necessarily lead to the same complexity in all cases. This needs further
scrutiny. Another issue is to extend the necessary and sufficient conditions for constant-time addition (derived in 2) to the case
where the digit sets at all digit positions are not the same. Such a framework allows for arbitrary spacing of redundant digit
positions throughout a representation, as well as the ability to vary the types of redundant digits used. It is conceivable that
examples of situations where both left and right contexts are required could arise in such cases. Since the digit sets could be
radically different from one digit position to the next, it is possible that each position needs to also examine the left context in
order to select the appropriate/acceptable carry value which it can output.

Acknowledgement

We would like to thank Prof. Naofumi Takagi for his insightful remarks which led us to this investigation. We also wish to
thank Professors Milos Ercegovac and Neil Burgess for their constructive suggestions which improved the quality of this paper.

REFERENCES

1. T. M. Carter and J. E. Robertson, “The Set Theory of Arithmetic Decomposition,” IEEE Transactions on Computers,
C-39, pp. 993–1005, August 1990.

2. P. Kornerup, “Necessary and Sufficient Conditions for Parallel and Constant Time Conversion and Addition,” in Proc.
14th IEEE Symposium on Computer Arithmetic, pp. 152–156, IEEE Computer Society, April 1999.

3. P. Kornerup, “Digit-Set Conversions: Generalizations and Applications,” IEEE Transactions on Computers,C-43,
pp. 622–629, May 1994.

4. A. M. Nielsen and P. Kornerup, “Redundant Radix Representation of Rings.” IEEE Transactions on Computers,C-48,
pp. 1153-1165, November 1999.

5. D. S. Phatak and I. Koren, “Hybrid Signed–Digit Number Systems: A Unified Framework for Redundant Number Repre-
sentations with Bounded Carry Propagation Chains,” IEEE Trans. on Computers, Special issue on Computer Arithmetic,
TC–43, pp. 880–891, Aug. 1994. (Unabridged version available at http://www.ee.binghamton.edu/faculty/phatak).

6. T. Goff, D. S. Phatak, and I. Koren, “Redundancy Management in Arithmetic Processing via Redundant Binary Rep-
resentations,” Proceedings of ASILOMAR’99 (Annual Conference on Signals Systems and Computers), Pacific Grove,
California , pp. 1475–1479, Oct. 1999.

Proc. SPIE Vol. 4116 265

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/22/2015 Terms of Use: http://spiedl.org/terms

7. D. S. Phatak, T. Goff, and I. Koren, “On Constant-time Addition and Simultaneous Format Conversion Based on Redun-
dant Binary Representations,” submitted for publication.

8. B. Parhami, “Generalized signed-digit number systems: a unifying framework for redundant number representations,”
IEEE Transactions on Computers,C-39, pp. 89–98, Jan. 1990.

9. C. Nagendra, R. M. Owens, and M. J. Irwin, “Unifying Carry-Sum and Signed-Digit Number Representations,” Tech.
Rep. CSE–96–036, Computer Science and Engineering Department, Pennsylvania State University, 1996.

10. I. Koren, Computer Arithmetic Algorithms, Brookside Court Publishers, Amherst, Massachusetts, 1998.
11. B. Parhami, Computer Arithmetic Algorithms and Hardware Designs, Oxford University Press, 2000.
12. N. Ohkubo and Suzuki, M., et. al., “A 4.4-ns CMOS 54 � 54-b Multiplier Using Pass-Transistor Multiplexor,” IEEE

Journal of Solid-State Circuits, 30, pp. 251–256, Mar. 1995.
13. S. Kuninobu, T. Nishiyama, H. Edamatsu, T. Taniguchi, and N. Takagi, “Design of high speed MOS multiplier and divider

using redundant binary representation,” Proc. of the 8th Symposium on Computer Arithmetic, pp. 80–86, 1987.
14. J. J. J. Lue and D. S. Phatak, “Area � Delay (A �T) Efficient Multiplier Based on an Intermediate Hybrid Signed–Digit

(HSD–1) Representation,” Proc. of the 14th IEEE International Symposium on Computer Arithmetic, Adelaide, Australia,
pp. 216–224, April 1999.

Proc. SPIE Vol. 4116266

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/22/2015 Terms of Use: http://spiedl.org/terms

