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Abstract 

It is well known that constant-time addition, in which the 
execution delay is independent of operand length, is fea- 
sible only i f  the output is expressed in a redundant repre- 
sentation. This paper presents a comprehensive analysis 
of constant-time addition and simultaneous format conver- 
sion where the source and destination digit sets are based 
on binary redundant numbers. We introduce the notion of 
“equal-weight grouping” (EWG) wherein, bits having the 
same weight are grouped together to achieve the constant- 
time additio? under simultaneous format conversion oper- 
ations. We also address some of the issues recently raised 
in [ I ]  which establishes necessary and sufficient conditions 
for constant-time addition or format conversion and indi- 
cate possible extensions of the theory developed therein. 

1 Introduction 

We consider two types of number systems based on each 
of these digit sets; a fully-redundant (FR) system and a 
partially-redundant (PR) system. A FR system is one in 
which all digit positions of a number are redundant and 
the characteristics of such a system are well known [3, 41. 
In a PR system only some digit positions are redundant. 
While the fixed delay for constant-time addition is mini- 
mized when the output is expressed in a FR form, PR rep- 
resentations can be used to address other design constraints 
such as area, power, etc. [5, 61. 

In general, it is possible to use different redundant digit 
sets at different positions but, for the sake of simplicity, 
we restrict ourselves to representations where all redundant 
positions use the same digit set. Some possible partially- 
redundant formats are illustrated in Figure 1. As the figure 
shows, redundant digits can be spaced at arbitrary positions. 

Note that digit sets (1)-(5) all need exactly two bits to 
represent their values. In essence, we consider represen- 
tations where some positions are allocated two bits and ask 
the question: which number representations lead to the most 
efficient implementations and best exploit the available re- 
dundancy? 

To answer this question, we consider the number repre- 
sentations listed in Table 1. Among the PR systems, we 
consider those where every k-th digit is redundant. This 
simplification is merely for the sake of illustration; the re- 
sults apply when redundant digits are arbitrarily spaced. 

If the value of the carry-out c, from digit position i can 
be determined by considering only a fixed number of less 
significant and/or more significant digit positions, then it 
can be rendered independent of the carry-in, ciPl, making 
it possible to achieve constant-time addition. This is pos- 
sible only if the output digit-set at position i is sufficiently 
redundant: The less significant digit positions considered 
during constant-time addition constitute a right context or 
look-back. More significant digit positions form a left con- 
text. 

Since radix-2 representations are the most commonly 
used, this paper concentrates only on those representations 
based on underlying radix-2 digit sets. As specific exam- 
ples we consider redundant digit sets that are variants of the 
well-known signed-digit (SD) and carry-save (CS) repre- lS1 Redundant Binary 
sentations. These digit sets are defined as: 

A two-bit binary redundant digit, 4,, can be thought of 
dSD) = {-l ,O, l}  (1) as having higher and lower significant bits, $ and 4 re- 
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U rdundanl digil ci,,.~~ a 

non-rdundrnt digit (hit) 
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.~ . .. .. . .. .. 

x . . . n  0 0 0 [j 0 0 0 . .  
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Look-back in the general case: carry-out cy depends on all ndix-2 digits in this range. 
Carry cq , ripples to the q-th redundant digit. 

Figure 1. Constant-time addition of partially-redundant operands 

Number System Description 

Digits at a11 positions E D(’”) 
Every k-th digit E D(’”); all others E (0 , l )  
Digits at all positions E D(SD3(i)) 

Every k-th digit E D(sD3(i));  all others E (0, I} 
Digits at all positions E D(cs2) 
Every k-th digit E !dCs2); all others E (0 ,  I} 
Digits at all positions E 
Every k-th digit E bcs3); all others E (0, I }  

SD3(*)-k 

cS2- k 
cs3 
CS3-k‘ 

(SD3(*) refers to either SD3(+) or SD3(-)) 

Table 1. Redundant Radix-2 Number Systems 

spectively (the hat notation is used to distinguish between 
redundant and non-redundant digits). Note that arbitrary 
bit combinations can be used to represent redundant digit 
values, but we concentrate on encodings that satisfy the re- 
lationship: 

value of digit Pi = f 2 . x j ’ f x f  (6) 

For the SD and SD3(-)  digit set encodings, 4 is given a 
weight of - 2  and 4 a weight of 1. Thus .ti = - 2  +xf, 
which  is simply a two’s complement encoding. The digit 
set for SD3(+) can be realized by changing the sign of both 
.(’ and 4, that is Pi = 2 ..$ -4. Both encodings are give 
below. 

b ’ ” 3 ( - ) ) :  (0,0)r0, ( O , I ) r + l ,  ( l , l ) E - l ,  ( l , 0 ) = - 2  (7) 
b ’ ” 3 ( + ) ) :  ( 0 , 0 ) r O ,  ( 0 , 1 ) = - l ,  ( l , l ) z + l ,  ( 1 , 0 ) r + 2  (8) 

For carry-save based redundant representations, 4 has a 
weight of +2  and xf a weight of 1 making f i  = 2 .  .(‘ + 4, 
which yields the following encodings: 

1D(cs2) : (0.0) I 0, (0 , l )  1, (1,O) E 2 ,  ( I ,  I )  not allowed (9) 

1.2 Equal-Weight Grouping 

Note that the encoding chosen for both signed-digit and 
carry-save redundant digits ensures that 4 and have the 
same weight (magnitude) 2’, i.e., the digits Zi and gi-, over- 
lap each other. When two numbers are added, this overlap 
can be exploited to reduce the range of digit sums and to 
predict the range of an incoming carry [7]. Figure 2 shows 
two redundant digits, 2; and of a number X .  The ar- 
rows indicate the individual bits that make up each redun- 
dant digit. The bits .f and both have a weight of 2’ 
and are grouped and form an alternate interpretation of the 
bits. Instead of having digits of the form 2; = 2 .$ +.f the 
bits can create “Equal-Weight Grouped” (EWG) digits of 
the form 4 = .f + 4- I ,  without affecting the value of the 
original operand X .  

1 i -  I 

Figure 2. Equal-weight Grouping 

2 Characteristics of Constant-Time Addition 

To compare the number systems listed in Table 1 we 
consider two types of constant-time additions. We consider 
adding two operands of a given format and expressing the 
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result in that same format. For example, adding two CS2 
numbers together to form a CS2 result (CS2 + CS2 --f CS2). 
We also consider the possibility of constant-time addition 
and simultaneous “format conversion”. In this case two FR 
numbers of the same format are added and the result gets 
expressed in a PR format, for example (SD + SD + SD-k) 
(it can be shown that this leads to the longest context or 
look-back [7] for a given output format). 

Figure 3 illustrates constant-time addition without for- 
mat conversion. At position i, the EWG digits 4 and 9; are 
added together to form the group sum €Ii. Based on Qi and 
the previous group sums (Qi-l,Qi-2,...) that make up the 
position i’s right context, a carry-out, c i ,  and intermediate 
sum, oi, are chosen which satisfy: 

(1  1) e; = .f +)I = 2 .  c; + 0; 
The final sum, z i ,  is then formed by adding oi and ci-l 
which is the carry-in from the previous position: 

( I  2) zi = oi + ci- this must not cause an overflow 

1 i- 1 

Figure 3. Constant-Time Addition without For- 
mat Conversion 

The differences between the representations listed in Ta- 
ble l can be characterized by the carry-set needed to satisfy 
(1  l),(i2) and look-back, L, required for constant-time ad- 
dition. 

We now consider a specific example of constant-time ad- 
dition without format conversion based on the CS2 digit set 
(other cases had to be omitted due to the length constraint. 
Further details can be found in [7]). 

2.1 CS2 Addition without Format Conversion 

The rules which accomplish this addition are shown in Ta- 
ble 2 .  Note that there is no need to look back at any previous 
digits, in other words, the look-back is L = 0. As discussed 
later in Section 4, this operation needs a left-context. Ta- 
ble 2 does not explicitly show a dependence on the left con- 
text because the chosen encoding makes it possible to infer 
appropriate information about the operand digits in adjacent 
higher significant position from the digits in the current po- 
sition. 

4 1  x I [ I 1 2 1 (  

Table 2. Rules for CS2 Addition without 
Format-Conversion 

3 Comparison 

Table 3 gives a summary of the look-back distances, L, 
and carry sets needed for the types of redundant binary addi- 
tion considered. The table clearly shows that equal-weight 
grouping can lead to smaller carry sets and that the mini- 
mum look-back occurs only when EWG is employed. 

Among the cases with zero look-back, implementations 
of those with smaller carry-sets should be more efficient in 
terms of area and critical path delay. Given this, the carry- 
save representations (CS2 and CS3) are more likely to result 
in better designs than signed digit representations. 

Note that Table 3 compares the various representations 
at an abstract level, in terms of the size of the carry-set 
and the look-back L. While this comparison can provide 
a good high-level assessment, actual VLSI implementations 
are necessary to gauge the relative merits and disadvantages 
of the various redundant representations. To this end we de- 
signed, layed-out and simulated adder cells for the follow- 
ing cases: 

(i) SD + SD + SD (The cell in [SI is the most efficient to 

(ii) SD3(-) + SD3(-) + SD3(-) (Newly designed 171) 

(iii) CS2 + CS2 + CS2 (Newly designed 171) 

(iv) CS3 + CS3 -+ CS3 (The extremely efficient 4:2 com- 
pressor presented in [9] was used) 

the best of our knowledge, so we layed out this cell.) 

It can be shown that when adding two CS2 numbers with- 
out format conversion, no look-back (right context) is re- 
quired and a carry set of C(‘”) = (0 , l )  is sufficient 171. 

For the sake of brevity, the gate diagrams and details of 
these cells are omitted, those can be found in the references 
cited. 
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1 7 1  Carry-Set 
Operation Equal-Weight Grouping 

No EWG 

S D  + S D  -+ S D  
SD+SD-+SD-k 

SD3(-) + SD3(-) -+ SD3(-) 
SD3(+) + SD3(+) -+ SD3(+) 
SD3(-) + SD3(-) + SD3i-)k 
SD3(+) + SD3(+) -+ SD3i+)k 

c s 2  + c s 2  -+ c s 2  
CS2 + CS2 + CS2-k 

c s 3  + cs3 + cs3 
CS3 + CS3 -+ CS3-k 

Look-Back L 
(Number of radix-2 digits) 

EWG 

1 
1 
0 
0 
1 
1 
0 
1 
0 
1 

No EWG 

1 
2k-  1 

1 
1 

2k-  1 
2k- 1 

1 
2k-  1 

1 
2k- 1 

Table 3. Comparison of Binary Constant-Time Addition Techniques 

Table 4 shows the SPICE 3f5 simulation results using the 
TSMC SCN025 0.25 micron technology process with a 2.5 
volt supply (which is available from MOSIS). It should be 
noted that these results are highly layout dependent. These 
layouts were done to get some idea of the relative compar- 
ison of the various redundant adder cells. The critical path 
simulations indicate that the carry-save representations con- 
sidered here lead to faster implementations than the signed- 
digit implementations. 

be added to generate outputs in their respective formats. In 
each of these cases, a small delay worth about one full adder 
is required to achieve this conversion. In effect, multipliers 
based on these intermediate representations must endure an 
additional (albeit small) delay at the top level. 

Furthermore, the 4:2 compressor that performs CS3 + 
CS3 + CS3 is smaller and probably faster than other cells. 
Hence multipliers based on CS3 should be faster than those 
based on other redundant representations. 

4 Discussion 

I1  cs2 I 1  0.66100 II 
cs3 11 0.46580 I 

Table 4. Critical path from SPICE simulations 

In light of the above results, it can be seen that for a 
multiply operation, using the CS3 representation with the 
compressor presented in [9] is likely to yield the fastest im- 
plementations. Note that converting partial products from 
two's complement format to CS3 format is trivial; it requires 
no gates at all. This is illustrated by Figure 4 which shows 
that merely grouping the bits appropriately leads to a valid 
output in the CS3 representation. 

Figure 4. Adding 2's Complement Operands 
to Generate an Output in CS3 Format 

In contrast, if the CS2 or conventional S D  representa- 
tion is employed, two's complement partial products must 

In this section we consider some theoretical issues. In 
particular, we look at some of the results presented in [ I ]  
and address an open problem stated therein. 

Note that in Table 2, when the sum of operands at posi- 
tion I equals 2, two different carry values can be produced. 
Since only bits from the current EWG digit appear in this 
table, it appears that the rules do not imply any context. 
However, careful scrutiny reveals that there is an implicit 
left context. This can be understood with the aid of Fig- 
ure 5. 

<.I r I 
X I  i n  

z.1 L I 
X I  i o  

I t 1  

Figure 5. Specific case which the the rules 
from Table 2 are designed to handle. 

This figure illustrates the case when the group sum at the 
( i +  1)-th position equals 4. According to the rules from 
Table 2, this results in an intermediate sum of 2 at position 
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i -t 1. If position i then generated a carry-out, an overflow 
would occur at position i + 1 since 3 is not a member of the 
dcs2) digit set. 

This illustrates a simple example of how an overflow at 
the next significant digit can be avoided by having position 
i check if and both equal 1 and generate its carry- 
out accordingly. It can be shown that not generating a carry- 
out for a group sum of 2 when $-, -ky;il = 2 is sufficient 
to avoid all possible overflows at all higher significant po- 
sitions [7]. Thus, the carry generated by any position i is 
designed to handle all digit possibilities for the more signif- 
icant position (i-k l ) ,  thereby implying a left context. 

The more fundamental rules governing CS2 + CS2 4 

CS2 constant-time addition which explicitly show the de- 
pendence on a left context are shown in Table 5.  In fact, 
Table 2 can be thought of as derived from or a special case 
of Table 5. The reason the left context is not explicitly used 
in Table 2 is to simplify the implementation. 

Table 5. CS2 Addition Rules from Table 2 re- 
written to explicitly show the dependence on 
the left context 

In [ 11, it is stated that “so far no example of a complete 
digit set E has been found, where it  was not sufficient to use 
only the right context for the carry . . . ”. In essence, illus- 
tration of a case requiring left context was stated as an open 
problem. We believe that the CS2 representation, along with 
the rules in Table 2 (which is derived from Table 5) consti- 
tute an example of a complete digit set which requires a left 
context, given the minimally sufficient carry-set (0 , l ) .  

5 Conclusion 

This paper presents a comprehensive analysis of 
constant-time addition and simultaneous format conversion, 
where the source and destination digit sets are based on 
binary redundant numbers. The comparison revealed that 
EWG, along with redundant representations based on the 
carry-save format lead to a smaller carry set, and very 
likely smalledfaster hardware implementations than those 
that employ redundant rcpresentations based on the signed- 
digit format. This, in turn, indicates that for word paral- 
lel implementations, redundant formats based on the carry- 
save representation are expected to outperform redundant 

formats based on signed-digit representations. Represen- 
tations based on signed digits are likely to be more useful 
and efficient than those based on carry-save formats only 
for digithit serial applications, where the ability to incre- 
mentally approximate the desired result by sequentially out- 
putting both positive and negative digits is indispensable. 
We also address some of the issues recently raised in [ l ] ;  
and have proposed a solution to an open problem presented 
there. 
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