
Redundancy Management in Arithmetic Processing via Redundant Binary
Representations

Dhananjay S. Phatak, Tom Goff Israel Koren
Electrical Engineering Department

State University of New York
Binghamton, NY 13902-6000
phatak@ee.binghamton.edu

Department of Electrical and Computer Engineering
University of Massachusetts

Amherst, MA 01003

Abstract

It is well known that constant-time addition, in which the
execution delay is independent of operand length, is fea-
sible only i f the output is expressed in a redundant repre-
sentation. This paper presents a comprehensive analysis
of constant-time addition and simultaneous format conver-
sion where the source and destination digit sets are based
on binary redundant numbers. We introduce the notion of
“equal-weight grouping” (EWG) wherein, bits having the
same weight are grouped together to achieve the constant-
time additio? under simultaneous format conversion oper-
ations. We also address some of the issues recently raised
in [I] which establishes necessary and sufficient conditions
for constant-time addition or format conversion and indi-
cate possible extensions of the theory developed therein.

1 Introduction

We consider two types of number systems based on each
of these digit sets; a fully-redundant (FR) system and a
partially-redundant (PR) system. A FR system is one in
which all digit positions of a number are redundant and
the characteristics of such a system are well known [3, 41.
In a PR system only some digit positions are redundant.
While the fixed delay for constant-time addition is mini-
mized when the output is expressed in a FR form, PR rep-
resentations can be used to address other design constraints
such as area, power, etc. [5, 61.

In general, it is possible to use different redundant digit
sets at different positions but, for the sake of simplicity,
we restrict ourselves to representations where all redundant
positions use the same digit set. Some possible partially-
redundant formats are illustrated in Figure 1. As the figure
shows, redundant digits can be spaced at arbitrary positions.

Note that digit sets (1)-(5) all need exactly two bits to
represent their values. In essence, we consider represen-
tations where some positions are allocated two bits and ask
the question: which number representations lead to the most
efficient implementations and best exploit the available re-
dundancy?

To answer this question, we consider the number repre-
sentations listed in Table 1. Among the PR systems, we
consider those where every k-th digit is redundant. This
simplification is merely for the sake of illustration; the re-
sults apply when redundant digits are arbitrarily spaced.

If the value of the carry-out c, from digit position i can
be determined by considering only a fixed number of less
significant and/or more significant digit positions, then it
can be rendered independent of the carry-in, ciPl, making
it possible to achieve constant-time addition. This is pos-
sible only if the output digit-set at position i is sufficiently
redundant: The less significant digit positions considered
during constant-time addition constitute a right context or
look-back. More significant digit positions form a left con-
text.

Since radix-2 representations are the most commonly
used, this paper concentrates only on those representations
based on underlying radix-2 digit sets. As specific exam-
ples we consider redundant digit sets that are variants of the
well-known signed-digit (SD) and carry-save (CS) repre- lS1 Redundant Binary
sentations. These digit sets are defined as:

A two-bit binary redundant digit, 4,, can be thought of
dSD) = {-l ,O, l} (1) as having higher and lower significant bits, $ and 4 re-

1475
0-7803-5700-0/99/$10.000 1999 IEEE

mailto:phatak@ee.binghamton.edu

RecwngldSquure reprerenu
U rdundanl digil ci,,.~~ a

non-rdundrnt digit (hit)

’.. i.. ..: .
.~

x . . . n 0 0 0 [j 0 0 0 . .

I I

Look-back in the general case: carry-out cy depends on all ndix-2 digits in this range.
Carry cq , ripples to the q-th redundant digit.

Figure 1. Constant-time addition of partially-redundant operands

Number System Description

Digits at a11 positions E D(’”)
Every k-th digit E D(’”); all others E (0 , l)
Digits at all positions E D(SD3(i))

Every k-th digit E D(sD3(i)); all others E (0, I}
Digits at all positions E D(cs2)
Every k-th digit E !dCs2); all others E (0 , I}
Digits at all positions E
Every k-th digit E bcs3); all others E (0, I }

SD3(*)-k

cS2- k
cs3
CS3-k‘

(SD3(*) refers to either SD3(+) or SD3(-))

Table 1. Redundant Radix-2 Number Systems

spectively (the hat notation is used to distinguish between
redundant and non-redundant digits). Note that arbitrary
bit combinations can be used to represent redundant digit
values, but we concentrate on encodings that satisfy the re-
lationship:

value of digit Pi = f 2 . x j ’ f x f (6)

For the SD and SD3(-) digit set encodings, 4 is given a
weight of - 2 and 4 a weight of 1. Thus .ti = - 2 +xf,
which is simply a two’s complement encoding. The digit
set for SD3(+) can be realized by changing the sign of both
.(’ and 4, that is Pi = 2 ..$ -4. Both encodings are give
below.

b ’ ” 3 (-)) : (0,0)r0, (O , I) r + l , (l , l) E - l , (l , 0) = - 2 (7)
b ’ ” 3 (+)) : (0 , 0) r O , (0 , 1) = - l , (l , l) z + l , (1 , 0) r + 2 (8)

For carry-save based redundant representations, 4 has a
weight of +2 and xf a weight of 1 making f i = 2 . .(‘ + 4,
which yields the following encodings:

1D(cs2) : (0.0) I 0, (0 , l) 1, (1,O) E 2 , (I , I) not allowed (9)

1.2 Equal-Weight Grouping

Note that the encoding chosen for both signed-digit and
carry-save redundant digits ensures that 4 and have the
same weight (magnitude) 2’, i.e., the digits Zi and gi-, over-
lap each other. When two numbers are added, this overlap
can be exploited to reduce the range of digit sums and to
predict the range of an incoming carry [7]. Figure 2 shows
two redundant digits, 2; and of a number X . The ar-
rows indicate the individual bits that make up each redun-
dant digit. The bits .f and both have a weight of 2’
and are grouped and form an alternate interpretation of the
bits. Instead of having digits of the form 2; = 2 .$ +.f the
bits can create “Equal-Weight Grouped” (EWG) digits of
the form 4 = .f + 4- I , without affecting the value of the
original operand X .

1 i - I

Figure 2. Equal-weight Grouping

2 Characteristics of Constant-Time Addition

To compare the number systems listed in Table 1 we
consider two types of constant-time additions. We consider
adding two operands of a given format and expressing the

1476

result in that same format. For example, adding two CS2
numbers together to form a CS2 result (CS2 + CS2 --f CS2).
We also consider the possibility of constant-time addition
and simultaneous “format conversion”. In this case two FR
numbers of the same format are added and the result gets
expressed in a PR format, for example (SD + SD + SD-k)
(it can be shown that this leads to the longest context or
look-back [7] for a given output format).

Figure 3 illustrates constant-time addition without for-
mat conversion. At position i, the EWG digits 4 and 9; are
added together to form the group sum €Ii. Based on Qi and
the previous group sums (Qi-l,Qi-2,...) that make up the
position i’s right context, a carry-out, c i , and intermediate
sum, oi, are chosen which satisfy:

(1 1) e; = .f +)I = 2 . c; + 0;
The final sum, z i , is then formed by adding oi and ci-l
which is the carry-in from the previous position:

(I 2) zi = oi + ci- this must not cause an overflow

1 i- 1

Figure 3. Constant-Time Addition without For-
mat Conversion

The differences between the representations listed in Ta-
ble l can be characterized by the carry-set needed to satisfy
(1 l),(i2) and look-back, L, required for constant-time ad-
dition.

We now consider a specific example of constant-time ad-
dition without format conversion based on the CS2 digit set
(other cases had to be omitted due to the length constraint.
Further details can be found in [7]).

2.1 CS2 Addition without Format Conversion

The rules which accomplish this addition are shown in Ta-
ble 2 . Note that there is no need to look back at any previous
digits, in other words, the look-back is L = 0. As discussed
later in Section 4, this operation needs a left-context. Ta-
ble 2 does not explicitly show a dependence on the left con-
text because the chosen encoding makes it possible to infer
appropriate information about the operand digits in adjacent
higher significant position from the digits in the current po-
sition.

4 1 x I [I 1 2 1 (

Table 2. Rules for CS2 Addition without
Format-Conversion

3 Comparison

Table 3 gives a summary of the look-back distances, L,
and carry sets needed for the types of redundant binary addi-
tion considered. The table clearly shows that equal-weight
grouping can lead to smaller carry sets and that the mini-
mum look-back occurs only when EWG is employed.

Among the cases with zero look-back, implementations
of those with smaller carry-sets should be more efficient in
terms of area and critical path delay. Given this, the carry-
save representations (CS2 and CS3) are more likely to result
in better designs than signed digit representations.

Note that Table 3 compares the various representations
at an abstract level, in terms of the size of the carry-set
and the look-back L. While this comparison can provide
a good high-level assessment, actual VLSI implementations
are necessary to gauge the relative merits and disadvantages
of the various redundant representations. To this end we de-
signed, layed-out and simulated adder cells for the follow-
ing cases:

(i) SD + SD + SD (The cell in [SI is the most efficient to

(ii) SD3(-) + SD3(-) + SD3(-) (Newly designed 171)

(iii) CS2 + CS2 + CS2 (Newly designed 171)

(iv) CS3 + CS3 -+ CS3 (The extremely efficient 4:2 com-
pressor presented in [9] was used)

the best of our knowledge, so we layed out this cell.)

It can be shown that when adding two CS2 numbers with-
out format conversion, no look-back (right context) is re-
quired and a carry set of C(‘”) = (0 , l) is sufficient 171.

For the sake of brevity, the gate diagrams and details of
these cells are omitted, those can be found in the references
cited.

1477

1 7 1 Carry-Set
Operation Equal-Weight Grouping

No EWG

S D + S D -+ S D
SD+SD-+SD-k

SD3(-) + SD3(-) -+ SD3(-)
SD3(+) + SD3(+) -+ SD3(+)
SD3(-) + SD3(-) + SD3i-)k
SD3(+) + SD3(+) -+ SD3i+)k

c s 2 + c s 2 -+ c s 2
CS2 + CS2 + CS2-k

c s 3 + cs3 + cs3
CS3 + CS3 -+ CS3-k

Look-Back L
(Number of radix-2 digits)

EWG

1
1
0
0
1
1
0
1
0
1

No EWG

1
2k- 1

1
1

2k- 1
2k- 1

1
2k- 1

1
2k- 1

Table 3. Comparison of Binary Constant-Time Addition Techniques

Table 4 shows the SPICE 3f5 simulation results using the
TSMC SCN025 0.25 micron technology process with a 2.5
volt supply (which is available from MOSIS). It should be
noted that these results are highly layout dependent. These
layouts were done to get some idea of the relative compar-
ison of the various redundant adder cells. The critical path
simulations indicate that the carry-save representations con-
sidered here lead to faster implementations than the signed-
digit implementations.

be added to generate outputs in their respective formats. In
each of these cases, a small delay worth about one full adder
is required to achieve this conversion. In effect, multipliers
based on these intermediate representations must endure an
additional (albeit small) delay at the top level.

Furthermore, the 4:2 compressor that performs CS3 +
CS3 + CS3 is smaller and probably faster than other cells.
Hence multipliers based on CS3 should be faster than those
based on other redundant representations.

4 Discussion

I1 cs2 I 1 0.66100 II
cs3 11 0.46580 I

Table 4. Critical path from SPICE simulations

In light of the above results, it can be seen that for a
multiply operation, using the CS3 representation with the
compressor presented in [9] is likely to yield the fastest im-
plementations. Note that converting partial products from
two's complement format to CS3 format is trivial; it requires
no gates at all. This is illustrated by Figure 4 which shows
that merely grouping the bits appropriately leads to a valid
output in the CS3 representation.

Figure 4. Adding 2's Complement Operands
to Generate an Output in CS3 Format

In contrast, if the CS2 or conventional S D representa-
tion is employed, two's complement partial products must

In this section we consider some theoretical issues. In
particular, we look at some of the results presented in [I]
and address an open problem stated therein.

Note that in Table 2, when the sum of operands at posi-
tion I equals 2, two different carry values can be produced.
Since only bits from the current EWG digit appear in this
table, it appears that the rules do not imply any context.
However, careful scrutiny reveals that there is an implicit
left context. This can be understood with the aid of Fig-
ure 5.

<.I r I
X I i n

z.1 L I
X I i o

I t 1

Figure 5. Specific case which the the rules
from Table 2 are designed to handle.

This figure illustrates the case when the group sum at the
(i + 1)-th position equals 4. According to the rules from
Table 2, this results in an intermediate sum of 2 at position

1478

i -t 1. If position i then generated a carry-out, an overflow
would occur at position i + 1 since 3 is not a member of the
dcs2) digit set.

This illustrates a simple example of how an overflow at
the next significant digit can be avoided by having position
i check if and both equal 1 and generate its carry-
out accordingly. It can be shown that not generating a carry-
out for a group sum of 2 when $-, -ky;il = 2 is sufficient
to avoid all possible overflows at all higher significant po-
sitions [7]. Thus, the carry generated by any position i is
designed to handle all digit possibilities for the more signif-
icant position (i-k l) , thereby implying a left context.

The more fundamental rules governing CS2 + CS2 4

CS2 constant-time addition which explicitly show the de-
pendence on a left context are shown in Table 5. In fact,
Table 2 can be thought of as derived from or a special case
of Table 5. The reason the left context is not explicitly used
in Table 2 is to simplify the implementation.

Table 5. CS2 Addition Rules from Table 2 re-
written to explicitly show the dependence on
the left context

In [11, it is stated that “so far no example of a complete
digit set E has been found, where it was not sufficient to use
only the right context for the carry . . . ”. In essence, illus-
tration of a case requiring left context was stated as an open
problem. We believe that the CS2 representation, along with
the rules in Table 2 (which is derived from Table 5) consti-
tute an example of a complete digit set which requires a left
context, given the minimally sufficient carry-set (0 , l) .

5 Conclusion

This paper presents a comprehensive analysis of
constant-time addition and simultaneous format conversion,
where the source and destination digit sets are based on
binary redundant numbers. The comparison revealed that
EWG, along with redundant representations based on the
carry-save format lead to a smaller carry set, and very
likely smalledfaster hardware implementations than those
that employ redundant rcpresentations based on the signed-
digit format. This, in turn, indicates that for word paral-
lel implementations, redundant formats based on the carry-
save representation are expected to outperform redundant

formats based on signed-digit representations. Represen-
tations based on signed digits are likely to be more useful
and efficient than those based on carry-save formats only
for digithit serial applications, where the ability to incre-
mentally approximate the desired result by sequentially out-
putting both positive and negative digits is indispensable.
We also address some of the issues recently raised in [l] ;
and have proposed a solution to an open problem presented
there.

References

[1 J P. Kornerup, “Necessary and Sufficient Conditions for
Parallel and Constant Time Conversion and Addition,”
in Proc. 14th IEEE Symposium on Computer Arith-
metic, pp. 152-156, IEEE Computer Society, April
1999.

[2] P. Kornerup, “Digit-Set Conversions: Generalizations
and Applications,” IEEE Transactions on Computers.
vol. C-43, pp. 622-629, May 1994.

[3] B. Parhami, “Generalized signed-digit number sys-
tems: a unifying framework for redundant number
representations,” IEEE Transactions on Computers,
vol. C-39, pp. 89-98, Jan. 1990.

[4] C. Nagendra, R. M. Owens, and M. J. Irwin, “Unify-
ing Carry-Sum and Signed-Digit Number Represen-
tations,” Tech. Rep. CSE-96-036, Computer Science
and Engineering Department, Pennsylvania State Uni-
versity, 1996.

51 D. S. Phatak and 1. Koren, “Hybrid Signed-Digit
Number Systems: A Unified Framework for Redun-
dant Number Representations with Bounded Carry
Propagation Chains,” IEEE Trans. on Computers,
vol. TC-43, pp. 880-89 1, Aug. 1994.

61 J. J. J. Lue and D. S . Phatak, “Area x Delay (A . T)
Efficient Multiplier Based on an Intermediate Hy-
brid Signed-Digit (HSD-1) Representation,” Proc. of
the 14th IEEE International Symposium on Computer
Arithmetic, pp. 216-224, April 1999.

171 D. S. Phatak, T. Goff and I. Koren, “On Constant-time
Addition and Simultaneous Format Conversion Based
on Redundant Binary Representations,” IEEE Trans-
actions on Computers, submitted.

[SI S . Kuninobu, T. Nishiyama, H. Edamatsu,
T. Taniguchi, and N. Takagi, “Design of high
speed MOS multiplier and divider using redundant
binary representation,” Proc. of the 8th Symposium on
Computer Arithmetic, pp. 80-86, 1987.

[9] N. Ohkubo and Suzuki, M., et. al., “A 4.4-11s CMOS
54 x 54-b Multiplier Using Pass-Transistor Multi-
plexor,” IEEE Journal of Solid-state Circuits, vol. 30,
pp. 251-256, Mar. 1995.

1479

