
Constant-Time Addition and
Simultaneous Format Conversion

Based on Redundant Binary Representations
Dhananjay S. Phatak, Member, IEEE, Tom Goff, and Israel Koren, Fellow, IEEE

AbstractÐIt is well-known that constant-time addition, in which the execution delay is independent of operand lengths, is feasible only

if the output is expressed in a redundant representation. There are many ways of introducing redundancy and the specifics of the

redundant format employed can have a major impact on the performance of constant-time addition and digit set conversion. This paper

presents a comprehensive analysis of constant-time addition and simultaneous format conversion. We consider full as well as partially

redundant representations, where not all digit positions are redundant. The number of redundant digits and their positions can be

arbitrary, yielding many possible redundant representations. Format conversion refers to changing the number and/or position of

redundant digits in a representation. It is shown that such a format conversion is feasible during (i.e., simultaneous with) constant time

addition, even if all three operands (the two inputs and single output) are represented in distinct redundant formats. We exploit ªequal-

weight groupingº (EWG), wherein bits having the same weight are grouped together to achieve the constant-time addition and possible

simultaneous format conversion. The analysis and data show that EWG leads to efficient implementations. We compare VLSI

implementations of various constant-time addition cells and demonstrate that the conventional 4:2 compressor is the most efficient way

to execute constant time-addition. We show interesting connections to prior results and indicate possible directions for further

extensions.

Index TermsÐRedundant representations, constant-time addition, simultaneous format conversion, redundant adders, carry-save

addition, signed-digit addition, 4:2 compressor.

æ

1 INTRODUCTION

Apositional radix-� number system represents an n-digit
value V as a string of digits, �dnÿ1; dnÿ2; � � � d0�, where

Xnÿ1

i�0

di � �i � V :

The value that each digit, di, can assume is determined by

the digit set for that position, Di, such that di 2 Di. In

conventional representations, the digit set is the same for all

positions and is defined by D � fdj0 � d � � ÿ 1g. A

number system is redundant if there is some value which

does not have a unique representation. In other words, a

given number system is redundant if there exists an n-digit

value V which satisfies

V �
Xnÿ1

i�0

di � �i �
Xnÿ1

i�0

d0i � �i; di; d
0
i 2 Di;

and there is at least one position j where dj 6� d0j. This

implies that, for some digit position k, the cardinality of the

digit set Dk satisfies jDkj > �. We call such a position, a

redundant digit position.
Addition can be thought to be an instance of the digit set

conversion problem [2], [3], [4], [5]. In this context, we

consider the addition of two operands X and Y yielding the

result Z � X � Y . The digit set Dxi �Dyi can be thought of as

the input digit set for position i and Dzi as the output digit

set. Addition is then the operation of converting from one

digit set to another. In most cases, the range of Dxi �Dyi is

larger than Dzi , making carry propagation necessary. This

results in the carry relationship

� � ci � zi � xi � yi � ciÿ1; �1�
where ciÿ1 is the carry-in to position i, ci is the carry-out,

and both are members of a carry set C. An alternate

treatment of addition based on digit set operations can be

found in [1], which provides a framework for designing

adders based on contiguous sets.

1.1 Constant-Time Addition

Constant-time addition is possible at a redundant digit

position i if the value of ci can be determined by

considering only a fixed number of previous input digits,

making it independent of ciÿ1. The number of previous

digits required constitutes a right context, or look-back [2],

[3], [4], and is henceforth denoted by L. The operation of

constant-time addition at redundant digit positions can be

explained conceptually as the two-step process described

below [6].

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11, NOVEMBER 2001 1267

. D.S. Phatak and T. Goff are with the Computer Science and Electrical
Engineering Department, University of Maryland, Baltimore County,
Baltimore, MD 21250. E-mail: {phatak, tgoff1}@umbc.edu.

. I. Koren is with the Department of Electrical and Computer Engineering,
University of Massachusetts, Amherst, MA 01003.
E-mail: koren@euler.ecs.umass.edu.

Manuscript received 11 Apr. 2000; revised 27 Feb. 2001; accepted 23 Apr.
2001.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 111880.

0018-9340/01/$10.00 ß 2001 IEEE

Step 1: Based on its fixed right context, every redundant

digit position generates an intermediate sum, �i, and an

intermediate carry-out, ci, where

� � ci � �i � xi � yi � �i: �2�
In other words, (2) expresses the sum of the operand

digits �i � xi � yi as the pair �ci; �i�.
Step 2: The final sum zi is formed by zi � �i � ciÿ1, where

zi 2 Dzi .

If there are nonredundant digit positions in the result Z,

carries must ripple through them [7], [8] and they are

determined by (1).
As described in [2], [3], [4], the carry-out of a digit

position can depend on the input operands and the output

digit set at that position, as well as the operands and output

digit sets at all digit positions that fall within fixed-length

right and left contexts. If a left context is actually used, the

carry into some position can be dependent on the input

operands at that position.

1.2 Radix-2 Redundant Representations

Since radix-2 representations are the most commonly used,

this paper concentrates only on those representations based

on underlying radix-2 digit sets. As specific examples, we

consider redundant digit sets that are variants of the well-

known signed-digit �SD� and carry-save �CS� representa-

tions. These digit sets are defined as

D�SD� � fÿ1; 0; 1g D�CS2� � f0; 1; 2g �3�

D�SD3hÿi� � fÿ2;ÿ1; 0; 1g D�SD3h�i� � fÿ1; 0; 1; 2g
D�CS3� � f0; 1; 2; 3g:

�4�

We consider two types of number systems based on each of

these digit sets, a fully redundant system and a partially-

redundant system. A fully redundant number system is one

in which all digit positions of a number are redundant and

the characteristics of such systems are well-known [9], [10],

[11], [12]. Implementations of adders for fully redundant

representations have also been widely investigated; a
sampling can be found in [8], [13], [14], [15], [16], [17], [18].

In a partially redundant number system, only some digit
positions are redundant [7], [8]. In this paper, redundant
digit positions are indicated by rectangles or squares (see
Fig. 1) and digits in these positions can assume any of the
values from one of the sets listed in (3)-(4) above. It is
possible to use different redundant digit sets (from the
above list) at different positions, but, for the sake of
simplicity, we restrict ourselves to representations where
all redundant digit positions have the same digit set. Format
conversion therefore refers to changing the number of
redundant digits and their positions in a representation,
while retaining the same digit set at each redundant
position.

Nonredundant digits are represented by circles and
require only a single bit to encode the possible values
which they can assume, namely f0; 1g. Some possible
partially redundant formats are illustrated in Fig. 1. As
the figure shows, redundant digits can be placed at
arbitrary positions.

Note that a redundant binary digit needs at least two bits
to represent it. In fact, all of the redundant digit sets listed
above need exactly two bits to represent their digit values.
In essence, we consider redundant representations where
some digit positions are allocated two bits and ask the
question: Given this basic redundancy, which number
representations lead to the most efficient implementations
and best exploit the available redundancy?

To answer this question, we consider the number
representations listed in Table 1. Among the partially
redundant systems, we consider those where every kth digit
is redundant (i.e., the digits at positions kÿ 1; 2kÿ 1; � � � , are
redundant). Consequently, the partially redundant systems
which we consider are denoted SD k, SD3��� k, CS2 k, and
CS3 k. Note that these representations with uniform
distance between redundant digits are equivalent to high-
radix (2k) redundant representations. However, the addi-
tion methods presented herein lead to better implementations
than those that can be derived simply by assuming high-
radix arithmetic. Furthermore, formats with nonuniform
distances between redundant digits cannot be considered

1268 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11, NOVEMBER 2001

Fig. 1. Constant-time addition of partially redundant operands: Carries propagate in parallel between consecutive redundant digits of the output.

high-radix (2k) representations. The methods developed in
this paper are also applicable to formats where the
placement of redundant digits is arbitrary.

While the theory developed in [1] can be applied to the

digit sets D�SD�, D�SD3hÿi�, D�SD3h�i�, and D�CS3�, it does not

cover addition methods based on the CS2 number

representation that are described in Section 7. Also, the

approach taken in [1] does not cover addition at the

nonredundant digit positions of SD k and CS2 k.

1.3 Redundant Binary Encodings

All of the number systems in Table 1 need two bits to
represent each redundant digit. However, specific encod-
ings should be chosen which lend themselves to efficient
implementations. Consider the encoding of an operand X

as �xnÿ1; xnÿ2; � � � ; x0�, where xi is the radix-2 (possibly
redundant) digit in the ith position. For clarity, a hat
notation will be used to distinguish a redundant digit from
a nonredundant digit (x̂i indicates that the ith digit of X is
redundant and is encoded using two bits, xj indicates that
the jth digit is nonredundant and is encoded using a single
bit). The bits representing a redundant digit x̂i can be
thought of as having higher and lower significant bits �xhi ; xli�,
respectively. Note that arbitrary bit combinations can be
used to represent a redundant digit, x̂i, but we concentrate
on weighted encodings that satisfy the relationship

x̂i � �2 � xhi � xli: �5�
Weighted encodings for all digit sets of cardinality 4 (i.e.,

SD3��� and CS3) must be of the form shown in (5). Here, the

bit xhi can be interpreted as a transfer-digit [6]. It will be

shown that such encodings lead to efficient implementations.

In signed-digit representations, we refer to the higher

significant bit, xhi , as the polarity bit and the lower

significant bit, xli, as the magnitude bit. For the digit sets

D�SD3hÿi� and D�SD�, redundant digits are encoded as

x̂i � ÿ2 � xhi � xli, which corresponds to a two's complement

encoding. The digit set D�SD3h�i� is realized by simply

changing the sign of both xhi and xli, that is, x̂i � 2 � xhi ÿ xli.
Since the digit set D�SD� does not include ÿ2, the bit pattern

�xhi ; xli� � �1; 0� is not valid in either the SD or the SD k

representations.

Similarly, following the literature, for carry-save-based
redundant representations, we refer to the higher signifi-
cant bit, xhi , as the carry bit and the lower significant bit, xli,
as the sum bit. Here, the digit sets D�CS3� and D�CS2� are
encoded as x̂i � 2 � xhi � xli. The digit set D�CS2� does not
include 3, which makes the bit pattern �xhi ; xli� � �1; 1�
invalid for the CS2 and CS2 k representations.

Note that digits sets with cardinality 3 (i.e., D�SD� and
D�CS2�) can employ an encoding of the type xhi � �xhi � xli,
with both bits having the same relative weight. For the SD
case, such an encoding is known as the borrow-save
encoding. These encodings allow digits to be formed from
any of the four possible 2-bit patterns (i.e., no invalid
combinations). For the sake of consistency when comparing
with digit sets of cardinality 4, we do not consider such
encodings.

1.4 Equal-Weight Grouping

The chosen encoding of both signed-digit and carry-save
redundant digits ensures that xli and xhiÿ1 have the same
weight, i.e., the digits x̂i and x̂iÿ1 overlap each other. This
overlap can be exploited to reduce the range of digit sums
that must be generated and to predict the range of an
incoming carry when two numbers are added. Fig. 2 shows
two redundant digits, x̂i and x̂iÿ1, of a number X drawn as
squares. The arrows are used to indicate the individual bits
that make up each digit. Instead of having digits of the form
x̂i � 2 � xhi � xli, the bits can create ªEqual-Weight Groupedº
(EWG) digits of the form x̂0i � xli � xhiÿ1 without affecting
the value of the original operand X. To illustrate the impact
of equal-weight grouping, consider adding two CS3 (i.e.,
conventional carry-save format) numbers X and Y , where
the digit set is D�CS3� � f0; 1; 2; 3g. Normally, the digit sum
at position i, �i � 2 � xhi � xli � 2 � yhi � yli, would be in the
range 0 � �i � 6. This must be expressed as a final sum
0 � zi � 3 (assuming the output format is the same as the
input, i.e., CS3) and a carry-out, ci, which may be larger
than 1. If EWG digits are added instead, the digit sum �0i �
xli � xhiÿ1 � yli � yhiÿ1 is restricted to the range 0 � �0i � 4.
This is still expressed with a final sum of 0 � zi � 3, but the
carry-out, ci, will be at most 1. As a result, the number of
values needed for the carry-out is reduced.

Another benefit of working with bits originally from
distinct digits arises when considering digit sets which
exclude some bit patterns, as in CS2 or SD. In these cases,
the higher-significant bits from the less-significant digits,
xhiÿ1 and yhiÿ1, provide some information about what range
the less-significant digit sum, �iÿ1, is in and, therefore, the
range of the incoming carry. Note, however, that, in these
cases, the range of the digit sum is not affected by the equal-
weight grouping.

PHATAK ET AL.: CONSTANT-TIME ADDITION AND SIMULTANEOUS FORMAT CONVERSION BASED ON REDUNDANT BINARY... 1269

TABLE 1
Redundant Radix-2 Number Systems

The notation SD3��� refers to either SD3h�i or SD3hÿi.

Fig. 2. Equal-weight grouping.

1.5 Partially Redundant Representations

While the fixed delay for constant-time addition is mini-

mized when the output is fully redundant, other possibi-

lities exist that address different design constraints (such as

area or power). For example, a fully redundant output

requires twice as many bit-lines as a nonredundant output.

To reduce the number of bit-lines, the number of redundant

output digits can be reduced. For the signed-digit family,

such a framework was illustrated in [7] and a similar

framework exists for the carry-save family [8].
In general, two operands, X and Y , with redundant

digits at arbitrary positions can be added to produce an

output, Z, with redundant digits at positions completely

unrelated to the redundant digit positions in either X or Y .

It can be shown that such addition and simultaneous format

conversion is possible in constant time, independent of the

word-length [2], [3], [4], [7], [8]. Obviously, the right context

L depends on the specific operand formats in question. It

can be verified that the worst-case delay (i.e., longest

context or look-back) occurs when all of the digits in both

operands X and Y are redundant and only some digits of

the output Z are redundant. As shown in Fig. 1, the critical

path delay of such constant-time addition and simultaneous

format conversion depends mainly on the distance between

redundant digits in the output. It can be shown that, in all

cases, the context that is sufficient to generate the correct

intermediate sum and carry-out, cq, of the qth redundant

digit position includes all radix-2 digits up to (but not

including) the �q ÿ 2�nd redundant digit, irrespective of

whether or not the redundant digits are uniformly spaced.

In other words, the context, L, now spans up to two larger

groups or ªsuper-digits.º It may be possible to look at only

the upper few digits of the previous group, thereby

shortening L and the critical path. However, the critical

path is still much longer than that achieved by the EWG

scheme.
Given this framework for constant-time addition with

and without simultaneous format conversion, we now

consider the specific cases of the redundant radix-2 number

systems listed in Table 1 and identify the ones that lead to

efficient implementations. In Sections 2 and 3, we discuss

addition of SD numbers with conversion to an output

format of SD k and without such a conversion, respectively.

In Sections 4 and 5, we consider SD3��� addition with and

without format conversion to SD3��� k, respectively. Addi-

tion of CS2 and CS3 numbers, with and without format

conversion, is discussed in Sections 6, 7, 8, and 9. Section 10

compares the 10 previously presented number systems and,

in Section 11, we show implementations of several adder

cells and present the corresponding cell delays. Section 12

discusses some theoretical issues and final conclusions are

presented in Section 13.
Once again, it should be noted that the uniform distance

between redundant digits in the partially redundant

formats considered in the following sections is only for

the sake of illustration. The ensuing analysis and results are

general and apply even when the distance between

redundant digits in the output is nonuniform.

2 SD ADDITION WITH FORMAT CONVERSION

The operation under consideration expresses its output in
a partially redundant form. The two input operands, X

and Y , are in the conventional signed-digit format with a
digit set of D�SD� � fÿ1; 0; 1g. The output, Z, is expressed

in the SD k format, where every kth digit �k > 1� is a
member of D�SD� and the remaining digits are nonre-
dundant bits. Note that, because of the D�SD� digit set

encoding, the bit pattern �xhi ; xli� � �1; 0� never occurs. In
other words, xhi � 1) xli � 1 and xli � 0) xhi � 0. For the

sake of clarity, we first consider nonredundant positions.
First, assume that the carry set, C�SD k�, is limited to

fÿ1; 0; 1g; it will be shown below that a carry value of ÿ2

is never needed.
Consider the rth position �0 � r � kÿ 2� which has a

nonredundant output and a weight of 2r. The four input
bits which have the weight of 2r are �xlr; ylr; xhrÿ1; y

h
rÿ1�. Let

their sum be denoted by �r � xlr � ylr ÿ xhrÿ1 ÿ yhrÿ1, where

ÿ2 � �r � �2. The final output bit, zr, must satisfy the basic
carry relationship stated in (1). Using the definition of �r,

this becomes

2 � cr � zr � �r � crÿ1: �6�
It would appear that, since crÿ1 can take any of three values,
fÿ1; 0; 1g, the sum �r � crÿ1 is in the range �ÿ3;�3�. If the

value ÿ3 did occur, it would have to be expressed as
�ÿ4� 1�, which implies that a carry-out of cr � ÿ2 is

needed. Fortunately, this situation never arises. In other
words, if �r � ÿ2 then crÿ1 � 0, i.e., the incoming carry
cannot be negative. In fact, the following stronger result

holds.

Theorem 1. For EWG addition which uses the SD encoding, if

xhiÿ1 � yhiÿ1 � 1, then ciÿ1 � 0. In other words, if both polarity

bits of an EWG digit are negative, the carry-in cannot be

negative.

Proof. If xhiÿ1 � yhiÿ1 � 1, then xliÿ1 and yliÿ1 (which participate
in generating �iÿ1) must both equal 1 since the bit

combination �xhiÿ1; x
l
iÿ1� � �1; 0� can never occur. Conse-

quently, if xhiÿ1 � yhiÿ1 � 1, the digit sum �iÿ1 � xliÿ1 �
yliÿ1 ÿ xhiÿ2 ÿ yhiÿ2 is restricted to �iÿ1 2 f0; 1; 2g. If �iÿ1 �
1 or 2, then, even if ciÿ2 � ÿ1, �iÿ1 � ciÿ2 � 0, yielding
ciÿ1 � 0, as required.

The only remaining case is when �iÿ1 � 0. Since
xliÿ1 � yliÿ1 � 1, the digit sum �iÿ1 � 0 can only occur
when xhiÿ2 � yhiÿ2 � 1, implying �iÿ2 � 0. This means that
an incoming carry of ÿ1 to position i can only occur if
there is an incoming carry of ÿ1 to some previous
position iÿm, after a string of m previous digit sums
equal to 0 (meaning �iÿj � 0 for 1 � j � m, m � 1). This
is impossible since the string of previous digit sums, �iÿ1

through �iÿm equal to 0 must terminate somewhere,
possibly at the least significant digit of the number, with
�iÿmÿ1 2 f0; 1; 2g (due to the SD encoding). This implies
the carry-in to position iÿm is ciÿmÿ1 � 0 or, more
specifically, ciÿmÿ1 2 f0; 1g. Since �iÿm � 0, the incoming
carry, ciÿmÿ1, will be absorbed at position iÿm and there
is no carry-in to position i, or ciÿ1 � 0. tu

1270 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11, NOVEMBER 2001

This result in effect shows that �i � ciÿ1 � ÿ2 or, in other
words, it will never be ÿ3, thereby obviating the need for
the carry value ÿ2. Once this is established, the rules of
operation at the unsigned (nonredundant) digit position are
straightforward and are summarized by

2 � ci � zi � �i � ciÿ1

where ci; ciÿ1 2 fÿ1; 0; 1g and zi 2 f0; 1g: �7�

Next, we consider a position which has a redundant
output digit. This position can generate the carry-out by
looking only at the bits of the previous position. Note
that Theorem 1 applies regardless of whether the output
is in redundant format. Also, since the output digit is
redundant, it can assume a value of ÿ1, which allows
multiple ways of expressing an output of �1. Table 2
summarizes the rules for constant-time addition and
simultaneous format conversion at a redundant output
position. Note that the intermediate sum �i is determined
so that, for any possible incoming carry ciÿ1, there will
never be a new outgoing carry generated when calculating
the final sum zi � �i � ciÿ1. This is a result of Theorem 1
and the rules shown in Table 2 are, in fact, identical to the
case where the operation under consideration is
SD� SD! SD, without format conversion.

We would like to point out that, without the equal-
weight grouping which results in ªexportingº the polarity
bits from the previous digit, any format conversion during
addition becomes significantly more complex. It can be
verified that, without EWG, the carry set needed becomes

fÿ2;ÿ1; 0; 1g, which is more complex than the EWG

scheme. Worse yet, the look-back required to determine

the carry-out at every redundant position is much longer

since a carry of value ÿ2 greatly complicates the rules

(because ÿ2 is not an allowed output digit). It can be shown

that, in this case, a look-back of length 2kÿ 1 radix-2 digit

positions is sufficient to generate the correct intermediate

sum and carry at each redundant output position.

3 SD ADDITION WITHOUT FORMAT CONVERSION

The operation under consideration expresses its output in a

fully redundant form. The two input operands, X and Y , as

well as the output, Z, are in the conventional signed-digit

format, where the digit set is D�SD� � fÿ1; 0; 1g. Consider-

ing EWG digits, the four bits that contribute to the digit-

wise sum of the operands, �i, are xli; y
l
i, each with a weight

of �1, and xhiÿ1; y
h
iÿ1, each with a weight of ÿ1. As a result, �i

is in the range �ÿ2;�2�. It can be verified that the carry set

C�SD� � fÿ1; 0; 1g is sufficient in this case. The rules for this

constant-time addition without format conversion are

summarized in Table 3.
Table 3 shows the only allowable �ci; �i� combinations

for expressing the digit sum �i 2 fÿ2; 0; 2g. There are

multiple ways of expressing digit sum �i 2 fÿ1; 1g and

the rules in Table 3 are justified by the following

observations: For �i to equal ÿ1, at least one of the polarity

bits must equal ÿ1. In this case, the carry-in satisfies ciÿ1 2
f0; 1g as proven in Lemma 1 below. The EWG digit sum �i
can equal 1 in the following two ways:

1. When only one magnitude bit equals 1 and all other
bits are 0, or xli � yli � 1 and xhiÿ1 � yhiÿ1 � 0. In this
case, �iÿ1 can assume any value in the range ÿ2 �
�iÿ1 � 2 and, as a result, ciÿ1 2 fÿ1; 0; 1g. Conse-
quently, if xhiÿ1 � yhiÿ1 � 0, we must look back at xliÿ1

and yliÿ1 to determine the correct setting of �i in
order to avoid further carry generation when
determining the final sum.

2. When both magnitude bits equal 1 and only
one polarity bit equals 1, or xli � yli � 1 and
xhiÿ1 � yhiÿ1 � 1. Lemma 1 applies in this case,
ensuring that the incoming carry is restricted to
ciÿ1 2 f0; 1g. No consideration of �iÿ1 is needed and

PHATAK ET AL.: CONSTANT-TIME ADDITION AND SIMULTANEOUS FORMAT CONVERSION BASED ON REDUNDANT BINARY... 1271

TABLE 2
Rules for Constant-Time Addition (SD� SD! SD k) at a

Position with a Redundant Output

The � symbol indicates ªdon't cares,º i.e., the value of �iÿ1 and ciÿ1 are
inconsequential in these cases.

TABLE 3
Rules for Constant-Time Addition SD� SD! SD

The symbol _ denotes the ªORº function.

�i � 1 can be expressed as the intermediate sum �i �
ÿ1 and a carry-out of ci � 1.

Lemma 1. For EWG addition without format conversion which
uses the SD encoding, if xhiÿ1 _ yhiÿ1 � 1, then ciÿ1 � 0. In
other words, if either polarity bit of an EWG digit is negative,
the carry-in cannot be negative.

Proof. Theorem 1 applies when xhiÿ1 � yhiÿ1 � 1, so the
remaining case is when exactly one of xhiÿ1 or yhiÿ1 equals
1. Without loss of generality, assume that xhiÿ1 � 0 and
yhiÿ1 � 1. This implies that yliÿ1 � 1 and, consequently,
�iÿ1 � ÿ1. This corresponds to one of the following
conditions:

1. If �iÿ1 � 0, then �iÿ1 � ciÿ2 � ÿ1, which means
ciÿ1 � 0. This is because the redundant output
digit ẑiÿ1 can assume the value ÿ1, meaning
�iÿ1 � ciÿ2 � ÿ1 does not lead to an outgoing
carry, or ciÿ1 � 0.

2. Since yliÿ1 � 1, the only way �iÿ1 � ÿ1 can occur is
if xliÿ1 � 0, xhiÿ2 � 1, and yhiÿ2 � 1. This in turn
implies that ciÿ2 � 0 (by Theorem 1). This allows
�iÿ1 � ÿ1 to be left as the intermediate sum �iÿ1 �
ÿ1 with no carry-out, or ciÿ1 � 0. tu

Note that the only time a look-back is needed is when
�i � �1 and xhiÿ1 � yhiÿ1 � 0. Because of the equal-weight
grouping, no look-back is necessary when �i � ÿ1.
Although the context, L, equals one digit position, as in
conventional SD addition without equal-weight-grouping,
Table 3 can be thought of as simpler than the corresponding
table(s) in other SD addition schemes proposed so far. For
instance, there are more don't cares in Table 3 than in the
corresponding table(s) from [16] and its derivatives. This
may lead to a simplification of switching expressions and,
hence, the implementation. The fundamental difference is
that, for schemes which do not use equal-weight grouping,
it is necessary to look back at the previous digit position
when �i � ÿ1 as well as when �i � �1.

4 SD3��� ADDITION WITH FORMAT CONVERSION

Two closely related types of redundant digit representa-

tions are considered in this section, SD3hÿi and SD3h�i.
Again, this operation expresses its output in a partially

redundant form. For SD3hÿi, each redundant digit is in the

digit set D�SD3hÿi� � fÿ2;ÿ1; 0; 1g and, for SD3h�i, the digit

set D�SD3h�i� � fÿ1; 0; 1; 2g is used.
In SD3hÿi, it can be verified that the carry set C�SD�ÿ�k� �

fÿ2;ÿ1; 0; 1g is sufficient. The rules at a nonredundant
output position are then simple and summarized by

2 � ci � zi � �i � ciÿ1

where ci; ciÿ1 2 fÿ2;ÿ1; 0; 1g and zi 2 f0; 1g:
�8�

Next, consider a position with redundant output which

can assume any value in the range �ÿ2;�1�. The rules to

generate the intermediate sum and carry-out are summar-

ized in Table 4. From the third and fifth columns of the

table, it is seen that �i � ciÿ1 is always in the range �ÿ2;�1�.

This shows that the second constant-time addition step will

never generate a carry when determining the final sum.

Note that, in this case, the carry set, C�SD3�ÿ�k�, and the

destination digit set, D�SD3hÿi�, are identical. Therefore,

leaving behind an intermediate sum of �i � 0 is always safe.

As mentioned earlier, if the source and destination digit

set is D�SD3h�i� � fÿ1; 0; 1; 2g instead of D�SD3hÿi�, the polarity

bits should be assigned a positive weight and the

magnitude bits a negative weight. Once again, all four bits

(two magnitude and two polarity bits) of the same weight

can be grouped together so the digit sum, �i, is in the range

�ÿ2;�2�. It can be verified that the carry set C�SD3���k� �
fÿ2;ÿ1; 0; 1g is sufficient. The rules for addition at

nonredundant positions are again summarized by (8). The

rules for a redundant position are similar to those in Table 4

and are omitted for the sake of brevity (please refer to the

technical report [19] for details).
For both digit sets, if the equal-weight grouping method

is not employed, the operation �SD3��� � SD3��� !
SD3��� k� requires a larger carry set and longer context

than the corresponding case when equal-weight grouping is

employed.

5 SD3��� ADDITION WITHOUT FORMAT

CONVERSION

Again, both SD3hÿi and SD3h�i will be considered for

constant-time addition, but without any format conversion.

First, consider the digit set D�SD3hÿi� � fÿ2;ÿ1; 0; 1g. Like

the SD3��� k case, the digit sum, �i, is in the range �ÿ2;�2�.
It can be shown that the carry set C�SD3hÿi� � fÿ1; 0; 1g is

sufficient in this case. The rules for constant-time addition

are summarized by

2 � ci � �i � �i where ci 2 fÿ1; 0; 1g and �i 2 fÿ1; 0g: �9�

1272 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11, NOVEMBER 2001

TABLE 4
Rules for Constant-Time Addition �SD3hÿi � SD3hÿi !

SD3�SD
�ÿ�k�� at a Redundant Output Position

Note that now ÿ1 and 0 are ªsafe-digitsº to leave behind as
an intermediate sum since

fÿ1; 0g � C�SD3hÿi� � fÿ1; 0g � fÿ1; 0; 1g � fÿ2;ÿ1; 0; 1g;
which is the digit set D�SD3hÿi�. Furthermore, there is no
explicit look-back, meaning no dependence on �iÿ1. The
intermediate sum, �i, and carry-out, ci, at each position i
depend only on the four operand bits in the current
group. In contrast, for all conventional signed-digit adder-
cell implementations, �i and ci depend on six operand
bits, for instance, those in [16] and their derivatives. Thus,
it can be expected that a cell which implements SD3hÿi �
SD3hÿi ! SD3hÿi is less complex than a cell that performs
SD� SD! SD.

Using the digit set D�SD3h�i� � fÿ1; 0; 1; 2g, where the
polarity of the bits in each redundant digit are reversed, the
rules for constant time addition are summarized by

2 � ci � �i � �i where ci 2 fÿ1; 0; 1g and �i 2 f0; 1g: �10�
Here, 0 and �1 are safe digits to leave behind as an

intermediate sum. It is clear from (9) and (10) that the gate-

level implementation of a cell that performs SD3h�i �
SD3h�i ! SD3h�i can be identical to that of a cell perform-

ing SD3hÿi � SD3hÿi ! SD3hÿi.

6 CS2 ADDITION WITH FORMAT CONVERSION

This section considers CS2 constant-time addition with
format conversion. The digit set at each redundant position
is D�CS2� � f0; 1; 2g and, as mentioned earlier, the encoding
prevents the bit combination �xhi ; xli� � �1; 1� from occur-
ring. The following lemma is essential in determining the
carry set required for this case.

Lemma 2. For EWG addition which uses the CS2 encoding, if
xhiÿ1 � yhiÿ1 � 1, then ciÿ1 � 1. In other words, if both lower
bits of an EWG digit equal 1, the carry-in cannot be 2. (Note
that, for the SD representations, the corresponding result is
stated in Theorem 1.)

Proof. Let the sum xhiÿ1 � yhiÿ1 � �hi . Because of the CS2
encoding, �hi � 2 implies xliÿ1 � yliÿ1 � 0 and, as a
result, �iÿ1 2 f0; 1; 2g. Since �iÿ1 2 f0; 1g never produces
a carry-out of 2, the only concern is when �iÿ1 � 2,
which, in turn, implies �iÿ2 2 f0; 1; 2g. Consequently,
position iÿ 1 could produce a carry-out of 2 only if

�iÿ2 � 2. This is now a recursive argument since

position iÿ 2 can produce a carry-out of 2 only if

�iÿ3 � 2 and so on. Since all the numbers being

considered are assumed to be of some fixed length,

the question becomes: Can a string of intermediate

sums �hi �iÿ1 �iÿ2 � � � �iÿm � 2 2 2 � � � �iÿm terminate

with �iÿm > 2? This is not possible due to the encoding

selected. Therefore, �iÿm 2 f0; 1; 2g, which implies

ciÿm 2 f0; 1g, which in turn implies ciÿ1 2 f0; 1g. tu

Lemma 2 implies that if the digit sum at position i,

�i � 4, then a carry-in of 2 can never occur. This means that

the carry set f0; 1; 2g is sufficient. The rules for nonredun-

dant output digit positions are then summarized by

2 � ci � zi � �i � ciÿ1 where ci; ciÿ1 2 f0; 1; 2g and zi 2 f0; 1g:
�11�

Next, consider a redundant output digit position which

can determine the range of an incoming carry by examining

the previous digit sum, �iÿ1. These rules are shown in

Table 5a. The only apparent abnormality is that an

intermediate sum of �i � ÿ1 is allowed, which is not a

valid final sum. However, this only occurs when a positive

carry-in �ciÿ1 > 0� is guaranteed, according to (11). This is

simply a matter of notation in order to make the table

consistent with the relationship 2 � ci � �i � �i.

7 CS2 ADDITION WITHOUT FORMAT CONVERSION

Although the rules from Table 5a for CS2 k addition at a

redundant position apply when there is no format conver-

sion, they are based on the assumption that the incoming

carry comes from a nonredundant position. If the previous

position is also redundant, it has a larger capacity, which

could limit the range of its carry-outs. This is possible if the

following carry-relationship is satisfied:

xli � yli � xhiÿ1 � yhiÿ1 � ciÿ1 � zimax
� 2 � ci

where zimax
� 2:

�12�

Without restricting xli and yli, the carry-out can be limited to

ci 2 f0; 1g if

xhiÿ1 � yhiÿ1 � ciÿ1 � 2: �13�

PHATAK ET AL.: CONSTANT-TIME ADDITION AND SIMULTANEOUS FORMAT CONVERSION BASED ON REDUNDANT BINARY... 1273

TABLE 5
CS2 Addition Rules: (a) Redundant Position Rules, (b) Simplified Rules for Non-Format-Conversion Addition

Lemma 3. For EWG addition without format conversion which
uses the CS2 encoding, if xhiÿ1 � yhiÿ1 � 1, then ciÿ1 � 0. In
other words, if both lower bits of an EWG digit equal 1, there
will be no carry-in to that position.

Proof. Since xhiÿ1 � yhiÿ1 � 1, the encoding restricts the
previous digit sum to �iÿ1 2 f0; 1; 2g. In this case, since
2 is a valid final sum, a carry-out from the previous
position, ciÿ1, would only occur if �iÿ1 � 2 and there
were a carry-in to the previous position of ciÿ2 � 1.
Having �iÿ1 � 2 then restricts �iÿ2 to �iÿ2 2 f0; 1; 2g and
the scenario discussed in Lemma 2 now exists with a
string of digit sums equal to 2. The encoding dictates that
this string of digit sums equal to 2 must eventually
terminate at some position iÿm with �iÿm 2 f0; 1; 2g. If
�iÿm � 2, then position iÿm must be the least significant
digit of the number (or the string would continue). In this
case, since there is no carry-in to position iÿm and 2 is a
valid final sum, there is no need for a carry-out of
position iÿm. Similarly, if �iÿm 2 f0; 1g, there is no need
for a carry-out of position iÿm. Therefore, positions iÿ
m� 1 through iÿ 1 can express their digit sum of 2 as an
intermediate sum of 2 and no carry-out. This ensures that
ciÿ1 � 0. tu

Lemma 3 shows that (13) is always satisfied, meaning the
carry set C�CS2� � f0; 1g is sufficient. Given this, the rules for

CS2 addition without any format conversion can be
simplified, as shown in Table 5b. Note that there is no
need to look back at any previous digits, in other words, the
look-back is L � 0.

8 CS3 ADDITION WITH FORMAT CONVERSION

Here, the redundant digits can take any value from the digit
set D�CS3� � f0; 1; 2; 3g. It can be verified that the carry set
needed for CS3 addition with format conversion is
C�CS3 k� � f0; 1; 2; 3g. Given this carry set, the rules for
CS3 addition with format conversion for a redundant
position are shown in Table 6a.

As before, an intermediate sum of �i � ÿ1 is left behind
only when a carry-in of ciÿ1 > 0 is guaranteed. This renders
the final sum ẑi � �i � ciÿ1 2 f0; 1; 2g. The carry-out and
intermediate sum for a nonredundant position simply
follow:

2 � ci � zi � �i � ciÿ1

where ci; ciÿ1 2 f0; 1; 2; 3g and zi 2 f0; 1g:
�14�

9 CS3 ADDITION WITHOUT FORMAT CONVERSION

Here, every output digit position is redundant and can

assume any value in D�CS3� � f0; 1; 2; 3g. Since 3 is an

allowable digit, the carry-relationship

�imax
� ciÿ1max

� zimax
� 2 � cimax

; �15�
simplifies to cimax

� 1 (assuming ciÿ1max
� cimax

). This makes

the carry set C�CS3� � f0; 1g sufficient for CS3 addition

without format conversion. The rules for determining �i

and ci are given in Table 6b. Again, they are stated only in

terms of �i, without any dependency on the previous group

sum, which makes the look-back L � 0.

10 COMPARISON

Table 7 gives a summary of the look-back distances, L, and
carry sets needed for the 10 types of redundant binary
addition considered. The table clearly shows that equal-
weight grouping can lead to smaller carry sets and a smaller

1274 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11, NOVEMBER 2001

TABLE 6
CS3 Addition Rules: (a) Redundant Position Rules,

(b) Simplified Rules for Non-Format-Coversion Addition

TABLE 7
Comparison of Radix-2 Constant-Time Addition Techniques

look-back. The longest carry propagation path increases
with both the right context and the distance between
redundant digits. Consequently, the smallest critical path
delay of an implementation can be expected under the
following conditions:

1. The look-back, L, is minimized.
2. The distance to the closest higher-order redundant

digit is minimized, which happens when all output
digits are redundant.

Table 7 shows that the minimum look-back occurs only
when the proposed equal-weight grouping is employed.
Among the cases with zero look-back, those with the
smallest carry set should be selected since a smaller carry
set usually implies less complex logic, which should
translate into smaller area and critical path delay. Applying
these criteria, it is seen that the CS2 and CS3 representa-
tions (i.e., the carry-save representations) are more likely to
result in better designs than the signed digit representa-
tions. When format conversions are considered, the mini-
mally redundant (CS2 and SD) representations outperform
their overly redundant counterparts �CS3; SD3���� in terms
of the carry set needed.

Format conversions can be highly effective for Area�
Delay (A� T) efficient multiplier designs. For instance, in
[20], it was shown that multipliers based on SD k with
k � 2 have a lower A� T product than those based on the
full SD representation of [16]. It turns out that adding
partial products (which are in two's-complement format) to
directly generate outputs in this SD k format is costly in
terms of area and delay. A better approach is to add the
partial products and generate outputs in SD format at the
top level of the partial product accumulation tree. At the
next level of the tree, the SD� SD! SD k format
conversion can be carried out during the addition.

Format conversions are also useful if there is a need to
gradually introduce or remove redundancy in number
representations. Note that, by controlling the number and
placement of the redundant digits, one can cover the entire
spectrum of representations from two's complement (no
redundant digits) to fully redundant (such as SD or CS,
where all digits are redundant).

Table 7 compares the various representations at an

abstract level, in terms of carry set size and look-back L.

While this comparison can provide a good high-level

assessment, actual VLSI implementations are necessary to

gauge the relative merits and disadvantages of the

various redundant representations. In the next section,

we present simulation results from the VLSI layouts of

several adder cells.

11 IMPLEMENTATION

In order to verify some of the comparison results included

in Table 7, we designed, laid out, and simulated adder cells

for the following cases:

1. SD� SD! SD: The cell in [16] is the most efficient
to the best of our knowledge, so we laid out this cell.

2. SD3hÿi � SD3hÿi ! SD3hÿi: Shown in Fig. 3a. The

four input operand bits of equal weight are

�xli; yli; xhiÿ1; y
h
iÿ1�. The carry, ci 2 fÿ1; 0; 1g, is en-

coded using bits �chi ; cli� with a two's complement

encoding, that is, ci � ÿ2 � chi � cli. The intermediate

sum �i is encoded as a single bit since �i 2 fÿ1; 0g.
The output is encoded by �zhi ; zli� and can assume

any of the four values fÿ2;ÿ1; 0; 1g. Note that this

cell can also implement SD3h�i � SD3h�i ! SD3h�i

by interchanging the positive and negative inputs

(xli $ xhiÿ1, yli $ yhiÿ1).
3. CS2� CS2! CS2: Shown in Fig. 3b. The four input

operand bits of equal weight are �xli; yli; xhiÿ1; y
h
iÿ1�.

The carry ci 2 f0; 1g needs only a single bit line. The
intermediate sum, �i 2 f0; 1; 2g, is encoded as
�i � 2 � �hi � �li. The output is encoded by �zhi ; zli�
and can assume any of the three values f0; 1; 2g.

4. CS3� CS3! CS3: This is nothing but a 4:2
compressor employed in conventional multipliers.
The 4:2 compressor presented in [21] is extremely
efficient and, hence, we laid out this compressor.

For the sake of brevity, the gate diagrams and details of

cells 1 and 4 are omitted, those can be found in the

references cited. Cells 2 and 3 were newly designed and

PHATAK ET AL.: CONSTANT-TIME ADDITION AND SIMULTANEOUS FORMAT CONVERSION BASED ON REDUNDANT BINARY... 1275

Fig. 3. Redundant adder cells. (a) Cell to perform SD3hÿi � SD3hÿi ! SD3hÿi. (b) Cell to perform CS2� CS2! CS2.

their gate diagrams are shown in Fig. 3a and Fig. 3b,
respectively. In both the figures, it is seen that the carry-out
is generated based only on the bits of the current group, i.e.,
there is no look-back.

Layouts of all four cells were simulated in the TSMC
SCN025 0.25 micron technology process (available from
MOSIS) with a 2.5 volt supply. The designs were first
verified at the logic level. Berkeley SPICE 3f5 was used to
estimate the critical path delay of each cell, which included
appropriate fan-in and fan-out loading for all components.
The results are summarized in Table 8. The relative order of
the simulated critical path delay agrees with the results
from the cost estimate procedure described in [1] (excluding
CS2, which [1] does not cover).

It should be noted that the SPICE simulation results
are highly layout dependent. These layouts were done to
get some idea of the relative comparison of the various
redundant adder cells. The CS2 and SD3hÿi cells in
particular could be made more compact, which might
have a significant impact on the overall delay. In any
case, the critical path simulations clearly demonstrate that
the carry-save representations considered here lead to
faster implementations.

12 DISCUSSION

The practical implication of the results presented above is
that the CS3 representation along with the 4:2 compressor is
the most efficient way to execute constant-time addition. In
light of this, for a multiply operation, it can be seen that
using the CS3 representation with the compressor pre-
sented in [21] is likely to yield the fastest implementations
(faster and smaller than those based on the SD or CS2
representations using cells 1 and 3 mentioned in Section 11).
This can be inferred for the following reasons:

1. Converting partial products from two's complement
format to CS3 format is trivial; it requires no logic
gates at all. Merely grouping the bits of the input
operands appropriately leads to a valid CS3
representation of the output. For example, for input
operands, X and Y , grouping bit xi with bit yiÿ1

creates a valid CS3 digit.
In contrast, if the CS2 or conventional SD

representation is employed, two's complement
partial products must be added to generate outputs
in their respective formats. In each of these cases, a
small delay worth about one full adder is required to
achieve this conversion [7], [16], [20]. In effect,
multipliers based on CS2 or SD intermediate

representations must endure an additional (albeit
small) delay at the top level.

2. The 4:2 compressor that performs CS3� CS3!
CS3 is smaller and faster than other cells.

These two factors, 1 and 2, together imply that multipliers
based on CS3 can be expected to outperform multipliers
based on other redundant representations.

There is a more fundamental reason for the superiority of
the 4:2 compressor. Note that, for both the SD and CS2
adder cells, the digit sums are from an input digit set of
cardinality 5, that is, jfDxi �Dyi gj � 5. This corresponds to
digit sums in the range �ÿ2; 2� and �0; 4� for SD and CS2,
respectively. This is true regardless of whether or not EWG
is employed for these representations. The cardinality of the
output digit set in both cases is 3 since valid output digits
are in the range �ÿ1; 1� and �0; 2� for SD and CS2,
respectively. Thus, redundant addition based on these
representations converts an operand from an input digit
set having cardinality 5 to a result from an output digit set
of cardinality 3.

Note that, in CS3 addition, after EWG, the digit sums are
from an input digit set of cardinality 5 (digit sums in the
range �0; 4�). The output is also in CS3 and, therefore, the
cardinality of the output digit set is 4.

It is intuitively clear that converting an input digit set of
cardinality 5 into an output digit set of cardinality 3 is a
harder task than converting it into an output digit set with
cardinality 4. Therefore, cells such as 1 and 3 from Section 11
are fundamentally more complex, hence, bigger and slower.

In fact, Akoi et al. [22] recently proposed a clever method
to employ a 4:2 compressor-like cell to execute constant-
time SD addition by using the borrow-save encoding
(x̂i � xhi ÿ xli). In effect, their method employs a 4:2
compressor to perform SD� SD! SD3hÿi, that is, a digit
set of cardinality 5 gets converted to digit set of cardinality 4.
Since the SD3hÿi output is a weighted encoding, EWG on
the output is used to retrieve the original borrow-save
encoding without any extra logic.

In closing, we show the relationship of this work to the
results presented in [1]. The examples of constant-time
addition without format conversion that we have described
can be rewritten using the notation from [1], as shown
below.

SD : 2h21i � h21i (h10i � h10i � h11i � h11i � h21i
SD3hÿi : 2h21i � h32i (h10i � h10i � h11i � h11i � h21i
SD3h�i : 2h21i � h31i (h10i � h10i � h11i � h11i � h21i
CS2 : 2h10i � h20i (h10i � h10i � h10i � h10i � h10i
CS3 : 2h10i � h30i (h10i � h10i � h10i � h10i � h10i:

The notation shows that the sum of digit sets to the right of
the decomposition operator (() are expressed using the
digit sets to the left of the operator. A digit set h�!i is
characterized by its diminished cardinality, �, and negative
offset from zero, !. This represents digits in the range
�ÿ!;ÿ!� �� and must include 0. Further details regarding
the notation and decompositions can be found in [1].

The analysis in [1] requires that the total diminished
cardinality to the left of the decomposition operator, �out, be
greater than or equal to the total diminished cardinality of
the right side, �in. The condition that �out � �in is satisfied in

1276 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11, NOVEMBER 2001

TABLE 8
Critical Path Delay through One Cell from SPICE Simulations

all cases above except CS2, where �out � 4 and �in � 5.
Therefore, CS2 addition presented in this paper lies outside
the framework developed in [1].

The hardware cost estimation approach from [1] can be
applied to all cases except CS2, with the results shown in
Table 9, where Carry Generator is abbreviated CG and
Partial Adder PA. The number of Carry Generators listed
below is the total number of ªredundantº and ªnonredun-
dantº carry generators from [1]. As mentioned earlier, the
ranking of the totals listed here agrees with our measure-
ments shown in Table 8.

When constant-time addition with simultaneous format
conversion is considered, the methodology from [1] cannot
be applied to nonredundant positions of the SD k and
CS2 k formats since �out 6� �in. Overall, we have presented
some ªnonobviousº cases of addition that the theory from
[1] does not permit.

13 CONCLUSION

This paper presents a comprehensive analysis of constant-
time addition and simultaneous format conversion, where
the source and destination digit sets are based on binary
redundant numbers. We investigated encodings that enable
ªequal-weight groupingº (EWG), wherein bits having the
same weight are grouped together during the constant-time
addition operation. The analysis and data show that EWG
leads to smaller carry sets and context or look-back. These
in turn lead to efficient implementations for constant-time
addition and simultaneous format conversion of redundant
numbers based on the carry-save �CS� and signed-digit
�SD� representations. We compared VLSI implementations
of various cells to perform constant-time addition and
demonstrated that the conventional 4:2 compressor is the
most efficient way to execute constant time-addition.
Practical implications of this work are immediate and were
illustrated via a comparison of multiplier implementations.
We explored the fundamental issues underlying constant-
time addition and indicated the reasons which render the
4:2 compressor the most efficient way to implement
constant-time addition. We also presented some interesting
connections to the results from [1].

Possible future work includes finding redundancy
metrics which capture the complexity of hardware im-
plementations based on the redundant format under
consideration without the need to go through VLSI
implementations. Another issue is to extend the necessary
and sufficient conditions for constant-time addition derived
in [2] to the case where the digit sets at all digit positions are
not identical. Such a framework allows for arbitrary spacing
of redundant digit positions throughout a representation, as

well as the ability to vary the types of redundant digits

used. It is conceivable that examples of situations where

both left and right contexts are required could arise in such

cases. Since digit sets could be radically different from one

digit position to the next, it is possible that each position

would also need to examine its left context in order to select

the appropriate or acceptable carry-out value.

ACKNOWLEDGMENTS

The authors would like to thank Professor Naofumi Takagi

for his insightful remarks which led them to this investiga-

tion. They also wish to thank Professors Milos Ercegovac,

Neil Burgess, and Peter Kornerup for their suggestions

which improved the quality of this paper. They appreciate

the constructive comments from the anonymous reviewers.

This work was supported in part by US National Science

Foundation grants ECS-9875705 and CDA-80082. A pre-

liminary version of this manuscript was presented as an

invited paper at ASILOMAR '99 [8].

REFERENCES

[1] T.M. Carter and J.E. Robertson, ªThe Set Theory of Arithmetic
Decomposition,º IEEE Trans. Computers, vol. 39, no. 8, pp. 993-
1005, Aug. 1990.

[2] P. Kornerup, ªNecessary and Sufficient Conditions for Parallel
and Constant Time Conversion and Addition,º Proc. 14th IEEE
Symp. Computer Arithmetic, pp. 152-156, Apr. 1999.

[3] P. Kornerup, ªDigit-Set Conversions: Generalizations and Appli-
cations,º IEEE Trans. Computers, vol. 43, no. 5, pp. 622-629, May
1994.

[4] A.M. Nielsen and P. Kornerup, ªRedundant Radix Representation
of Rings,º IEEE Trans. Computers, vol. 48, no. 11, pp. 1153-1165,
Nov. 1999.

[5] M.D. Ercegovac and T. Lang, ªOn Recoding in Arithmetic
Algorithms,º J. VLSI Signal Processing, vol. 14, pp. 283-294, 1996.

[6] A. Avizienis, ªSigned-Digit Number Representations for Fast
Parallel Arithmetic,º IRE Trans. Electronic Computers, vol. 10,
pp. 389-400, Sept. 1961.

[7] D.S. Phatak and I. Koren, ªHybrid Signed-Digit Number Systems:
A Unified Framework for Redundant Number Representations
with Bounded Carry Propagation Chains,º IEEE Trans. Computers,
special issue on computer arithmetic, vol. 43, no. 8, pp. 880-891,
Aug. 1994. (Unabridged version available at http://
www.cs.umbc.edu/~phatak/publications/hsdtrc.pdf).

[8] T. Goff, D.S. Phatak, and I. Koren, ªRedundancy Management in
Arithmetic Processing via Redundant Binary Representations,º
Proc. ASILOMAR '99 (Ann. Conf. Signals Systems and Computers),
pp. 1475-1479, Oct. 1999.

[9] B. Parhami, ªGeneralized Signed-Digit Number Systems: A
Unifying Framework for Redundant Number Representations,º
IEEE Trans. Computers, vol. 39, no. 1, pp. 89-98, Jan. 1990.

[10] C. Nagendra, R.M. Owens, and M.J. Irwin, ªUnifying Carry-Sum
and Signed-Digit Number Representations,º Technical Report
CSE-96-036, Computer Science and Eng. Dept., Pennsylvania State
Univ., 1996.

[11] I. Koren, Computer Arithmetic Algorithms. Amherst, Mass.: Brook-
side Court Publishers, 1998.

[12] B. Parhami, Computer Arithmetic Algorithms and Hardware Designs.
Oxford Univ. Press, 2000.

[13] R.T. Borovec, ªThe Logical Design of a Class of Limited Carry-
Borrow Propagation Adders,º Technical Report 275, Computer
Science Dept., Univ. of Illinois, Champaign-Urbana, 1968.

[14] C.Y. Chow and J.E. Robertson, ªLogical Design of a Redundant
Binary Adder,º Proc. Fourth IEEE Symp. Computer Arithmetic, pp.
109-115, 1978.

[15] N. Takagi, H. Yasuura, and S. Yajima, ªHigh-Speed VLSI
Multiplication Algorithm with a Redundant Binary Addition
Tree,º IEEE Trans. Computers, vol. 34, no. 9, pp. 789-796, Sept. 1985.

PHATAK ET AL.: CONSTANT-TIME ADDITION AND SIMULTANEOUS FORMAT CONVERSION BASED ON REDUNDANT BINARY... 1277

TABLE 9
Cost Estimates from [1]

[16] S. Kuninobu, T. Nishiyama, H. Edamatsu, T. Taniguchi, and N.
Takagi, ªDesign of High Speed MOS Multiplier and Divider Using
Redundant Binary Representation,º Proc. Eighth Symp. Computer
Arithmetic, pp. 80-86, 1987.

[17] M.D. Ercegovac and T. Lang, ªEffective Coding for Fast
Redundant Adders using the Radix-2 Digit Set {0, 1, 2, 3},º Proc.
31st Asilomar Conf. Signals Systems and Computers, pp. 1163-1167,
1997.

[18] T. Goff, D.S. Phatak, and I. Koren, ªEfficient Arithmetic
Implementations Based on Carry-Save Representations,º Proc.
SPIE 45th Ann. Meeting, Int'l Symp. Optical Science and Technology,
Aug. 2000.

[19] D.S. Phatak, T. Goff, and I. Koren, ªOn Constant Time Addition
and Simultaneous Format Conversion,º Technical Report TR-01-
CSEE-2, Computer Science and Electrical Eng. Dept., Univ. of
Maryland Baltimore County (UMBC), Feb. 2001.

[20] J.J.J. Lue and D.S. Phatak, ªArea � Delay (A � T) Efficient
Multiplier Based on an Intermediate Hybrid Signed-Digit
(HSD-1) Representation,º Proc. 14th IEEE Int'l Symp. Computer
Arithmetic, pp. 216-224, Apr. 1999.

[21] N. Ohkubo et al., ªA 4.4-ns CMOS 54 � 54-b Multiplier Using
Pass-Transistor Multiplexor,º IEEE J. Solid-State Circuits, vol. 30,
pp. 251-256, Mar. 1995.

[22] T. Akoi, Y. Sawada, and T. Higuchi, ªSigned Weight Arithmetic
and Its Application to Field Programmable Digital Filter Archi-
tecture,º IEICE Trans. Electronics, vol. E82-C, pp. 1687-1698, Sept.
1997.

Dhananjay Phatak received the BTech degree
in electrical engineering from the Indian Institute
of Technology, Bombay, in 1985, the MS degree
in microwave engineering in 1990, and the PhD
degree in computer systems engineering in
1993, both from the Electrical and Computer
Engineering Department, University of Massa-
chusetts, Amherst. From 1994 until 2000, he
was an assistant professor of electrical engi-
neering at the State University of New York,

Binghamton. Since Fall 2000, he has been an associate professor in the
Computer Science and Electrical Engineering Department at the
University of Maryland Baltimore County (UMBC). His current research
interests are in computer arithmetic algorithms and their VLSI
implementations, mobile and high-performance computing and net-
works, digital and analog VLSI design and CAD, and neural networks. In
the past, he has worked on microwave and optical integrated circuits. Dr.
Phatak has published articles in IEEE transactions in several diverse
areas (microwave theory and techniques, neural networks, computers),
as well as in other premier journals and conferences in his areas of
research. He has been active on technical program committees of
conferences in his areas of research. He has obtained research support
from the US National Science Foundation (NSF), Lockheed Martin, and
AetherSystems Inc. He was a recipient of the NSF's CAREER award in
1999. He has filed for patents based on his work in computer arithmetic
algorithms and implementations and on novel codes in CDMA (wireless
cellular) systems. He teaches classes in his areas of research and on
other topics in computer engineering. He is a member of the IEEE.

Tom Goff received the BS degree in electrical
engineering and the MS degree in computer
science from the State University of New York at
Binghamton in 1997 and 2000, respectively. He
is currently pursuing the PhD degree in compu-
ter science at the University of Maryland,
Baltimore County. His research interests include
computer arithmetic algorithms and their imple-
mentations, wireless and mobile networking, and
distributed computing.

Israel Koren (S'72-M'76-SM'87-F'91) received
the BSc, MSc, and DSc degrees from the
Technion-Israel Institute of Technology, Haifa,
in 1967, 1970, and 1975, respectively, all in
electrical engineering. He is currently a profes-
sor of electrical and computer engineering at the
University of Massachusetts, Amherst. Pre-
viously, he was with the Technion-Israel Institute
of Technology. He also held visiting positions
with the University of California at Berkeley,

University of Southern California, Los Angeles, and University of
California, Santa Barbara. He has been a consultant to several
companies including IBM, Intel, Analog Devices, AMD, Digital Equip-
ment Corp., National Semiconductor, and Tolerant Systems. Dr. Koren's
current research interests include techniques for yield and reliability
enhancement, fault-tolerant architectures, real-time systems, and
computer arithmetic. He has published extensively in several IEEE
transactions and has more than 150 publications in refereed journals
and conferences. He currently serves on the editorial board of the IEEE
Transactions on VLSI Systems. He was a co-guest editor for the IEEE
Transactions on Computers special issue on high yield VLSI systems,
April 1989, and the special issue on computer arithmetic, July 2000, and
served on the editorial board of these transactions between 1992 and
1997. He has also served as general chair, program chair, and program
committee member for numerous conferences. He edited and coau-
thored the book Defect and Fault-Tolerance in VLSI Systems, volume 1
(Plenum, 1989). He is the author of the textbook Computer Arithmetic
Algorithms (1999). He is a fellow of the IEEE.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

1278 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11, NOVEMBER 2001

