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Abstract

Todoy's advanced science applications often process
fuge wolumes of dafe in recl-fime wnder ertreme am-
bances such as in spacecrafts ond survedlonce equip-
ment. Faulls manfesting in this raw date may corrupt
the ingut given fo these applications, causing fowed re-
sults. Henee we show that highly significant fmproie-
mends in application refiabilily and precision can be
obfoined if the dafa is proactively preprocessed, using
statistical anclysis of mpul for pessible recovery from
the bt errora at input. In this paper we tmplement
application-specifie algorithms for preprocessing the in-
put datasets for bwe major space applications. The
Nert-GGeneration Space Telescope (NGST) and the Or-
bital Thermal Imaging Spectrometer (OTIS) are both
from NASA "3 REE suite, and yet have sufficient con-
trasts in their detosets to demonstrate the versatile
range of applications for which our approach is suit-
able, Cur preprocessing algorithme wbilize application-
semantice, inherent dote redundoncy, absolute natural
bounds, and temporal andor spabial loeality coherence
in the natural dote for sebting dynomic thresholds o
identify dota-foults, We have compared the performance
gain in relation to an ideal system for these alporithms
with twa stonderd algorithms weed for image smooihing
in graphics applications

1 Introduction

Contemporary science applications, especially those
designed for astronomical, geclogical and surveillanoe
purposes, often involve real-time(l] processing of huge
volumes of data obtained from detectors and sensors.
With the rapid advances in architectural computing
proiential and data storage, it has become possible o
enhance manifold the resolution &t which such applica-
thons process thelr input, resulting in the exponential
escalation of the mmput data volume. As a majority
of these applications run on severe ambiances such ag
onboard spacecrafts and surveillance equipment, these
ayatems are often exposed to extreme conditions that
make them vuloerable to many forms of faults, de-

spite the best of protection mechanisms like radiation-
hardening, Hardware failure iz one such form, which
may be tolerated using hardware and software redun-
dancy schemes[l, 2], of which the former is often pro-
hihitively expensive,

Some of the prominent software-redundancy schemes
in practice include the Algorithm-Based Fauolt Toler-
ance [3], which is particularly suited for matrix oper-
ations, amd the N-Version Programming [4] for which
many voting schemes such as the T/{N-1) VP scheme
have been proposed, If the fanlt occurs during execn-
tion, cauzing an abaormal process termination or an
invalid output, the Application-Level Fault Tolerance
(ALFT) scheme|5] would replace the primary fanlty {or
non-existent) output with a partial cutput produced by
a staled-down secondary run on another node in & dis-
tributed system.

Another very significant type of fault ocours when
the memory that holds the gigantic volumes of input
data gets affected with random bitflips, the relative
probability of which is high considering the exorbitant
propartion of data to instruction memory sizes, often
a8 high as 10000:1 as in some of the applications we
congidered. The aforementioned schemes clearly do not
handle this fault-model, as there are no process failures
here, and also a recomputed or secondary cutput may
only be expected to produce squally spurious or worse
results than the primary as the corrupted input affects
both, while also incurring a substantial overhead, Thus,
though the current schemes have proven ussful in re-
covering from system faults occurring in the instruc-
tion memory or processing units of the system, they are
inadequate in handling the faults occurring at source,
during transit from source, or inside the date memory
that induce the input raw data to be corrupted. Hence
the ideal solution for this fault model is to identify and
correct the bitfips in the raw data before it s given to
the application for processing. However, in the abeence
of any error-correcting codes inbuilt into the source or
the application, a bit-wise sanity analysis of the input
data becomes imperative. In this peper, we attempt to
deal with this fault-model by devizing a scheme that
does preprocessing of the input dataseis using algo-



rithms that utilize application-specific scrnantics and
inherent input redundancy. Such algorithms can use
genaric concepts discussed in this paper as the back-
bone, but may have to apply application-dependent
fine-tuning to yield optimum results, We have studied
this approach using two distributed real-time applica-
tiocns of high contemporary relevance from NASA s Re-
mote Exploration and Experimentation {REE) [6] suite.

2 The NGST Application Benchmark

The first application is NASA s Next Generation
Space Telescope [NGST) [7] Data Processing Appli-
cation, which is designed to run onboard the NGST,
& large-aperture passively cooled infra-red telescope
which is to be launched into the L2-Halo Orbit by 2010
to succeed the Hubble s Space Telescope, as a power-
ful observatory to serve as the pivot in the ORIGING
program [&]. Since such a distant orbit puts the NGST
bevond the protective influence of any planetary mag-
netic field, it would be exposed to severe cosmic radia-
tion, which can lead to significant data loss and can also
induce cross-talk between the CCD (Charge-Coupled
Device) sensors in the detector [9). When a cosmic
ray (CI) hits the detector, false-triggering may happen,
and hence it is anticipated that during a baseline 1000-
second exposure, an unacceptably high 10% data loss
wothd occur [10], besides reducing the data compression
ratio by about 12%. This necessitates having multipls
readouts per baseline, leading to high redundancy in
the raw data, in order to digitally analvze image data
[11] using comparison and integration to obtain one im-
age per baseline to be downlinked to the base station,
after compression using Rice Algorithm [12]. Due to the
limited downlink bandwidth constraints, this process-
ing has to be done onboard the NGST, for which many
Cosmic Ray Rejection Algorithms [10, 11, 12] have been
progosed,

While cosmic rays cause the data resd at the de-
tector to be irrecoverably lost, bitflips thet ocour in
legitimately read data while in storage or transit be-
fore being processed by the CR-rejection algorithm, can
cause a further degradation in precision at the output
beamed to earth, Sinee precision and input reliability
are at & premiom for the myriad scientific experiments
[13] conducted on the data obtained from the NGST,
the importance of reproducing data as close to the ideal
(fault-free and CH-free) situation is evident.

2.1 The System Architecture
The CR-rejection process onboard the MGST iz de-

signed as & real time distributed ayetem [10, 11, 132],
which has heen estimated by 5TSc as a 16-processor

workstation interconnected with a high speed net-
work such as the Myrinet, using Commercial-Of-The-
Shelf (COTS) processors. The slack CPU time in
the slave nodes can be very well utilized for a suit-
able fault-tolerance scheme, for which the application
layer of NGST offers ample scope. The detector has
a 1024*1024 sensor array, and all the input images of
this resolution are fragmented into 128%128 pixel image
segmentz and handed down to the slaves for process-
ing a8 shown in Figure 1. The processed fragments are
returned to the master for re-integration and compres-
sion, before being transmitted to the base station on

earth.
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Figure 1. The System Architecture for CR-
rejection onboard the MGST
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2.2 Analytical Models

2.2.1. The Input Data Format and Analytical
Model. The inputs to NG5T, constituted by the mul-
tiple readouts of the detector within each baseline of
10E-zeconds, are stoved as FITS images (Flexible Im-
age Transport System [14]) consisting of ane or more
Header + Data Units ({HDUs)., Though the FITS
header consumes only a small proportion of the file size,
header integrity i3 vital as the master and slave nodes
decode it for interpreting the bytes found in the cor-
responding data unit, Hence, a date-fanlt cansed by
a bitflip ocourring in the header region of a FITS file
has the potential to canse catastrophic failures. For
example, if keyworda such as NAXIS or BITPIX are
misinterpreted at the oode, the dimensions of the data
array or the bit resolution of the pixels may not be
known respectively, resulting in corrupting the entire
data unit.

The temporal redundancy in the input comes from
the multiple (N, = 64 or 65 depending on the chosen
scheme [10, 11, 12, 13] images, sampled within short
intervals, in each dataset during its baseline. Hence for
each coordinate I1 in the dateset, there are N pristine
temporal variants { TI{i}, i =1... N } in an ideal sys-
tam, such that these variants exhibit strong temporal
correlation for which we assumed a Ganssian statistical



madel s follows:
i+ L=MH+ 8, i=1...N=-1 (1)

where 8 is a Gaussian Random Variable, with mean
# =10 to allow for unbiased positive and negative vari-
ations and standard deviation o representative of the
simulated datasets from the NGST Mission Slmulator
(MNMS). We consider two models for bitflips:

2.2.2. The Uncorrelated Fault Model. This
midel assumes that bitfips occur randomly in the input
datasets based on a given static probability Ty, either
at source, during transit from source to the system, or
while residing in memory, The N 16-bit temporal vari-
ants after bitflips at the same coordinates in the image
are depoted by F{i)], i=1... M,

2,2.3. The Correlated Fault Model. When hit-
flipa ocenr in memaory, due o multifarious reasons such
az alpha particles striking the memory region onboard
a spacecraft that is exposed to hezardous radiation, or
heavy polarization due to free-moving charged particles
causing capacitance effects in memaory chips, or power
glitches causing bit errors in memaory, the pattern of
bitfips oooureing in such affected memory i8 often con-
centrated around the worst-hit center, with edges of
the affected region siphoning off in all directions in the
memory organization. This could lead to such compli-
catbons as a sequence of fipped bits voling to Hip a
good bit causing & falzse alarm, and hence posed a very
interesting problem to explore. We, therefore, consbder
the following model for bitflips:

# The probability of each bit being Bipped must de-
pend on the number of consecutive flips (run) that
have preceded in the hovizontal and vertical dimen-
sions, which increases with the length of run.

# The probability is computed in both divections and
the higher of the two, corvesponding to the direc-
tion having & longer run af that bt postion, is
taken.

In the mode]l we vsed, if the bit ab position w, 8
preceded by a run of R bitflipa (in the direction being
considered), then the probability Tepee(w) for that big
to be Hipped is &

Peorel) = 3 (Fiws) ? )
Fe=l

where T'iny 18 the base probability with which a fresh
run initiates. For infinite rung, the RHS converges to
an infinite geometric series: 1—5—}";4"—.- , which will always
be less than 1 for any i less than (L5

3 A Dynamic Preprocessing Algorithm
3.1 Concept Behind Bit Windows

The 16-bit representation of a potentially damaged
pixel P(i) can be partitioned into three bit windows A,
B and 7 in a temporal locality. Window A is the first
from left, comprising of the most significant bits that
are the least likely to change naturally across a dataset
and hence exhibit very strong bitwise correlation with
its close temporal variants, after taking carry propaga-
tion offects into consideration. Window © comprises of
the least significant bits that may keep naturally chang-
ing with every pixel and hence can be ignored from
preprocessing as it is impossible to identify the bitfips
here. The middle window B usually determines how
well & correction algorithm improves the reliability of
the raw data. The binary weights of the bits in this win-
dow are too considerabile to be ignored as in O, although
the bits are not as consistent as in A. Statistically, the
best results out of this region are obtained by using
& sliding model for temporal locality. The underlving
coneept is that even though two arbitrarily distant Pit)
may not have sufficient coberence in this region, con-
secutive variants in a sliding window can be expected
b show much better correlation In other words, Win-
dow B is analogous to A if the region of locality being
congidered bas a sufficiently smaller number of variants
than &,

3.2 Sensitivity Parameter for the Preprocessing
Algorithm

A good fult tolerance scheme needs to be scal-
able depending on the susceptibility to faults and the
trade-aoff with overhead in execution time and associ-
ated power consumption. We introduced the input pa-
rameter “sensitivity” {A) that can be set from O to 100
depending on the design requiremnents. At null sensi-
tivity the algorithm does nothing but & simple sanity
analysis of the FITS header and hence has negligible
overhead compared to the NGST application "s execu-
tion time. A has a direct hearing on the widih of win-
dow B, which needs maximum computational effort.

3.3  An Implementation Perspective

The main advantage of our algorithm compared to
the generic algorithms discussed in [Section 4)ls that
it is entively dynamic in its criteria for identification
of faulty pixels, and automatically adjusts the filbering
parameters to suit the coherence in the region of data
being operated upon. It sets tighter bounds for regions
in the datasets that show little variatlon over space and
time, as compared to very turbulent regions, It achieves
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“Algo_NGST
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this is by having a dynamic statistical pre-analvsis of
the entire dataset prior to ierating through the dataset
using a neighborhood window. This is achieved by first
implementing an T-way pairing for each pixel, where T
is the number of neighbors that must be consulted for

identifying each tempaorally nun—cc:-n.t’m ming kit, such
that for each pixel. there will he T 3 pairings with the
neighbars on front and the other I ? with those on the
back (hence T must be even). Exclusive-QR. opera-
tion is done on each pair, and then for each way, the
value at a particular index, derived from the sensitivity
parameter A is selected to be representative of the cor-
relation in the data pixels in that ordering. Given that
the XOR results show the bit incongruities between two
pixels, the higher the index value the more the turbu-
lence expected to be natural in the dataset, The given
methods of pairing has the least average distance from
ita T nel.ghhms for any given pixel, as it is bit-compared
with the L pixels immediately in front and back.

All the values ahove the cut-off value for each pair-
ing are logieally mapped into an & x 2T voter matrix,
with the view that for any given pixel in the dataset,

there will exist an unigue perrautation in the matrix

corresponding to that pixel if and only if itz value iz
more deviant from its neighborzs than iz naturally ex-
pected at that location. If the sensitivity is higher, the
total vobers in the voter matrix will increase, and hence
more hitflips could be identified. However, the mum-
ber of voters required to accord to a change must vary
in diffevent bit windows: A does not require an abso-
lute voie from all participating voters for each bit o
be changed = it is the most stable region, whereas B
does, while window ' is masked off from any changes.
These three windows are identified using the hit masks
MSB-MASK and LSB-MASK.

The LSB-MASK, which corresponds to the right-
most bits that form Window O, i logically defined as
the lowest bit position below which the XOR resulis
does not vield any locality information irreapective of
the way the pixels are paired, as identified by the min-
imum binary weight indexed among all of the T ways
of pairing. OUn the other hand, the M5B-MASK corre-
aponds to the window A foemed by the left-most bits
in the pixels' binary representation, that are s0 consis-
tent that & bit-wise inconsistency with the neighbors as
shown by the XOR of corvesponding paics is likely to
be a bitflip, and is identified by the maximum binary
weight indexed among all the T ways the pixels can
be paired such that the temporal distance between any
two pixels are not more than -} pixels at the most. It
has been observed from extensive experimentation that

T =4 yielded best performance for the two benchmarks

presented heve, e, the simulated datasets of the NGST
application and the natural datasets from the OTIS ap-
plication, though the system designer can subjectively
decide the value for T and A optimally suited based on
the statistical model of the datasets and the vulnera-
bility to bitfips of the system being designed.



4 Preprocessing using Standard Algo-
rithms

We compared Algo NGST to two image smoothing
algorithms tatlored to suit the NGST datasets, which
inherently seek out any discrepancies at input, and give
a smosthened output that has lower variance, Some
other commonly used smoothing algorithms include
negative exponential, loess, running average, inverse
square, bi-sgquare etc. In graphics applications, they
are uzed to give the image a smoother look by avoid-
ing stark conirasts, especially at boundaries between
surfaces, and thus to give a decidedly slightly-blurred
AprEarance,

4.1 The Optimal Median Smoothing Algorithm

This [Algorithm 2] is an entirely value-based simple
algorithm that has a sliding window approach, Resalts
for our benchmarks have indicated that a sliding win-
dow of three pixels vields best results in terms of smaller
relative crror, as 1t cuts down on the false alarms caused
by windows of higher width while still retaining nearly
identical correction potential. It vields far better results
than Mean Smoothing, due {0 the better robustness of
median over mean. Mathematical techniques have been
proposed for optimizing median smoothing [15].

Algorithm 2 Simple median smoothing algorithm us-
ing a window of width three pixels

Fll] = Mixlian -[F‘l_'l 1. P11}, 'F'I:.‘a:l-]-
far 1=31 = (¥ —-1] da

Pil) = Median { P[l-1], P{8), Fli+11}
arad For

P(N] = Median {F{M-7), P[N-1), P(N]}

4.2 The Sliding Window Majority Bit Voting Al-
gorithm

Bince the fault models we consider here deal with
bitfips in large chunks of Input data, it makes sense to
do a bitwise majority voting [Algorithm 3] rather than
taking only values into account. Most often & bad pixel
becomes flipped only at one bit, offsetting it by a value
equivalent to the binary weight of the bit position as the
representation here is for long integers. By labeling that
pixel az an outlier becavse it has a deviant value, and
discarding its current 16-bit representation altogether,
we are losing potential information from the other 15
uneorrupted bics. However, if we ware to consider each
bit 8z & separate entity and compare i@ with the bits
at the same binary weight. in its temporal variants' bit
representations, this can be svoaded,

Algorithm 3 Bitwise Majority Voting Algarithm using
a window of width three pixels

f* Pk, |} denstes the kit at positlonal offset | feeon the MSH of
U pixel Pli} *F
{0y = {3}
P{N-+1] = P(M-2)
Fori=1—= (V) do
for j =0 = 15 da
if { PG, ] AND Pl {13 OR (B{i-1, j) AND Bil+1, J}) QR
[P j1 AND PO, J) 1) than
Pl ip=1
wlae
Fli§} =1
nined i
end for

abd fier

5 Numerical Results for the NGST

Benchmark

The performance gained by using input preprocess-
ing wag studied for both the uncorrelated [Figure 2
and correlated fault models [Figure 4],as in [2.2.2] and
[2.2.3], for the application-specific preprocessing algo-
rithm Algo NGST [Algorithm 1] in comparison with
that of a gemeric median smoothing algorithm using
simulated datasets, for a wide range of bitflip probabil-
ities {Tg). The data that hes been used for these simu-
lations have the Gaussian correlation model in [2.2.1],
and hawve the standard deviation & corresponding to the
sample NGST datasets. The performance in terms of
gain in precision was messured as the average relative
error remaining in the data after applying the respec-
tive preprocessing algorithm.

For ¢ = 1 to N(=64), II{i} is the uncorrupted
dataset from the detectors in the ideal scenario, P(i)
is the original potentially corrupted dataset, and £3({i)
is the datasets input to the application after preprocess-
ing. The average relative errors ¥ yopreprocessing 80

IE.‘Hgﬁ-rl’ﬂlm are defined as:
N IH"I‘—nl:I!I
E{:] 1
WHE-PT‘E]]FEEEF#LM = T

E{1| |n!:'!_rrr.'!|

wﬂ!gnrunm - T |:4]

()

Figure 3 shows the vanation in execution overhead
at various sensitivities (measured on a Pentium TIT T30
MHz system) as compared with that of the generic al-
gorithms discussed in [4]. The results indicate that if
the sensitivity is incressed beyond the optimum value
for that particular fault probability at input, the per-
formanee in ferms of minimum achievable input relative
error of the pixels actually deteriorates, along with the
obwious increase in execution overhead. This is hecanse
the probability for false alarms also inereases with sen-
gitivity, and hence after a data-dependent threshold, i
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Figure 2. Performance comparison at varying
sensitivities  for Algo MGST with the median

smoothing algorithm

only adds to false alarms without contributing to any
more corrections as shown by Figures 2 and 3.
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Figure 3. Preprocessing overhead for
ALFT_MGST as a function of sensitivity A

Figure 4 shows that for the correlated fault model
in [2.2.3], Algo NGST does much better in combating
the correlated failures in a bit-locality than the two
smoothing algorithms, both of which show quite similar
performance, The experimental results from Figures 2
and 4 for both fault models clearly highlight that using
the proposed concept of input preprocessing enhances
the precision and reliability of the input datasets by &

highly desirable margin, compared to using the data
as-is. For a practical range of Iy, the margin is shown
to be as high as the order of 10%, depending on the
preprocessing algorithm chosen. As is intuitive, sven
a small number of bitflips in the higher significant hits
{window A) could cause an unacceptable error in the
datagets, which could easily be obviated using prepro-
cesging. Though a matter of choice for the designer,
the dynamic input-specific preprocessing algorithm has
shown to fare much batter than the standard ones with
static parameters, as it eliminated most of their possible
false alarms while still garnering much more of locality
informaticn.
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Figure 4. Performance comparison for NGST
datazels affacted with & correlated fault-modal

Figure § shows how the preprocessing alporithms
perform when the mean intensity of & dataset of N pix-
elg varies acroes the entire gamut of possible values. For
MNGST, as in similar cases, there will always be some
background noise present at the detector causing non-
zero réads. The resilts are averaged over 10 datasets
by imjecting fanlts with I'n = 2.5%, with T = 4 and
aptirum for each dataset for Algo NGST.

AW

Figure 5. Performance Characteristics across en-
tire gamut of datasels

6 Experimental Analyses of Theoretical
Datasets

For the NGST benchmark having the assumed input,
analytical model in [2.2.1], the results for Algo NGST



showed a very promising reduction in input average rel-
ative error %, by an order of magnitude in the range
~ ) to ~ 1000 on an average [Figure 2], for & prob-
ability of bitfip Ty < 10% which is in the range of
practical intereat. These results were obtained by ns-
ing experimentally optimized values of T and senstivity
A, and hence it was of theoretical interest to see how
the aptimality of parameters would change when the in-
put statistical model changed, to reflect the impractical
cases also. Hence we simulated different quasi-NGST
datasets, with o varylngfrom very low to very high, and
the same initial value [1(1) = 27000 for consistency,
Figure 6 shows that for very low natural variations,
higher values of T give better performance, as is in-
tuitive. When the natural variations that can lead to
paetde-corrections are extremely small, the more the
number of neighborz consulted, the better, Hence for
the synthetic dataset where the pixel intensity remains
constant acioss time in the dataset, T = 6 vields bet-
ter results than ¥ = 4, which in turn i8 better than
T = 2, especially for higher Ty, However, when the nat-
ural variation gets larger in the dataset, using a large
number of voters leads to many pseudo-corrections, as
the temporal window of locality is excesded too widely
by the window of participating voters. The larger
such variations, the more the paando-corrections from
a larger T, leading to the depradation of performance
with increasing T. Hence we sea in Figure 6 that for
larger o, the pecformance of T = 2 gets closer to that of
T = 4 and &, The optimum value of T will ales depend
on the probabilicy of bitfip Ty when the natural vari-
ations in data cannot be & deciding factor all by itsslf,
as with o = 260 in Figure 6. Here, o iz such that for
[g~004, T ==06and T = 4 has a cross-over in terms
af optimality. Laat row shows that for extremely turbu-
lent datssets (o = 3000, overflows are truncated to the
maximum value), T = 6 performs quite badly for low
[y, as the false-alarms do more harm than actoal bit-
fips in this region, though it eventually gives the best
performance when Ty s very high. The overall "steep-
ness’ of the curves may be inferred to as being inversely
proportional to T, a8 supported by T = 6 having the
flattest curve among the three, Owerall, T = 2 seems
1 be the best choice for this scenario, as it does much
better than the others for small-to-medium range of Iy,

7 The OTIS Application Benchmark

The eecond application for which we implemented
our concept 15 the Orbital Thermal Imaging Spectrom-
eter (DTIS), which s an orbiting probe-besed dis-
tributed software that collects radiation data from the
atmesphere using onboard sensors and processes it to
obtain temperature and emissivity mappings of the ge-

ographical location. Due to the potentially destruc-
tive environment that the system is exposed to in jts
orbital Hight, such as bombardment by free particles
even a0 close as a few miles from the surface &s in
the Scuth Atlantle Anomaly[16], the necessity for an
accurate fault tolerance scheme hecomes immediately
apparent. The system lends itself to the technique of
Application-Level Fault Tolerance {ALFT) [5] using the
provision for & scaled-down secondary being run on an-
other node as a backup to recover from faults occurring
in the primary nodes, due to its Distributed System
Deesign. Further studies have proven that a hetter leveal
of fault-tolerance, and also at a lower overhead, can
be obtained by extending this approach, by develop-
ing suitable filbers for the primary output to determine
whether to run the secondary, and then to decide on
which output to choose based on a logic grid approach
[29]. Such a scheme not only attempts recovery from
process-killing faults as targeted by the aforementioned
basic ALFT method, but also from faults that canse
processes (o generate incorrect ountput, without nec-
essarily causing the node to be hung. We show next
that the fault tolerance can be augmented to a much
greater degree by incorporating input preprocessing al-
garithms into the gystem, as it attempts to eliminate
the case when the other schemes fail catastrophically,
which happens when both primary and secondary gen-
erate spurious output.

7.1 Input and Output Data Formats of OTIS

Input to OTIS is as a three-dimensional array [18],
where the x and y axes depict the geography in two-
dimenzions and the z-axis depicts the radistion inten-
sity of the same region in various wavelengths. Though
the data iz stored in the form of simple 32-bit fost-
ing point representation, the amount of data consumes
several megabytes per frame of feld of view and hence
the input data volume 3 quite cumbersome for a larpe
FOV, OTIS gives its output in various forms that in-
clude & two-dimensional temperature diagram in Kelvin
and & three-dimensional emissivity diagram [18], simi-
lar to the input format. Since there is no inherent aver-
aging ar multiple imaging as in NGST, the correlation
bertwoen precision at cutput and input is much higher in
(FTIS. Being representative of a physical phenomenon
a3 radiation in a close vicinity, the data can ba naturally
expected fo bave a correlation pattern among neighbor-
ing pixels (spatial locality model) and also between pix-
elg at the same location for different wavelengths (spec-

" tral lovality model). Our experiments have shown that

the former vields better expediency to our approach
than the latter, as spectral corvelation falls drastically
on gither side of a band of wavelengths,
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Figure 6. The synthetic datasels having the Gaussian lemporal correlation maodel with highly varying values
of o, and the corresponding performance comparnson graphs for Upsilon (T) = 2.4 and & on right

7.2 Fine Tuning of the Algorithm to suit OTIS

The lack of multiple datasets implies that the effect
due to any possible falze alarms {or pseudo-corrections],
unless presmpied, becomes far more pronounced at the
output. False alarms can oecur if the algorithm is too
tight, which can cause exceptional data that is natu-
rally too deviant and non-conforming to the values at
its neighborhood, to be misinterprebed as faultz and
erringly made to conform to its vicinity. For OTIS, such
geouinely nons=conforming input can often be caused
by extraordinary natural phenomena exchibiting hyper-
or hypo-thermal activity, like geysers or volcanic erup-
tioms, which iz hence imperative to be retained at in-
put. Thus the preprocessing algorithm needs to relax
the dynamiec threshold that is set for identifying out-
liera. There is a need for clear guidelines by which such
fine tuning must be able to differentiate the two types
of statistical anomalies at input: the naturally oceur-
ring and spuricus outliers. We made the following as-
sumptions, based on extensive statistical analysis and
inforences from actual OTIS input datasets,

(1) Valid exceptions occur as natural trends in the
input dotasel - exceplions manifested as very few non-
conforming kit positions are foults: A natural cause for

outliers will manifest as a treod ina neighborhood, but
is highly unlikely to be confined to & single pixel. A
natural thermal phenomenon that does not have any
affect on the temperature in its immediate vicinity is
thermodynamically impossible, if the input 5 assumed
to have high enough resclution.

(2} Any theorebtically out-of-bounds value is o faulf:
There are theoretical absolute limits for the natirally
opoeurring data sensed by OTIS, set by the laws of
thermo-physics, and hence inconsistent pixels can he
outright identified as faulty, In addition to the global
absolute theoretical limits, there can also be logical
cub=ofl bounds, depending on the localized geographical
characteristics of the target area being scanned by the
OTIS satellite, such as “tropical” or “arctic” bounds,

7.3  Study of Diverse Data Regions in OTIS input

With these hypotheses providing the framework to
eliminate false alarms a3 much as possible, we developed
Algo_ OTTS and modified the algorithms in [4.1] and
[4.2] to suit the OTIS datasets. We wsed three different
datasets of OTIS [17], conveniently termed as “Blob™,
“Stripe” and “Spots" [Figure 7). These datasets were
gpecially chosen due to their physical characteristics
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Figure 7. Performance Comparison, in terms of average relafive data error, of Algo_OTIS with other aigorithms

that exemplify nearly the entire gamut of variacions
likely to be encountered on site,

Blob : This dataset has broad areas of unchanging temp-
perature, with a few dark spots scattered in the plet,
representative of the majority of OTIS datasets, while
the two others mentioned below constitute importent
special cases,

Stripe ; This dataset has a very prominent vertical re-
gion of turbulent data through the center of the plot,
but the surrounding regions are quite normal, The con-
centration of the tuwrbulence into a relatively small re-
gion makes this data interesting,

Bpots : This dataset has a plethora of very conspicu-
ous spots, large and relatively small, all over the plot.
Though more turbullent than “Stripe”, the fact that
this turbulence 18 spread over the entire region makes
it more amicable to the correction schemes.

Figure 8. Three OTIS datasals with interesting
charactaristics

& MNumerical Results for the OTIS

Benchmarlk

The results from Figure 8, generated for the uneorre-
lated fault-model in [2.2.2], clearly indicate that a very
high level of gain in precision [Equations 3 and 4] is

obtained when a preprocessing scheme is applied at in-
put. For example, even with a probability of only 0.03
for bitflip, the input ercor ® yopreprocessing 15 as high
as ~ 12%, which if directly used by science applications
for processing could have yielded erroneous and mis-
leading information and hemce to lnvalid inferences in

crucial scientific tasks, such as predicting weather pat-

berns. With preprocessing, the ercor could be brought
down to well below one percent. The performance of
the Majority Bit Voting Algorithm with a Sliding Win-
dow of three pixels appears to be overall better than
that of the Median Smoothing Algorithm, though the
custom-designed Algo OTIS performs far better than
either of them in regions of [y > 0.025.
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Flgure 9. Performance comparison when OTIS
datasets have correlated faults

Using the fanlt correlation model [Equation 2] ex-
plained in [2.2.3], we experimented with the three afore-
mentioned OTIS datasets and found the performance
comparisons shown in Figure 9. Interestingly, all the
three algorithms had their breakdown points at just
about the same probability {~ 0.2} for run initializa-
thom. At higher Ty, though only of theoretical interest



due to impracticality, the preprocessing actually dete-
rtorates the ermor due to bitflips. As the proportion of
corrupted bits to clean bits in a dataset is increased,
a point is reached when the reverse phenomenon hap-
pens: the corrupted bits cause some of the remaining
clean bits to be psendo-corrected leading to further cor-
ruption. As all three preprocessing algorithms use tho
method of interpolation from neighboring bits as their
core approach, it is only intuitive that the breakdown
points alzs be at similar probabilities, In an uncorre-
lated model as in [2.2.2], this threshold probability is
obviouzly approached at ~ L5, We recommend the
technique of storing the neighboring pixels using a pre-
=6t mapping into different phyrsical regions in the mem-
ory organization, so that when they are retrieved for
preproceszing, the correlated block faults ocourring in
contignous regions in memory will not affect the tem-
poral or apatial redundancy preserved elsewhers,

8 Conclusions

We showed that highly significant improvements in
reliability and precigion can be achieved by dynami-
cally preprocessing input data for preserving its sci-
ence information, substantially reducing the need for
expenzive hardware and software redundancy. A wide
range of applications process naturally corvelated data
that exhibit a high level of temporal, spatial, spectral,
and other forms of inherent redundancy at their in-
put, which enables izolation of significant data faulis
using interpolation with regpective peighbors. Our ap-
proach can be a versatile and scalable complement o
cther fanli-tolerance schemes for safery-critical systems
where input reliability 15 paramount. Integrating our
algorithm into conforming applications while in the de-
sign phase itself, rather than as a separate preprocessing
layer in the fuli-tolerance scheme, can further lower
the overhead.
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