
Countermeasures against EM Analysis

for a Secured FPGA-based AES Implementation

P. Maistri
1
, S. Tiran

2
, P. Maurine

2
, I. Koren

3
, R. Leveugle

1

1
 Univ. Grenoble Alpes, TIMA Laboratory,

F-38031 Grenoble

CNRS, TIMA Laboratory, F-38031 Grenoble

{Paolo.Maistri,Regis.Leveugle}@imag.fr

2
 LIRMM

(UM2, CNRS)

Montpellier, France

{Sebastien.Tiran,Philippe.Maurine}@lirmm.

fr

3
 ECE Department

University of Massachusetts

Amherst, MA, USA

koren@ecs.umass.edu

Abstract—Side-channel analysis is one of the most efficient

techniques available to an attacker to break the security of a

cryptographic device. Started as monitoring of computation time

or power, it has evolved into considering several other possible

information leakage sources, such as electromagnetic (EM)

emissions. EM waves can be a very attractive means to attack a

cryptographic implementation: they are contactless, and their

intrinsic spatial, temporal, and frequency information can be a

source of leakage richer than power consumption. Existing

countermeasures may be thus insufficient against an EM attack

and new solutions must be found and validated. In this paper, we

describe a set of dedicated countermeasures protecting against

EM analysis and validate them with real experimental campaigns

on a Xilinx FPGA.

Keywords—AES, Advanced Encryption Standard, side-

channel analysis, EM, CEMA, CPA, countermeasures, FPGA

I. INTRODUCTION

The current trend in consumer products is toward an
increasing need of secure protocols and algorithms, which can
be often implemented in hardware on reconfigurable platforms,
due to their advantageous benefit/cost ratio for low volumes.
The Advanced Encryption Standard (AES) [1] is the de facto
standard and many FPGA-based implementations have been
proposed. In addition, a large effort has been dedicated to
analyzing its robustness. In particular, its security can be
seriously undermined by implementation attacks. Such side-
channel attacks, in fact, are the most efficient way (considering
the required resources) for an attacker to extract the secret
information. Using Differential Power Analysis (DPA) [2], for
instance, the attacker needs a few thousands traces of the power
consumption of the device to guess the secret key. Several
other attacks have been proposed, either based on more
advanced analysis of the collected data [3], or on different
channels leaking information, such as Electro-Magnetic (EM)
emissions [4]. EM emissions have recently started to be
considered as a serious means of attack: they are contactless,
thus monitoring them is easier and less detectable than power
monitoring; they are a very rich source of information, in the
spatial, temporal, and frequency domains; and the required
knowledge to mount these attacks is becoming more common.

Countermeasures aiming at making the physical attacks
more difficult are necessary. In general, the idea is to make the
correlation between the data and the measured activity (the
leaked side-channel information) less evident. One solution is
adding some noise: unnecessary computations [5] and random
jitter [6] make the statistical post-processing more complex and
time consuming. Another approach attempts to hide the data: a
random mask applied to the data being computed makes the
analysis harder. On the other hand, removing the mask can be
non-trivial, and higher-order attacks [7] can still be able to
recover the key, at a higher cost. Dual-rail logic [8] encodes
each value with a pair of complementary signals, ensuring that
all the state transitions are balanced, but it is difficult to design
circuits that are accurately balanced [9] so that the power
consumption is data independent.

Another issue that requires further study is the quality and
quantity of the information coming from the leaking channel as
one side-channel may reveal more information than another.
For example, power analysis (that has been the classical source
of information leakage) can provide only a global view of what
is going on in the circuit while EM emissions also embed some
spatial information. Existing countermeasures against power
analysis may thus be insufficient and further protection would
be required.

In this paper we propose several countermeasures against
EM attacks for an FPGA implementation of AES. Although
these are originally designed as means to protect against EM
analysis, they may work against power analysis as well. The
main contribution of this paper is a dynamic data relocation
scheme working at two levels, one within and one across the
AES round computations. This countermeasure is strongly
based on a spatial approach, which explains why EM analysis
has been chosen as a mean of attack; power analysis is not
directly addressed in this paper. Masking schemes are also
employed, in order to improve the robustness of the design and
illustrate the compatibility of the proposed solution with
established protection schemes already known in the literature.

The paper is organized as follows. The next section
describes briefly the AES algorithm and the hardware
implementation used to illustrate our solution. Section III
presents the countermeasures adopted to protect against side-
channel analysis, with a brief discussion of the associated costs.
Section IV describes the experimental attack campaigns: the This work is partly supported by the French Ministry of Research,

through the ANR project EMAISECI (act ANR-2010-SEGI-012-03). TIMA

is Partner of the Labex PERSYVAL Lab (ANR-11-LABX-0025).

978-1-4799-2079-2/13/$31.00 ©2013 IEEE

Register

SubBytes

State Round
Input

M
ix
C
o
lu
m
n
s

ShiftRows

Round
Output

Round
Key

Fig. 1. Implementation of an AES round.

Fig. 2. Global architecture of the analyzed AES implementation (The Pseudo-Random Number Generator is not shown).

setup, the results, and a brief discussion highlighting the most
important observations. Section V concludes the paper.

II. ARCHITECTURE IMPLEMENTATION

A. The Advanced Encryption Standard (AES) Algorithm

AES [1] is a round-iterated cipher which accepts 128-bit
input blocks and encrypts them with 128-, 192- or 256-bit keys.
The input block is stored into a temporary register, which is
organized as a 4-by-4 byte matrix for ease of processing. The
rounds are preceded by an initial mixing addition with the
secret key; all consecutive iterations are identical and consist of
the following operations:

• SubBytes: a nonlinear byte substitution.

• ShiftRows: the rows of the internal state are rotated by an
offset depending on the row index.

• MixColumns: each column is processed through polynomial
multiplication in the binary field GF(2

8
)
4
.

• AddRoundKey: a round-dependent key is added to the
internal state using modulo-2 addition.
The last iteration differs from the others, since it lacks the

MixColumns operation.

B. Structure of a Round Instance

The basic building block of the implemented architecture is
the round. This is shown in Figure 1 and is derived from [10].
It is a 32-bit-wide design, with only four substitution boxes and
four scaling units in a single MixColumns element. The central
block contains the state register, the routing logic used to
switch between the inputs, and the key addition logic. A
dedicated block is in charge of implementing the ShiftRows
operation (slightly modified with respect to the original
specifications, as described in Section III.A).

The round 4-word state data is loaded column-wise, from
the most to the least significant word. If needed, the
corresponding round key is added to the input while loading,
but this operation is inactive when just transferring data. Then,
the data is moved row-wise, in order to implement ShiftRows
and SubBytes, until all the rows have been processed. Due to
pipelining, this step takes 6 clock cycles. Then, data is moved
again column-wise to compute the MixColumns operation and
finally sent to the output port. This final step takes 4 clock
cycles (one clock cycle per column), thus a whole round is

completed in 10 clock cycles. It can be seen that the goal of this
design is lower hardware complexity rather than performance.

C. Hardware Implementation

To increase the circuit’s global throughput, several round
instances are implemented. However, these blocks are not
serially pipelined as it is usually done when implementing
unrolled ciphers. Thus, there is no first-last relationship among
the instances. On the contrary, all instances are hierarchically
equal and are connected to a common bus (see Figure 2).

The width of the bus lanes is a parameter that can be chosen
by the designer: the wider the lane, the faster the data transfer,
but also the higher the cost. In our implementation, we choose
32-bit lanes to be consistent with the round width and be
therefore able to transfer one column at a time; larger or
narrower widths might be chosen as well.

The number of lanes depends on the number of round
instances in the circuit. Each bus lane acts as the input source
for a specific round instance, while any instance (together with
the input source) can write on any lane. The description of
write operations is detailed in Section III.B.

III. SPECIFIC COUNTERMEASURES

A. Dynamic Column Relocation (DCR)

To implement a dynamic relocation of the columns, the
ShiftRows has to operate in a slightly unconventional way.

Fig. 3. Dynamic Column Relocation. The columns of the AES state

matrix are rotated by a random amount; relative position is preserved.

Fig. 4. Dynamic Block Relocation. The output of a round encryption

can be sent to any round instance, source included.

Inverse

GF((24)²) R
e
g

R
e
g Inv Map

…

…

Inv Map n

Inv Map 1

Inv Map iMap

Map n

Map 1

…

…

Map i

Fig. 5. Dynamic Mapping of a SubBytes implementation. Modular

inverse is computed in composite field, the destination basis (and thus

the to- and from- mappings) is chosen dynamically.

Rows are still rotated by an amount proportional to their index;
however, the first row is no longer untouched, but it is instead,
rotated by a random amount (from 0 to 3). Further rows are
rotated accordingly, in order to preserve consistency within the
state. Hence, four different configurations are possible after
shuffling, as shown in Figure 3. This is done to scramble the
state a little bit more than mandated by the AES specifications.
The number of possible configurations is limited, due to the
constraints imposed by the AES round functions. The
MixColumns operation, for instance, imposes consistency at the
column level. Moreover, columns cannot be shuffled arbitrarily
since the row rotations are not independent of each other.
These constraints lead to a limited number of four different
possibilities. The columns are correctly relocated at the end in
order to give a result conforming to the standard.

This technique has already been applied at the software
level through register shuffling or renaming [11], but the only
other hardware technique similar to this one is the DES
Jamming technique [12], where the state register is rotated by a
random number of positions (from 0 to 7 steps) in order to
achieve resistance against DPA and DEMA (Differential
ElectroMagnetic Analysis). In this context, our column
relocation has the following characteristics:

1. The number of different configuration is lower, 4 versus 8,
due to the constraints imposed by the AES algorithm. This
results in a less effective countermeasure due to the limited
amount of randomness introduced during the execution;

2. There is no need to extend the functional block with
additional resources. In DES, the round operations depend
on the position of the data within the state register, while in
AES this occurs only at the row level (the rotation by
ShiftRows, the coefficient of MixColumns). As a result, the
additional overhead introduced by this countermeasure is
small as the relocation scheme works at the column level.

B. Dynamic Block Relocation (DBR)

In order to increase the number of spatial configurations of
the encrypted text, data is also moved randomly at each round
between the different round instances. This means that after the
MixColumns has been computed, data is not rerouted within the
same round circuit instance, but rather sent on the external bus
to be transferred to another instance. The destination is chosen
randomly, thus at each round the configuration may change.

Loading is done statically, i.e., for each encryption, the data
is initially stored always into the same register; when
encrypting several blocks of plain text, the existing data is
shifted to the state register of another round instance. Static
loading helps simplify the design and avoids conflicts, such as
a new text block overwriting data already stored. After the data
is loaded, encryption may start with the initial key addition.
Random relocation starts at this point with data sent on the bus
to a random destination, where the specific round key word
will be added during transfer. Then, regular round computation
starts (ShiftRows, SubBytes, and MixColumns). Finally, the data
is sent again on the bus to a new destination, along with the
round key addition, and a new round. For the final round,
MixColumns is skipped (as during the loading phase) and data
is reordered after the final key addition. DBR intervenes thus as
soon as the encryption actually starts.

Writing on the bus lanes is managed by a dedicated bus
controller that must ensure that all transfers are performed
correctly, i.e., no data is lost or overwritten. Tri-state buffers
can be used when available; however, our implementation uses
a Spartan reconfigurable board [14] that does not provide these,
so multiplexers were used instead. The generation of these
signals is a nontrivial task: this is equivalent to the generation
of a random square matrix, of size equal to the number of lanes,
with one and only one enabled control for each row or column.
The bus controller may be implemented either as a ROM pre-
loaded with all the possible configurations, or as a circuit
generating the signals on-the-fly. The choice depends on the
available resources and time constraints. In the former case, the
size of the table is n!(n²), which is manageable only for small
values of the matrix size n; in the latter, the table can be
generated in a number of cycles proportional to O(n²). On-the-
fly generation was chosen for the current design. With four
round instances, both solutions are viable, but for larger values
of n, dynamic generation becomes mandatory. In order to
generate a different matrix at each round, the matrix generator

was connected to a faster clock via the Digital Clock Module
(DCM) available on the Xilinx boards.

C. Dynamic Mapping (DynMap)

S-Boxes constitute a large source of information leakage
and are often the target of side-channel attacks. An effective
protection scheme may be a multiplicative masking, which
hides data with a mask that must be suppressed afterwards in
order to get the correct result.

In this paper we propose a complementary solution, based
on composite fields. These fields are often used to implement
small substitution boxes, which can also be easily pipelined to
raise the operating frequency. Mapping from the GF(2

8
) field to

the composite one (and vice versa) is needed. Many papers deal
with composite field implementations of AES S-Boxes, but all
focus on the best implementation from the point of view of area
or power [15]. In general, the designer can choose from several
possible fields and, for each field, from several bases. Usually,
several mappings are evaluated and the best one (according to
the preferred performance figure) is chosen and implemented
statically [16][17]. The approach followed in this paper
consists of having several mappings from the regular to the
composite field instantiated in the design. Then, at computation
time, any of them can be dinamically chosen to compute the
SubBytes operation (see Figure 5). If a specific composite field
(with the respective polynomials) is chosen, then eight different
mappings can be computed, depending on the basis selected for
the composite field [18]. A similar approach was applied to
RSA in [19]: in that case, the countermeasure could benefit
from a more suitable context, since RSA architectures are
larger and offer more choices for the mappings on GF(p).

The small number of random possibilities provides only a
limited additional protection; however, the design can be made
more robust by:

• Implementing dynamic mapping onto different composite
fields. This adds further complexity to the S-Box
implementation, since the constant value used in a scaling
operation (which is actually one of the coefficients of the
polynomial) must be replaced by a generic multiplication.

• Combining the dynamic mapping with a multiplicative
masking scheme, since the schemes are not exclusive.
It should be observed that, while the multiplicative masking

scheme suffers from zero-value attacks [20], so is the dynamic
mapping. In particular, it must be noted that, regardless of the
mapping chosen, the null and the unity elements will be always
unaltered even after the mapping. This may provide some
opportunities for an attacker, who can choose the inputs
carefully to exploit this weakness. For this reason, this
countermeasure should not be implemented as the sole
solution, but accompanied by some other countermeasures.

D. Linear Masking (LinMsk)

The dynamic mapping technique only protects the SubBytes
data path. The permutation layer of the algorithm (ShiftRows,
MixColumns, and AddRoundKey) still operates on unmasked
data. For this reason, a simple additive masking is used. This
solution is quite common in the literature. Complexity is kept
low by using the same mask for each row of the matrix; thus,
the mask is not affected by MixColumns, since the same byte
mask is applied to each byte of the same column. Linear

masking also helps protect data transfers on the bus; however,
in order to allow masking and unmasking among different
round instances, the mask value must be transferred on the bus
along with the respective column.

E. Pseudo Random Number Generator (PRNG)

All the presented countermeasures require several random
bits: a random value for linear masking, a few random bits to
choose the mapping or the relocation amounts, and so on. A
simple Pseudo-Random Number Generator was implemented
to produce the random stream starting from a couple of
initialization values (key and Initialization Vector). We chose
Trivium [21], essentially for its small footprint, ease of
integration, and high throughput, which were ideal for our
application. However, any other (possibly cheaper) solution is
possible, provided that the stream is sufficiently random.

F. Performance and Cost Evaluation

This basic single-round instance takes 1224 LUTs on a
Xilinx Spartan3 and is able to run at about 65 MHz. As already
mentioned, the focus of the original design is neither
performance nor smallest area, but rather a reasonable tradeoff
between the two objectives.

The countermeasures implemented have an associated cost
as they require additional resources (see Table I). The first and
most apparent cost is related to the number of round instances.
DBR requires that several round instances are implemented:
this multiplies the resources used by a certain factor. However,
a larger number of implemented rounds also means higher
throughput in burst encryption modes (such as Counter modes
[22]) and more possible spatial configurations, yielding an
increased security. Moreover, a designer may decide to define
an upper bound to resource usage and not use all the available
blocks for data encryption, but rather leave some instances as
“spares” processing different data (to produce additional
uncorrelated noise), or as a backup, in order to deal with
computation errors. The number of bus lanes also depends
linearly on the number of rounds. Moreover, the width of each
lane increases due to the proposed countermeasures: in addition
to 32-bit data, the bus must also be able to transfer the column
index (which may change due to DCR), the block index, and
the mask associated with each word. This makes the total width
of our bus equal to 44 bits (12-bit header + 32-bit payload).

A non-negligible part of the additional costs comes from
the countermeasures implemented at the round level, i.e.,
DynMap, DCR, and LinMsk. The latter is the cheapest one, but
it reduces the overall throughput by about 12% due to the need
for unmasking before SubBytes and re-masking right after the
operation. DCR introduces an acceptable overhead (+10%), but
it also affects the overall throughput, due to the logic needed
for shuffling the data and restoring the correct order.

The remaining overhead is mainly due to the additional
mappings computed within the S-Boxes (from 42 to 146 slices
for each S-Box), the module generating the bus configuration
on-the-fly, the logic responsible for generating and managing
the random bits, and some glue logic at the top level (registers,
communication bus, and so on), which accounts for about 10%
of all the resources. Overall, our design uses 5694 slices on a
Spartan3 for a 4-round implementation, while the original
design needed about 1200 slices on the same board. Note that

Table I. Costs, performance, and overheads of the most important modules, with and without countermeasures.

Instance Slices Slice Registers Slice LUTs Frequency [MHz]

Round Implementation 749 - 295 - 1224 - 65.66 -

+ Dynamic Mapping 977 +30.4% 307 +4.1% 1620 +32.4% 60.13 -8.4%

+ Dynamic Relocation (DBR+DCR) 829 +10.7% 301 +2.0% 1375 +12.3% 57.61 -12.3%

+ Linear Masking 761 +1.6% 295 +0.0% 1239 +1.2% 57.71 -12.1%

+ All countermeasures 1079 +44.1% 313 +6.1% 1827 +49.3% 57.61 -12.3%

Other blocks:

Control logic 72 - 28 - 140 - 106.45 -

Key Schedule 323 - 216 - 566 - 90.81 -

Countermeasure manager (PRNG) 339 - 395 - 431 - 128.86 -

Bus Controller 49 - 47 - 92 - 119.15 -

Proposed AES 5694 - 2255 - 9457 - 54.15 -

Fig. 6. Mean Guessing Entropy of correct key bytes, i.e., their average

position in the ranking given by the CEMA-HW attack, as a function of

the number of analyzed traces.

the larger design can encrypt four blocks at a time, while the
simpler one can only process one block at a time.

IV. ROBUSTNESS AGAINST EM ANALYSES

A. The Setup

In order to verify the efficiency of the different
countermeasures, several electromagnetic traces were acquired.
The following equipment was used:

• PC providing data to the AES through the serial interface,

• Langer EM probe measuring the vertical magnetic field,

• Low noise 63db amplifier, and

• Lecroy scope to collect EM traces with a sampling rate
equal to 20Gs/s.

Several sets of 300k traces were acquired. The first set
included traces corresponding to AES encryptions of messages
with all countermeasures disabled. It constitutes a reference set
to estimate the effects of the different countermeasures on the
robustness against side-channel analyses. Additional sets of
EM traces correspond to AES encryptions with only one
countermeasure activated at a time. Finally, the last set consists
of the EM traces obtained with all countermeasures activated.

To test the improvement in terms of resistance against first

order side-channel-attacks, Correlation Power Analyses
(CPAs) [3] were applied to the three sets of traces. The attacks
were targeting the input to the last round of the AES using a
Hamming Weight model. All the 16 S-boxes were attacked and
we used Guessing Entropy [23] to evaluate the efficiency of the
different countermeasures proposed in this paper.

All performed attacks based on the Hamming Distance
(HD) model were unsuccessful on this implementation. Only
one column at a time is transferred in the state register, with the
next column taking the place of the previous one in the state
register. Thus, an attacker attempting to use the Hamming
Distance Model would have to guess the first four bytes of the
key in order to guess the next four ones to mount an efficient
attack. This is quite tedious and was not done. Instead, we
preferred to collect more traces than typically required to attack
unprotected algorithms mapped on this FPGA platform, using
the Hamming Weight model.

B. The Results

The processing of the first set of EM traces (no
countermeasures), allowed us to find all the 16 bytes of a sub-
key with 155k traces; 15 bytes were even recovered with just
23k traces. When any countermeasure is activated, the whole
set of traces allows recovering only partially the sub-key: 8
bytes with linear masking, 9 with dynamic mapping, and 12
bytes with dynamic spatial reallocation. No bytes were
discovered when all the countermeasures were activated. This
already provides some insights into the efficiency of the
proposed countermeasures.

Figure 6 shows the evolution of the mean Guessing Entropy
with the number of processed traces, i.e., the evolution of the
mean position of the correct sub-key bytes among wrong
guesses. A mean Guessing Entropy of 1 means that all sub-key
bytes are found by the attack. When no countermeasures are
activated, the mean Guessing Entropy of the 16 correct bytes of
the sub-key decreases monotonically with a significant slope.
When only one countermeasure is activated, we still observe a
decrease in the mean Guessing Entropy, but the rate of
decrease is lower. The rate depends on the specific
countermeasure. After about 300k analyzed traces, the mean
guessing entropy is 9 for dynamic reallocation, suggesting that
the complete solution is not far from being found. The
Guessing Entropy for DynMap is 17, showing that this
countermeasure is more robust but leakage is still significant.

Table II. Robustness of the proposed countermeasures against EM and power
analysis. D*R means both DBR and DCR are active.

 Power EM

Design

Key

bytes

found

Mean

Guessing

Entropy

traces

(×103)

Key

bytes

found

Mean

Guessing

Entropy

traces

(×103)

Simple 15 1 205 16 1 155

+ LynMsk 4 54 275 8 52 275

+ DynMap 5 34 287 9 17 287

+ D*R 7 19 250 12 9 250

+ All 0 136 283 0 94 283

Linear masking is the most robust countermeasure in this
scenario, since the guessing entropy is as high as 52. We
believe that such a big difference in the robustness may be due
to leakage coming from the communication bus. When linear
masking is not activated, all the data transfers on the bus are in
the clear and thus vulnerable to an attacker. Finally, when all
countermeasures are activated we notice that the mean
Guessing Entropy approaches the value 94 (and no bytes
revealed!), suggesting that a very large number of EM traces is
necessary to fully disclose the round key.

Power traces were also collected at the same time of EM
analysis, and a correlation attack was mounted on the data.
Table II shows the results and gives a direct comparison
between the power and the EM attack. Even with spatial
oriented countermeasures, the superiority of EM analysis is
clear, as it can discover twice the number of bytes than power
analysis on average with the same or lower number of traces.
The mean Guessing Entropy of the correct key is also
significantly higher when using EM instead of power traces.

V. CONCLUSION

Side-channel analysis is a major threat for secure
implementations of cryptographic algorithms. There are several
solutions in the literature to counter such attacks, such as dual
rail logic or data masking. However, when richer leakage
channels are available, these countermeasures may become less
effective.

In this paper, we have presented several countermeasure
schemes, based on the dynamic relocation of the data within a
single encryption round and between different round instances
at the same time. This approach is independent of the algorithm
and requires only that several instances of the same function
operate in parallel (MixColumns or rounds in our example).
This dynamic relocation has been strengthened by two masking
schemes: a traditional additive masking for the linear part of
the computation, and a masking scheme for the S-Boxes based
on composite mapping.

Our results indicate that the complete set of proposed
countermeasures provides very good resistance against EM
attacks demonstrating that a very large number of traces is
required in order to break the security. Masking is the most
efficient countermeasure from the point of view benefits/cost
and is required to protect the bus transfers; however, the

proposed solutions are complementary, not alternatives, and
prove to provide an effective additional layer of security.
Future research will consider extending the dynamic mapping
to the whole algorithm, and identifying the major source of
information leakage (bus or round instances).

REFERENCES

[1] National Institute Standards and Technology (NIST), “FIPS-197:
Advanced Encryption Standard,” Nov. 2001.

[2] P. C. Kocher, J. Jaffe, B. Jun, “Differential Power Analysis,” CRYPTO
1999, pp. 388-397.

[3] E. Brier, C. Clavier, F. Olivier, “Correlation Power Analysis with a
Leakage Model,” CHES 2004, pp.16-29.

[4] J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (EMA):
Measures and counter-measures for smard cards,” E-smart'2001, vol.
2140 of LNCS, pp. 200-210, Springer-Verlag, 2001.

[5] S. Mangard, E. Oswald, T. Popp, "Power Analysis Attacks - Revealing
the Secrets of Smart Cards," ISBN 978-0-387-30857-9, Springer, 2007.

[6] J.-S. Coron and I. Kizhvatov, “An efficient method for random delay
generation in embedded software,” CHES, vol. 5747 of Lecture Notes in
Computer Science, pp. 156-170, Springer, 2009.

[7] T.S. Messerges, “Using Second-Order Power Analysis to Attack DPA
Resistant Software,” CHES, vol. 1965 of LNCS, pp. 238-251, 2001.

[8] K. Tiri and I. Verbauwhede, “A Logic Level Design Methodology for a
Secure DPA Resistant ASIC or FPGA Implementation,” DATE 2004,
pp. 246-251, Feb. 2004.

[9] T. Popp, S. Mangard, “Masked Dual-Rail Pre-charge Logic: DPA-
Resistance Without Routing Constraints,” CHES 2005, pp. 172-186.

[10] N. Pramstaller, S. Mangard, S. Dominikus, and J. Wolkerstorfer,
“Efficient AES Implementations on ASICs and FPGAs,” Fourth Int’l
Conf. Advanced Encryption Standard (AES ’04), pp. 98-112, 2004.

[11] D. May, H.L. Muller, and N.P. Smart, "Random Register Renaming to
Foil DPA," CHES 2001, LNCS 2162, pp. 28-38, 2001.

[12] F. Poucheret, L. Barthe, P. Benoit, L. Torres, P. Maurine, M. Robert,
“Spatial EM jamming: A countermeasure against EM Analysis?” VLSI-
SoC 2010, pp. 105-110.

[13] A. Satoh, S. Morioka, K. Takano, S. Munetoh, “A Compact Rijndael
Hardware Architecture with S-Box Optimization,” ASIACRYPT 2001,
pp. 239-254.

[14] Xilinx, “Spartan-3 FPGA Family Data Sheet,” 2009.

[15] A. Rudra, P. K. Dubey, C. S. Jutla, V. Kumar, J. R. Rao, P. Rohatgi,
“Efficient Rijndael Encryption Implementation with Composite Field
Arithmetic,” CHES 2001, pp. 171-184.

[16] E. Barkan and E. Biham. In How Many Ways Can You Write Rijndael?
In ASIACRYPT 2002, vol. 2501 of LNCS, pp. 160–175. Springer, 2002.

[17] H. Raddum. More Dual Rijndaels. In AES Conference 2004, volume
3373 of LNCS, pages 142–147. Springer, 2004.

[18] C. Paar, "Efficient VLSI Architectures for Bit-Parallel Computation in
Galois Fields," Dissertation, Institute for Experimental Mathematics,
Universität Essen, Germany, 1994.

[19] M. Ciet, M. Neve, E. Peeters, and J.-J. Quisquater, "Parallel FPGA
implementation of RSA with residue number systems – can side-channel
threats be avoided," MWSCAS 2003, 2003.

[20] J. D. Goliç and C. Tymen, “Multiplicative Masking and Power Analysis
of AES,” CHES 2002, Springer, pp. 198–212, 2003.

[21] C. Paar, J. Pelzl, and B. Preneel, “Understanding Cryptography: A
Textbook for Students and Practitioners,” Chapter 2, ISBN 978-3-642-
04100-6, Springer, 2010.

[22] National Institute Standards and Technology (NIST), “Recommendation
for Block Cipher Modes of Operation,” Special Publ. 800-38A, 2001.

[23] F.-X. Standaert, T. Malkin, and M. Yung, "A unified framework for the
analysis of side-channel key recovery attacks," EUROCRYPT, vol. 5479
of LNCS, page 443-461. Springer, 2009.

