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Abstract—Side-channel analysis is one of the most efficient 

techniques available to an attacker to break the security of a 

cryptographic device. Started as monitoring of computation time 

or power, it has evolved into considering several other possible 

information leakage sources, such as electromagnetic (EM) 

emissions. EM waves can be a very attractive means to attack a 

cryptographic implementation: they are contactless, and their 

intrinsic spatial, temporal, and frequency information can be a 

source of leakage richer than power consumption. Existing 

countermeasures may be thus insufficient against an EM attack 

and new solutions must be found and validated. In this paper, we 

describe a set of dedicated countermeasures protecting against 

EM analysis and validate them with real experimental campaigns 

on a Xilinx FPGA. 

Keywords—AES, Advanced Encryption Standard, side-

channel analysis, EM, CEMA, CPA, countermeasures, FPGA 

I.  INTRODUCTION  

The current trend in consumer products is toward an 
increasing need of secure protocols and algorithms, which can 
be often implemented in hardware on reconfigurable platforms, 
due to their advantageous benefit/cost ratio for low volumes. 
The Advanced Encryption Standard (AES) [1] is the de facto 
standard and many FPGA-based implementations have been 
proposed. In addition, a large effort has been dedicated to 
analyzing its robustness. In particular, its security can be 
seriously undermined by implementation attacks. Such side-
channel attacks, in fact, are the most efficient way (considering 
the required resources) for an attacker to extract the secret 
information. Using Differential Power Analysis (DPA) [2], for 
instance, the attacker needs a few thousands traces of the power 
consumption of the device to guess the secret key. Several 
other attacks have been proposed, either based on more 
advanced analysis of the collected data [3], or on different 
channels leaking information, such as Electro-Magnetic (EM) 
emissions [4]. EM emissions have recently started to be 
considered as a serious means of attack: they are contactless, 
thus monitoring them is easier and less detectable than power 
monitoring; they are a very rich source of information, in the 
spatial, temporal, and frequency domains; and the required 
knowledge to mount these attacks is becoming more common.  

Countermeasures aiming at making the physical attacks 
more difficult are necessary. In general, the idea is to make the 
correlation between the data and the measured activity (the 
leaked side-channel information) less evident. One solution is 
adding some noise: unnecessary computations [5] and random 
jitter [6] make the statistical post-processing more complex and 
time consuming. Another approach attempts to hide the data: a 
random mask applied to the data being computed makes the 
analysis harder. On the other hand, removing the mask can be 
non-trivial, and higher-order attacks [7] can still be able to 
recover the key, at a higher cost. Dual-rail logic [8] encodes 
each value with a pair of complementary signals, ensuring that 
all the state transitions are balanced, but it is difficult to design 
circuits that are accurately balanced [9] so that the power 
consumption is data independent.  

Another issue that requires further study is the quality and 
quantity of the information coming from the leaking channel as 
one side-channel may reveal more information than another. 
For example, power analysis (that has been the classical source 
of information leakage) can provide only a global view of what 
is going on in the circuit while EM emissions also embed some 
spatial information. Existing countermeasures against power 
analysis may thus be insufficient and further protection would 
be required.  

In this paper we propose several countermeasures against 
EM attacks for an FPGA implementation of AES. Although 
these are originally designed as means to protect against EM 
analysis, they may work against power analysis as well. The 
main contribution of this paper is a dynamic data relocation 
scheme working at two levels, one within and one across the 
AES round computations. This countermeasure is strongly 
based on a spatial approach, which explains why EM analysis 
has been chosen as a mean of attack; power analysis is not 
directly addressed in this paper. Masking schemes are also 
employed, in order to improve the robustness of the design and 
illustrate the compatibility of the proposed solution with 
established protection schemes already known in the literature. 

The paper is organized as follows. The next section 
describes briefly the AES algorithm and the hardware 
implementation used to illustrate our solution. Section III 
presents the countermeasures adopted to protect against side-
channel analysis, with a brief discussion of the associated costs. 
Section IV describes the experimental attack campaigns: the This work is partly supported by the French Ministry of Research, 

through the ANR project EMAISECI (act ANR-2010-SEGI-012-03). TIMA 
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Fig. 1.  Implementation of an AES round. 

 

Fig. 2.  Global architecture of the analyzed AES implementation (The Pseudo-Random Number Generator is not shown). 

setup, the results, and a brief discussion highlighting the most 
important observations. Section V concludes the paper. 

II. ARCHITECTURE IMPLEMENTATION 

A. The Advanced Encryption Standard (AES) Algorithm 

AES [1] is a round-iterated cipher which accepts 128-bit 
input blocks and encrypts them with 128-, 192- or 256-bit keys. 
The input block is stored into a temporary register, which is 
organized as a 4-by-4 byte matrix for ease of processing. The 
rounds are preceded by an initial mixing addition with the 
secret key; all consecutive iterations are identical and consist of 
the following operations: 

• SubBytes: a nonlinear byte substitution.  

• ShiftRows: the rows of the internal state are rotated by an 
offset depending on the row index.  

• MixColumns: each column is processed through polynomial 
multiplication in the binary field GF(2

8
)
4
.  

• AddRoundKey: a round-dependent key is added to the 
internal state using modulo-2 addition. 
The last iteration differs from the others, since it lacks the 

MixColumns operation. 

B. Structure of a Round Instance 

The basic building block of the implemented architecture is 
the round. This is shown in Figure 1 and is derived from [10]. 
It is a 32-bit-wide design, with only four substitution boxes and 
four scaling units in a single MixColumns element. The central 
block contains the state register, the routing logic used to 
switch between the inputs, and the key addition logic. A 
dedicated block is in charge of implementing the ShiftRows 
operation (slightly modified with respect to the original 
specifications, as described in Section III.A). 

The round 4-word state data is loaded column-wise, from 
the most to the least significant word. If needed, the 
corresponding round key is added to the input while loading, 
but this operation is inactive when just transferring data. Then, 
the data is moved row-wise, in order to implement ShiftRows 
and SubBytes, until all the rows have been processed. Due to 
pipelining, this step takes 6 clock cycles. Then, data is moved 
again column-wise to compute the MixColumns operation and 
finally sent to the output port. This final step takes 4 clock 
cycles (one clock cycle per column), thus a whole round is 

completed in 10 clock cycles. It can be seen that the goal of this 
design is lower hardware complexity rather than performance.  

C. Hardware Implementation 

To increase the circuit’s global throughput, several round 
instances are implemented. However, these blocks are not 
serially pipelined as it is usually done when implementing 
unrolled ciphers.  Thus, there is no first-last relationship among 
the instances. On the contrary, all instances are hierarchically 
equal and are connected to a common bus (see Figure 2).  

The width of the bus lanes is a parameter that can be chosen 
by the designer: the wider the lane, the faster the data transfer, 
but also the higher the cost. In our implementation, we choose 
32-bit lanes to be consistent with the round width and be 
therefore able to transfer one column at a time; larger or 
narrower widths might be chosen as well.  

The number of lanes depends on the number of round 
instances in the circuit.  Each bus lane acts as the input source 
for a specific round instance, while any instance (together with 
the input source) can write on any lane. The description of 
write operations is detailed in Section III.B. 

III. SPECIFIC COUNTERMEASURES 

A. Dynamic Column Relocation (DCR) 

To implement a dynamic relocation of the columns, the 
ShiftRows has to operate in a slightly unconventional way. 



 

Fig. 3.  Dynamic Column Relocation. The columns of the AES state 

matrix are rotated by a random amount; relative position is preserved. 

 

Fig. 4.  Dynamic Block Relocation. The output of a round encryption 

can be sent to any round instance, source included. 

Inverse

GF( ( 24 )² ) R
e
g

R
e
g Inv Map

…

…

Inv Map n

Inv Map 1

Inv Map iMap

Map n

Map 1

…

…

Map i

 

Fig. 5.  Dynamic Mapping of a SubBytes implementation. Modular 

inverse is computed in composite field, the destination basis (and thus 

the to- and from- mappings) is chosen dynamically. 

Rows are still rotated by an amount proportional to their index; 
however, the first row is no longer untouched, but it is instead, 
rotated by a random amount (from 0 to 3). Further rows are 
rotated accordingly, in order to preserve consistency within the 
state. Hence, four different configurations are possible after 
shuffling, as shown in Figure 3. This is done to scramble the 
state a little bit more than mandated by the AES specifications. 
The number of possible configurations is limited, due to the 
constraints imposed by the AES round functions. The 
MixColumns operation, for instance, imposes consistency at the 
column level. Moreover, columns cannot be shuffled arbitrarily 
since the row rotations are not independent of each other. 
These constraints lead to a limited number of four different 
possibilities. The columns are correctly relocated at the end in 
order to give a result conforming to the standard. 

This technique has already been applied at the software 
level through register shuffling or renaming [11], but the only 
other hardware technique similar to this one is the DES 
Jamming technique [12], where the state register is rotated by a 
random number of positions (from 0 to 7 steps) in order to 
achieve resistance against DPA and DEMA (Differential 
ElectroMagnetic Analysis). In this context, our column 
relocation has the following characteristics: 

1. The number of different configuration is lower, 4 versus 8, 
due to the constraints imposed by the AES algorithm. This 
results in a less effective countermeasure due to the limited 
amount of randomness introduced during the execution; 

2. There is no need to extend the functional block with 
additional resources. In DES, the round operations depend 
on the position of the data within the state register, while in 
AES this occurs only at the row level (the rotation by 
ShiftRows, the coefficient of MixColumns). As a result, the 
additional overhead introduced by this countermeasure is 
small as the relocation scheme works at the column level. 

B. Dynamic Block Relocation (DBR) 

In order to increase the number of spatial configurations of 
the encrypted text, data is also moved randomly at each round 
between the different round instances. This means that after the 
MixColumns has been computed, data is not rerouted within the 
same round circuit instance, but rather sent on the external bus 
to be transferred to another instance. The destination is chosen 
randomly, thus at each round the configuration may change.  

Loading is done statically, i.e., for each encryption, the data 
is initially stored always into the same register; when 
encrypting several blocks of plain text, the existing data is 
shifted to the state register of another round instance. Static 
loading helps simplify the design and avoids conflicts, such as 
a new text block overwriting data already stored. After the data 
is loaded, encryption may start with the initial key addition. 
Random relocation starts at this point with data sent on the bus 
to a random destination, where the specific round key word 
will be added during transfer. Then, regular round computation 
starts (ShiftRows, SubBytes, and MixColumns). Finally, the data 
is sent again on the bus to a new destination, along with the 
round key addition, and a new round. For the final round, 
MixColumns is skipped (as during the loading phase) and data 
is reordered after the final key addition. DBR intervenes thus as 
soon as the encryption actually starts. 

Writing on the bus lanes is managed by a dedicated bus 
controller that must ensure that all transfers are performed 
correctly, i.e., no data is lost or overwritten. Tri-state buffers 
can be used when available; however, our implementation uses 
a Spartan reconfigurable board [14] that does not provide these, 
so multiplexers were used instead. The generation of these 
signals is a nontrivial task: this is equivalent to the generation 
of a random square matrix, of size equal to the number of lanes, 
with one and only one enabled control for each row or column. 
The bus controller may be implemented either as a ROM pre-
loaded with all the possible configurations, or as a circuit 
generating the signals on-the-fly. The choice depends on the 
available resources and time constraints. In the former case, the 
size of the table is n!(n²), which is manageable only for small 
values of the matrix size n; in the latter, the table can be 
generated in a number of cycles proportional to O(n²). On-the-
fly generation was chosen for the current design. With four 
round instances, both solutions are viable, but for larger values 
of n, dynamic generation becomes mandatory. In order to 
generate a different matrix at each round, the matrix generator 



was connected to a faster clock via the Digital Clock Module 
(DCM) available on the Xilinx boards. 

C. Dynamic Mapping (DynMap) 

S-Boxes constitute a large source of information leakage 
and are often the target of side-channel attacks. An effective 
protection scheme may be a multiplicative masking, which 
hides data with a mask that must be suppressed afterwards in 
order to get the correct result. 

In this paper we propose a complementary solution, based 
on composite fields. These fields are often used to implement 
small substitution boxes, which can also be easily pipelined to 
raise the operating frequency. Mapping from the GF(2

8
) field to 

the composite one (and vice versa) is needed. Many papers deal 
with composite field implementations of AES S-Boxes, but all 
focus on the best implementation from the point of view of area 
or power [15]. In general, the designer can choose from several 
possible fields and, for each field, from several bases. Usually, 
several mappings are evaluated and the best one (according to 
the preferred performance figure) is chosen and implemented 
statically [16][17]. The approach followed in this paper 
consists of having several mappings from the regular to the 
composite field instantiated in the design. Then, at computation 
time, any of them can be dinamically chosen to compute the 
SubBytes operation (see Figure 5). If a specific composite field 
(with the respective polynomials) is chosen, then eight different 
mappings can be computed, depending on the basis selected for 
the composite field [18]. A similar approach was applied to 
RSA in [19]: in that case, the countermeasure could benefit 
from a more suitable context, since RSA architectures are 
larger and offer more choices for the mappings on GF(p). 

The small number of random possibilities provides only a 
limited additional protection; however, the design can be made 
more robust by: 

• Implementing dynamic mapping onto different composite 
fields. This adds further complexity to the S-Box 
implementation, since the constant value used in a scaling 
operation (which is actually one of the coefficients of the 
polynomial) must be replaced by a generic multiplication. 

• Combining the dynamic mapping with a multiplicative 
masking scheme, since the schemes are not exclusive. 
It should be observed that, while the multiplicative masking 

scheme suffers from zero-value attacks [20], so is the dynamic 
mapping. In particular, it must be noted that, regardless of the 
mapping chosen, the null and the unity elements will be always 
unaltered even after the mapping. This may provide some 
opportunities for an attacker, who can choose the inputs 
carefully to exploit this weakness. For this reason, this 
countermeasure should not be implemented as the sole 
solution, but accompanied by some other countermeasures.  

D. Linear Masking (LinMsk) 

The dynamic mapping technique only protects the SubBytes 
data path. The permutation layer of the algorithm (ShiftRows, 
MixColumns, and AddRoundKey) still operates on unmasked 
data. For this reason, a simple additive masking is used. This 
solution is quite common in the literature. Complexity is kept 
low by using the same mask for each row of the matrix; thus, 
the mask is not affected by MixColumns, since the same byte 
mask is applied to each byte of the same column. Linear 

masking also helps protect data transfers on the bus; however, 
in order to allow masking and unmasking among different 
round instances, the mask value must be transferred on the bus 
along with the respective column.  

E. Pseudo Random Number Generator (PRNG) 

All the presented countermeasures require several random 
bits: a random value for linear masking, a few random bits to 
choose the mapping or the relocation amounts, and so on. A 
simple Pseudo-Random Number Generator was implemented 
to produce the random stream starting from a couple of 
initialization values (key and Initialization Vector). We chose 
Trivium [21], essentially for its small footprint, ease of 
integration, and high throughput, which were ideal for our 
application. However, any other (possibly cheaper) solution is 
possible, provided that the stream is sufficiently random. 

F. Performance and Cost Evaluation 

This basic single-round instance takes 1224 LUTs on a 
Xilinx Spartan3 and is able to run at about 65 MHz. As already 
mentioned, the focus of the original design is neither 
performance nor smallest area, but rather a reasonable tradeoff 
between the two objectives. 

The countermeasures implemented have an associated cost 
as they require additional resources (see Table I). The first and 
most apparent cost is related to the number of round instances. 
DBR requires that several round instances are implemented: 
this multiplies the resources used by a certain factor. However, 
a larger number of implemented rounds also means higher 
throughput in burst encryption modes (such as Counter modes 
[22]) and more possible spatial configurations, yielding an 
increased security. Moreover, a designer may decide to define 
an upper bound to resource usage and not use all the available 
blocks for data encryption, but rather leave some instances as 
“spares” processing different data (to produce additional 
uncorrelated noise), or as a backup, in order to deal with 
computation errors. The number of bus lanes also depends 
linearly on the number of rounds. Moreover, the width of each 
lane increases due to the proposed countermeasures: in addition 
to 32-bit data, the bus must also be able to transfer the column 
index (which may change due to DCR), the block index, and 
the mask associated with each word. This makes the total width 
of our bus equal to 44 bits (12-bit header + 32-bit payload). 

A non-negligible part of the additional costs comes from 
the countermeasures implemented at the round level, i.e., 
DynMap, DCR, and LinMsk. The latter is the cheapest one, but 
it reduces the overall throughput by about 12% due to the need 
for unmasking before SubBytes and re-masking right after the 
operation. DCR introduces an acceptable overhead (+10%), but 
it also affects the overall throughput, due to the logic needed 
for shuffling the data and restoring the correct order. 

The remaining overhead is mainly due to the additional 
mappings computed within the S-Boxes (from 42 to 146 slices 
for each S-Box), the module generating the bus configuration 
on-the-fly, the logic responsible for generating and managing 
the random bits, and some glue logic at the top level (registers, 
communication bus, and so on), which accounts for about 10% 
of all the resources. Overall, our design uses 5694 slices on a 
Spartan3 for a 4-round implementation, while the original 
design needed about 1200 slices on the same board. Note that 



Table I.  Costs, performance, and overheads of the most important modules, with and without countermeasures. 

Instance Slices Slice Registers Slice LUTs Frequency [MHz] 

Round Implementation 749 - 295 - 1224 - 65.66 - 

+ Dynamic Mapping 977 +30.4% 307 +4.1% 1620 +32.4% 60.13 -8.4% 

+ Dynamic Relocation  (DBR+DCR) 829 +10.7% 301 +2.0% 1375 +12.3% 57.61 -12.3% 

+ Linear Masking 761 +1.6% 295 +0.0% 1239 +1.2% 57.71 -12.1% 

+ All countermeasures 1079 +44.1% 313 +6.1% 1827 +49.3% 57.61 -12.3% 

Other blocks:         

Control logic 72 - 28 - 140 - 106.45 - 

Key Schedule 323 - 216 - 566 - 90.81 - 

Countermeasure manager  (PRNG) 339 - 395 - 431 - 128.86 - 

Bus Controller 49 - 47 - 92 - 119.15 - 

Proposed AES 5694 - 2255 - 9457 - 54.15 - 

 

Fig. 6. Mean Guessing Entropy of correct key bytes, i.e., their average 

position in the ranking given by the CEMA-HW attack, as a function of 

the number of analyzed traces. 

the larger design can encrypt four blocks at a time, while the 
simpler one can only process one block at a time. 

IV. ROBUSTNESS AGAINST EM ANALYSES 

A. The Setup  

In order to verify the efficiency of the different 
countermeasures, several electromagnetic traces were acquired. 
The following equipment was used: 

• PC providing data to the AES through the serial interface, 

• Langer EM probe measuring the vertical magnetic field, 

• Low noise 63db amplifier, and 

• Lecroy scope to collect EM traces with a sampling rate 
equal to 20Gs/s. 

Several sets of 300k traces were acquired. The first set 
included traces corresponding to AES encryptions of messages 
with all countermeasures disabled. It constitutes a reference set 
to estimate the effects of the different countermeasures on the 
robustness against side-channel analyses. Additional sets of 
EM traces correspond to AES encryptions with only one 
countermeasure activated at a time. Finally, the last set consists 
of the EM traces obtained with all countermeasures activated.  

To test the improvement in terms of resistance against first 

order side-channel-attacks, Correlation Power Analyses 
(CPAs) [3] were applied to the three sets of traces. The attacks 
were targeting the input to the last round of the AES using a 
Hamming Weight model. All the 16 S-boxes were attacked and 
we used Guessing Entropy [23] to evaluate the efficiency of the 
different countermeasures proposed in this paper.  

All performed attacks based on the Hamming Distance 
(HD) model were unsuccessful on this implementation. Only 
one column at a time is transferred in the state register, with the 
next column taking the place of the previous one in the state 
register. Thus, an attacker attempting to use the Hamming 
Distance Model would have to guess the first four bytes of the 
key in order to guess the next four ones to mount an efficient 
attack. This is quite tedious and was not done. Instead, we 
preferred to collect more traces than typically required to attack 
unprotected algorithms mapped on this FPGA platform, using 
the Hamming Weight model. 

B. The Results 

The processing of the first set of EM traces (no 
countermeasures), allowed us to find all the 16 bytes of a sub-
key with 155k traces; 15 bytes were even recovered with just 
23k traces. When any countermeasure is activated, the whole 
set of traces allows recovering only partially the sub-key: 8 
bytes with linear masking, 9 with dynamic mapping, and 12 
bytes with dynamic spatial reallocation. No bytes were 
discovered when all the countermeasures were activated. This 
already provides some insights into the efficiency of the 
proposed countermeasures.   

Figure 6 shows the evolution of the mean Guessing Entropy 
with the number of processed traces, i.e., the evolution of the 
mean position of the correct sub-key bytes among wrong 
guesses. A mean Guessing Entropy of 1 means that all sub-key 
bytes are found by the attack. When no countermeasures are 
activated, the mean Guessing Entropy of the 16 correct bytes of 
the sub-key decreases monotonically with a significant slope. 
When only one countermeasure is activated, we still observe a 
decrease in the mean Guessing Entropy, but the rate of 
decrease is lower. The rate depends on the specific 
countermeasure. After about 300k analyzed traces, the mean 
guessing entropy is 9 for dynamic reallocation, suggesting that 
the complete solution is not far from being found. The 
Guessing Entropy for DynMap is 17, showing that this 
countermeasure is more robust but leakage is still significant. 



Table II. Robustness of the proposed countermeasures against EM and power 
analysis. D*R means both DBR and DCR are active. 

 Power EM 

Design 

Key 

bytes 

found 

Mean 

Guessing 

Entropy 

# 

traces 

(×103) 

Key 

bytes 

found 

Mean 

Guessing 

Entropy 

# 

traces 

(×103) 

Simple 15 1 205 16 1 155 

+ LynMsk 4 54 275 8 52 275 

+ DynMap 5 34 287 9 17 287 

+ D*R 7 19 250 12 9 250 

+ All 0 136 283 0 94 283 

 

Linear masking is the most robust countermeasure in this 
scenario, since the guessing entropy is as high as 52.  We 
believe that such a big difference in the robustness may be due 
to leakage coming from the communication bus. When linear 
masking is not activated, all the data transfers on the bus are in 
the clear and thus vulnerable to an attacker. Finally, when all 
countermeasures are activated we notice that the mean 
Guessing Entropy approaches the value 94 (and no bytes 
revealed!), suggesting that a very large number of EM traces is 
necessary to fully disclose the round key.  

Power traces were also collected at the same time of EM 
analysis, and a correlation attack was mounted on the data. 
Table II shows the results and gives a direct comparison 
between the power and the EM attack. Even with spatial 
oriented countermeasures, the superiority of EM analysis is 
clear, as it can discover twice the number of bytes than power 
analysis on average with the same or lower number of traces. 
The mean Guessing Entropy of the correct key is also 
significantly higher when using EM instead of power traces. 

V. CONCLUSION 

Side-channel analysis is a major threat for secure 
implementations of cryptographic algorithms. There are several 
solutions in the literature to counter such attacks, such as dual 
rail logic or data masking. However, when richer leakage 
channels are available, these countermeasures may become less 
effective. 

In this paper, we have presented several countermeasure 
schemes, based on the dynamic relocation of the data within a 
single encryption round and between different round instances 
at the same time. This approach is independent of the algorithm 
and requires only that several instances of the same function 
operate in parallel (MixColumns or rounds in our example). 
This dynamic relocation has been strengthened by two masking 
schemes: a traditional additive masking for the linear part of 
the computation, and a masking scheme for the S-Boxes based 
on composite mapping.  

Our results indicate that the complete set of proposed 
countermeasures provides very good resistance against EM 
attacks demonstrating that a very large number of traces is 
required in order to break the security. Masking is the most 
efficient countermeasure from the point of view benefits/cost 
and is required to protect the bus transfers; however, the 

proposed solutions are complementary, not alternatives, and 
prove to provide an effective additional layer of security. 
Future research will consider extending the dynamic mapping 
to the whole algorithm, and identifying the major source of 
information leakage (bus or round instances).  
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