Chapter 21

Designing Special-purpose
Co-processors Using the
Data-Flow Paradigm

Bilha Mendelson
Baziju Patel
Israel Koren

21.1 Introduction

Design of general purpose computers using the data-flow paradigm has been an
area of intensive research for over a decade, whereas control driven architecture
has been the prime choice for the design of application specific ICs (Asics) [4].
This research concentrates on designing high-performance Asics using the data-
flow paradigm. An AsiC designed using this approach is intended to be a co-
processor attached to a host computer for executing a specific application.
The application, given in the data-flow language SISAL [10], is first trans-
lated to a data-flow graph (DFG). The DFG represents all the parallelism inher-

Supported in part by SRC under contract 89-DJ-125.
The authors are with the Department of Electrical and Computer Engineering, University

of Massachusetts, Amherst, MA 01003.

2 Designing Co-processors Using the Data-Flow Paradigm

ent in the algorithm and therefore, the user is not required to identify the par-
allelism explicitly. The DFG for a given application is then “direcily” mapped
onto VLSI such that each node in the DFG corresponds to a cell in VLSI. The
operation of the VLSI cells folows the data-driven execution model, i.e., each
cell executes its task as soon as all the operands are available and the ontput
buffer is free. The “direct” mapping of the DFG onto VLSI and the data-driven
execution make it possible to exploit all the inherent parallelism in the algo-
rithm without having the user identify it. Moreover, it is naturally suitable
for pipelined operation. Therefore, this approach to Asic design can provide
high levels of concurrency and pipelining for general applications. The Asics
generated using this paradigm are referred to as data-driven Asics throughout
this chapter.

The rest of the chapter is organized as follows. Section 21.2 contains a
brief description of the design process. Each step of the design process is then
discussed in detail in sections 21.3 to 21.5. In section 21.3, the performance
estimation of the application program is described. In section 21.4, the area
minimization process is discussed in detail and it is shown that a large number
of implementations can be generated for different performance requirements.
Section 21.5 illustrates the layout generation step, and final conclusions are
presented in section 21.6.

21.2 Design Process

The complete procedure for designing data-driven Asics is shown in figure 21.1.
These steps are outlined in what follows.

SISAL to DFG Translation: The application program is specified in SISAL
[10], which is then translated using an optimizing compiler tc a DFG. The
nodes of the DFG represent the computations performed on operands or
data values that flow through the directed arcs, which connect nodes.
A typical DFG is composed of arithmetic {e.g., add, subtract, multiply,
compare, etc.), logical (e.g., AND, OR, etc.) and control (e.g., swiich,
merge, True, False, etc.) nodes. The control nodes are used to implement
the flow control for conditional and loop constructs. The DFG is then
simulated using an event driven simulator, PARET [12], to verify the
correctness of the application program.

Performance Estimnation: Before the detailed design of the Asic is initi-
ated, a preliminary estimate of the performance of the application pro-
gram is obtained. If the estimated performance is not satisfactory, then a
new algorithm must be developed for the application. The performance of

21.2.

Design Process 3

SISAL to DFT
Performance Est.
Initial Mapping

Area Minimization

Buffer Allocation

Layout Generation

Figure 21.1: The design process

the AsIC is estimated hierarchically based on the estimated performance
of arithmetic, logical, conditional, and loop constructs that constitute the
DFG. At this stage, the implementation details are ignored.

Initial Mapping: The first step in mapping & DFG to VLSl is to assign an

implementation to each of the nodes of the DFG. Since we are interested
in designing very high-performance Asics, initially, the fastest available
implementation is chosen for each node. This, however, may result in an
area wasteful implementation. Therefore, aliernate implementations for
certain nodes are then chosen to minimize the overall area within given
performance constraints.

Area Minimization: Different operands at{ & multi-input node may arrive at

different time instances by traversing different paths. Since the operand
that arrives eatlier has to wait for the other operands to arrive, the delay
of the nodes on the shorter paths can be increased without affecting the
overall performance. This, in turn, will reduce the area of the Asic.
Two algorithms for area minimization have been developed. The first is
a heuristic algorithm which is very fast, and the second is a branch and
bound algorithm which yields optimal results.

4 Designing Co-processors Using the Data-Flow Paradigm

Buffer Allocation: If a DFG with non-uniform path lengths is directly
mapped onto VLSI, it may not be optimally pipelinable. In such an event,
buffers may be added to shorter paths of the DFG. The buffer allocation
problem for this architecture is more difficult than the similar problem for
synchronous pipelines (8] and static data-flow computers [5] because data-
driven Asics allow variable execution time for nodes and variable delay
for buffers. This problem has been mapped to a quadratic programming
problem that can be solved uvsing well-known methods. The details of the
buffer allocation algorithm are net provided here for the sake of brevity.

Layout Generation: The final layout is generated using OCT tools [18] de-
veloped at the University of California at Berkeley. A library of behavioral
descriptions of the different node implementations is prepared. Then, the
entire AsicC is synthesized from this library of behavioral descriptions ns-
ing standard cell based generators.

21.3 Performance Estimation

The compiler translating the program written in SISAL to a DFG identifies the
basic structures in the program and for each one of them creates the appro-
priate subgraph. Estimates for the potential performance of the program are
obtained concurrently while creating the DFG in a hierarchical fashion. These
estimates are implementation independent and therefore, do not account for
any implementation overheads.

We use two performance measures: letency, which is the time, in clock
cycles, from entering the input operands until the output is produced {measures
the potential parallelism}, and pipeline period, which is the mean time between
successive results {(measures the throughput which is its reciprocal).

We distinguish between two types of latencies: worst case latency (the input
to cutput latency if the longest possible execution path is taken) and average
latency (the average input to output latency, based on branch probabilities and
estimates of iteration count in loop structures). Similarly, we define two types
of pipelining measures: worst case pipeline period (the elapsed time between
successive results if the longest operation in the algorithm is always executed)
and average pipeline period (the average pipeline period based on branch prob-
abilities and estimates of iteration counts).

We decompose the DFG into three types of structures: arithmetic/logic
expressions, conditional expressions and loops, and estimate the potential par-
allelism and pipelining for each one of them. By combining the performance
estimates for the basic structures hierarchically, we analyze the performance of
the complete application.

21.3. Performance Estimation 5

In what follows, we present the data-flow graphs of the basic structures and
derive expressions for their performance measures.

21.3.1 Arithmetic/logic expressions

A common way to implement an arithmetic/logic expression and achieve the
best performance is through a balanced computation tree {1, 17]. The data
has to pass through all possible paths in the computation tree of the arithmetic
expression. Therefore, the latency of the arithmetic/logic expression is given
by the length of the critical path.

The latency of an expression is denoted by L{expression). The execution
time of an operation is denoted by EX{op). Given the estimated latencies
of two sub-expressions, the estimated latency of the compound expression is
calculated by the following recursive formula:

L{expression) = Max{L(sub_exzpression_1), L{sub_ezpression.2)} + EX(op)

The above formula assumes binary operation but it can be easily extended to
n-ary operations.

The pipeline period of an expression is given by the execution time of the
longest operation in the expression.

21.3.2 Conditional expressions

A DFG representation of a general conditional expression is shown in figure 21.2,
This structure is composed of three parts: computing the condition, executing
the Then or Else part, and routing the result of either branch through a Merge
node. Routing of input data to either the Then or Else part is achieved using
the True (T) and False (F) nodes. These nodes receive a data input and a
Boolean control input. When the control value is true (false) the T (F) node
passes the data to the outgoing arcs or otherwise consumes it.

The conditional structure is not a deterministic expression in the sense that
the computation performed depends on the input data, and the path taken by
the computation can not be determined a priori. Therefore, both the average
and worst case performance measures need to be computed.

The worst case latency of an expression is denoted by W L{ezpression).
The latency of the Then and FElse parts is equal to W L(expl) + EX(T) and
W L(exp2} + EX(F}, 1espectively. Because of their similarity, we can assume
that EX(T) = EX(F) and we use the notation EX(T). The worst case latency
of the conditional structure is

WEL(if then_else) = Max{W L{expl), W L{exp2)}
+EX(T) + WL(Cond} + EX (Merge)

6 Designing Co-processors Using the Data-Flow Paradigm

—...«

Figure 21.2: If-then-else structure

The probability of passing through the Then and the Else parts is denoted
by p and (1 — p), respectively. The average latency of the Then part is equal to
AL(ezpl) + EX(T) and that of the Eise part is equal to AL(exp2} + EX(T).
The average latency of the complete if-then-else structure is therefore

AL(if then_else) = p* AL{expl)+ (1 - p)* AL(exzp?)
+EX(T) + AL(Cond) + EX{Merge)

The worst case pipeline period is given by the longest operation in the struc-
ture. The calculation of the average pipeline period of a conditional structure is
based on the average pipeline periods of the Then and FElse paths. We call the
path with the largest pipeline period the “long” path while the other is called
the “short” path, and we denote the corresponding average pipeline periods by
AP(long) and AP(short). Note that the Cond part belongs to both paths and
consequently, AP(long) > AP(Cond) and AP(short) > AP(Cond). Let the
probability of passing through the “short” path be denoted by p, (p, is either p
or 1 —p). Assuming geometrical distribution of the selected paths, the average
number of times that the “short” path will be selected successively is denoted
by D and is equal to D = ﬂlmw..l.

Consecutive computations are at least A P(Cond) clock cycles apart. There-
fore, several computations in the “short” path can overlap a single computation
in the “long” path only during AP(long) — AP(Cond) clock cycles. We denote
the ratio between the maximum overlap time and the average pipeline period

21.3. Performance Estimation 7

of the “short” path by R, i.e,, R = AP ﬁ_ﬂwﬂﬁw MQ ond)

If D is smaller than R, then there is a complete overlap between the D
computations in the “short” path and the single preceding computation in the
other branch. Therefore, the average pipeline period will be equal to AP (long)
divided by (D + 1). If, however, D is larger than R, then the time to complete
D + 1 consecutive computations is determined by the time needed to complete
the D computations in the “short” path. The computation in the “short” path
can start only AP(Cond) time units after the computation in the “long” path
has started. Hence, we need to add this term to the overall computation time.
The average pipeline period of the if-then-else structure is [11}:

Aferg) ifD< R

D+ AP(short)+AP(Cond)
D41

AP(if then. else) =
otherwise

The above estimations are based on the assumption that the incoming datais
always available when needed, i.e., the input rate is not smaller than the internal
throughput. Consequently, the calculated estimates tend to be optimistic.

21.3.3 Loop structures

A DFG of a loop structure is composed of two parts: the control part, which de-
termines the number of iterations to be executed, and the body which contains
the computation that has to be repeated.

In many cases, the number of iterations needed is not known at compile time.
Thetefore, in these cases we estimate the latency and pipeline period based on
user supplied values! of the average or worst case number of iterations, which
will in turn yield average or worst case estimations, respectively. Therefore, we
use the same notation for average and wotst case measures.

In general, a loop may generate a single result or a stream of 1esults, We
next estimate the performance when the loop structure produces a single result
and then we analyze the other case.

Single result loop structure

The DFG of a typical loop structure with a single result is shown in figure 21.3.
The control signal passes to the synchronization nodes, which control the in-
put streams, (stream.1,... stream!). These synchronization nodes are Stream
Modulo nodes (S.Mod) that route the incoming data stream to the appropriate
outgoing link in a Round Robin fashion. By replicating the loop body, we can

1These values may be determined through sitnulations on typical input data.

8 Designing Co-processors Using the Data-Flow Paradigm

Figure 21.3: Single result loop structure

achieve a better performance and therefore we analyze a loop structure contain-
ing several replicas of the body, denoted by f blocks in figure 21.3. Detailed
analysis, including the derivation of the optimal number of replications needed
to maximize performance, appears in [11]. The partial results generated by all
copies of the f block have to be accumulated to produce the loop output. This
task is accomplished in two steps: add the partial results using a computation
tree (e.g., plus (+) nodes) and then accumulate the partial results of the various
iterations {e.g., Sum node). In summary, the loop body consists of m replicas
of the f block and a summation tree as shown in figure 21.3.

The input to the loop body is a stream of data elements with inter-arrival
time t. For simplicity, we assume that ¢ is a constant. If the inter-arrival time
is not a constant we may use its expected value.

21.3. Performance Estimation 9

The latency of the loop body depends on the latency of an f block, de-
noted by L(f), the number of f block replications, m, and the latency of the
summation tree, denoted by L,yum. tree-

We can divide the summation tree into two sub-trees; one is a complete
binary tree with |logm| levels and the second is a partial tree. We can divide
the partial tree again into two snb-trees; one is a complete tree with m— 2llegm]
leaves and the other is a partial tree. We may continue this process until the
partial tree will be either a complete tree or will be empty. Therefore, the
latency of the summation tree is given by the following recursive formula:

Lyum. tree{m) = Max{LC(m), LP(m)}+ §(m)EX(+)
where LC(m) is the latency of the complete tree and is given by
LC(m} = AN_,_oma_ —)t + EX(+)|log m|
LP(m) is the latency of the partial tree and is given by

0 m=0orm—2llesml —¢
LP(m) =
209814 4 L pum. tree(m — 298]} otherwise
and
0 m =2k (k is an integer)
§(m) =
1 otherwise

The latency of the body can therefore be estimated as
n
L({body, m) = H_‘M._ — 1)P(body) + CL + Lium. tree(m)
where n is the original number of iterations,
CL=L{f}+ EX(S.Mod)+ EX(Sum)+ EX(F)

and P{body) is the pipeline period of the body determined by
Maxz{IP(body), mt}. IP(body) is the execution time of the longest operation
in the body.

The optimal number of f block replications necessary to achieve the mini-
mum possible execution time of a single result loop structure is

. . r IP(bod — nP(body)
— IP(body) ._ if _.ta <iy a\m + FEX (TP (hod)

Mopt = A _x n . .— A— wHWlTk\W:T n-IP(body) Aﬂm.@_vﬁonn:._A:.

it t+BX(+)+IP({body)

n otherwise

10 Designing Co-processors Using the Data-Flow Paradigm

Figure 21.4: Stream of results loop structure

The corresponding minimal latency of the body is nt+ LP + L{sum. tree) [11].
Finally, the latency of the single result loop structure is

.ﬁﬁb@ﬁv = HAODSLI.Q: + hﬁ.ﬂ.u

where L(conirol) denotes the latency of the control part of the loop. The
pipeline petiod of the single result loop is the same as its latency.

Stream of results loop structure

A stream of results loop structure is shown in figure 21.4. For synchronization
purposes we use two nodes: Stream Modulo (S.Med), which synchronizes the
stream of inputs, and a Stream Merge (S.Merge), which guarantees the proper
ordering of the results.

By replicating the f block, we allow overlapping of consecutive computations
within the loop. This way, the loop structure can produce new results at a rate
that may be smaller than EX(S.Mod) and P(f), where P(f) is the pipeline
period of the f block. As is shown in [11], the optimal number of replications
is

_ Max{P(f), EX(S.-Mod)
Topt = _.EQHT. P(control), @..N.Am..gmﬁmv:

where m,,; < n. The minimal pipeline period of the loop structure is

P(stream of results loop structure) = Max{t, P(control), EX(S Merge)}

21.3. Performance Estimation 11

26
if a=b
then # c=d gm_.m_o
then g#*{h+i)
else j+k 29
andif Zw.ﬁm
alse o+t
andif 32

Figure 21.5: Nested if-then-else expression and its DFG representation

and the corresponding latency is

L(first result) = L(f) + EX(5.Mod) + EX(S.Merge) + L{control)

21.3.4 Examples

We demonstrate the performance estimation method through a simple nested
if then-else program. Figure 21.5 shows the program and its corresponding
DFG generated by our compiler.

For the analysis of this example, we use the execution times from [7]. The
number marked on each arc represents the accumulated worst case latency at
that point. As can be seen from the figure, the latency of the complete DFG in

12 Designing Co-processors Using the Data-Flow Paradigm

the worst case is equal to 32 clock cycles and the pipelining period is 11 clock
cycles. The above results correspond to the length of the critical path and the
longest operation in the graph, respectively.

In figure 21.6, we compare the estimated values of the average pipeline period
of the example in figure 21.5 to the simulation results obtained using the event
simulator, PARET [12). Figure 21.6 shows the average pipeline period as a
function of the probability of taking the Then path of the outer conditional.
The Then path is the “short” path. In figure 21.6(a}, the probability to pass
through the Then path of the inner conditional is 0.2. We can see that as the
probability to pass through the outer Then path increases, the average pipeline
period approaches AP{short). In figure 21.6(b), the probability to pass through
the Then path of the inner conditional structure is equal to 0.8 instead of 0.2. In
this case, as the probability of passing through the outer Then path increases,
the average pipeline period decreases. This continues as long as there is a
complete overlap between the Else and Then branches of the outer conditional.

Further increase in the probability of taking the outer Then path reduces
the overlap and results in an increase in the average pipeline period. As can
be seen from the figure, the estimated values are very close to the simulation
results and therefore, lengthy simulations may be avoided. In both cases, the
worst case pipeline period is 11 clock cycles, which is substantially higher thar
the average case pipeline period.

Figure 21.7 shows a first order impulse response filter [6] as an example for
a loop structure where the current iteration depends on the previous iteration.
Because of the dependency between successive iterations, the pipeline period
of the body is: EX(*) + EX(+)+ EX (Merge). Replicating the body will not
reduce this pipeline period and therefore the latency of the loop structure. In
this example, the result of the first iteration is produced after 26 clock cycles,
which is the accumulated execution time of the operations along the critical
path. The second result, however, is produced 17 clock cycles later and not 11,
which is the execution time of the longest operation in the graph {the multiply
operation). Here, the pipeline period of the loop structure is determined by a
sequence of operations that cannot be overlapped, which includes the multiply,
add, and Merge nodes.

21.4 Area Minimization

The area minimization procedure starts with the initial mapping and reassigns
smaller implementations to some of the nodes to minimize the overall area for
the desited performance. For a pipelined Asic, the single most important per-
formance measure is the throughput. Since the pipeline period of the designed

21.4. Area Minimization 13

12 T T T T
...<.. simulation N
9l ...+.. estimation -
pipeline 8| i
period 7L |
6 -
5 -
ﬁ B . N 7
3 1 1 1 L T
] 0.2 0.4 0.6 0.8 1

probability

(a) The probability to pass through the Then path
of the inner conditional is 0.2

12 T T T T
11 =, —
101 .ﬁ"“ ...<.. simulation 1
9 ‘._.6 ...~+.. estimation -
pipeline i
period & ..Aw..
70 ...o.. -
9;.
6 oo i
5 F e i
4 | | 1 1
0 0.2 0.4 0.6 0.8 1
probability

(b) The probability to pass through the Then path
of the inner conditional is 0.8

Figure 21.6: Comparing the estimated pipeline period to simulation results for
the example in figure 21.5

14 Designing Co-processors Using the Data-Flow Paradigm

y; = bx; — ay;,,

Figure 21.7: First order impulse response filter

ASIC can never be smaller than the delay of the slowest node, the smallest
(slowest) implementation that can be used for a node is restricted by the desired
pipeline period. The area minimization process will not select an implemen-
tation for any node of the DFG such that its delay is larger than the allowed
pipeline period. The need for area minimization can be illustrated through the
example in figure 21.8. Let the multiply (MULT) node be a sequential multi-
plier that takes 16 cycles for the computation. Let the add (ADDI1 and ADD2)
nodes be parallel 16-bit adders that take one cycle to execute. Therefore, for
the initial mapping, the result of MULT is available 15 cycles later than the
result of ADD1. Since ADD2 cannot execute until both operands are available,
the result of ADDI has to wait for 15 cycles after it has been computed. How-
ever, an alternate bit-serial implementation (with execution time of 16 cycles)
may be used for node ADDI without affecting the overall performance of the
Asic. Moreover, the area of the interconnections for ADD1 would be reduced
as well. A parallel adder should still be used for ADD2 because any slower
implementation will increase the length of the critical path and thus increase
the latency.

In general, there may be many different implementations for a node, and
the area minimization will select an implementation for each node such that
the overall area of the Asic is minimal. If the area of the final design is not
acceptable, the design process will be repeated for a larger value of lateney to
further reduce the overall area.

The above area minimization, in general, is an NP-complete problem since,
for every node, there are many implementations and each of these may lead to
a different system area and execution time. For example, if the DFG contains n

21.4. Area Minimization 15

Figure 21.8: A simple DFG

adders and there are five implementations of the adder, then there are 5" pos-
sible designs. Therefore, a greedy algorithm was developed to obtain a “good”
solution while a branch and bound algorithm is used for optimal solution. At
present, our algorithms ignore the area required for the interconnections be-
tween the nodes. Hence, the final layout may be larger than the area estimated
by the area minimization step. However, we observe that in most cases, the
interconnection area reduces with the smaller (e.g., serial) implementation of a
node.

21.4.1 A greedy algorithm

From the initial mapping, a node is selected and its implementation is replaced
by a smaller one such that the total area is reduced, but the overall latency
remains unchanged. This process is repeated until no such node exists. If the
area of the resultant ASIC is unacceptably large, the length of the critical path
(latency) is increased and the process is repeated. The quality of the solution
depends primarily upon the order in which nodes are selected for replacement
and on the set of implementations available for each type of node.

Preliminaries

A node cannot start its execution before all the required inputs are available;
therefore, the earliest time it can execute is the maximum of the earliest time
instances at which the results from the predecessor nodes are available. Sim-
ilarly, the node must complete its execution before the smallest of the latest
time instances at which its output must be available to the successor nodes.
These two time instances are denoted by asap (as soon as possible) and alap
(as late as possible). The asap and elep times, also referred to as slack and
surplus time, have been used for several scheduling problems (e.g., [9]). We
define the freedom of a node as the largest amount by which its execution time

16 Designing Co-processors Using the Data-Flow Paradigm

Algorithm: Area Minimization

1. Compute the freedom for each node.

2. Let S be the set of candidate nodes for which there are imple-
mentations such that when repiaced, the increase in the de-
lay is not larger than their freedom.

It Sis empty then exit.

Compute the area savings for each vin S,

Let S’ ={v| ve S and v has maximum area savings}

Choose node virom & which smallest freedom.

Replace current implementation by a smaller one.

Goto step 1.

Noe R w

Figure 21.9: Greedy algorithm for ares minimization

can be increased without increasing the execution time of the overall design
{which is given by the difference between the alap and asep times). Obviously,
the freedom of a node on the critical path is zero.

Node Selection

In order to minimize the overall area, some of the nodes in the fastest implemen-
tation of the DFG are replaced by slower ones. The implementation of 2 node
can be substituted by a smaller one if and only if the increase in its execution
time is not larger than its freedom. The order in which the nodes are replaced
will affect the solution and hence, determine the overall size of the final design.
The greedy algorithm attempts to minimize the overall area by selecting the
node that provides maximum area savings to be replaced first. If there is more
than one such node, the one with the smallest freedom is selected. Whenever
the execution time for a node is increased, the freedom for some other nodes
may be reduced. Therefore, if the node with the smallest freedom is chosen for
replacement, then the freedom of the other nodes (with larger freedom) may
decrease, but need not become zero. The above greedy algorithm is summarized
in figure 21.9. A more detailed discussion of this algorithm appears in [15].

21.4.2 Branch and bound algorithm

An implementation of a node can be replaced by a smaller one only if the in-
crease in the execution time is smaller than its freedom. Therefore, the lower

21.4. Area Minimization 17

[[time(clocks) 1 2 4 8
[Bits 6 | 8 | 4 | 2
= area(mm?) | 0.957 | 0.750 | 0.577 | .500

Table 21.1: The area and execution time for different implementations of a
16-bit adder

bound for the area of the DFG is evaluated by choosing the smallest implemen-
tation within the above constraint. The area lower bound is used during both
the branching and bounding steps. At the branching step, out of the nodes
that can be replaced by smaller implementations, the node that leads to the
smallest lower bound is selected. A tie in the selection is broken in favor of the
node with the smallest freedom and largest area savings. Bounding takes place
when the current smallest solution is smaller than the area lower bound.

21.4.3 Examples

To demonstrate the practical nature of the area minimization algorithms we
present an example taken from [14], as shown in figure 21.10, where “S” and
“M” nodes are Switch? and Merge nodes, respectively. The add/subtract nodes
were designed using 2u technology. The area and execution time for different
implementations of these nodes are shown in table 21.1. The “bits” indicate
the number of bits that are operated simultaneously, i.e., 8 bits indicate that
16-bit addition is performed by adding 8 bits at a time in two clock cycles. Both
the greedy and branch and bound algerithms for area minimization use an 8-bit
adder implementation (delay of two clock cycles) for the ADDS, ADD4, ADDS,
SUB2, SUB4, and SUBS5, and a 4-bit adder (delay of four clock cycles) for
SUBI. The rest of the nodes are 16-bit adder implementations. Consequently,
the total area is reduced from initial area of 15.32 mm? to 13.69 mm? while
the overall execution time remains unchanged (16 clock cycles). The area-time
tradeoff curve for this example obtained using the worst case latency measure
is shown in figure 21.11.

In all the examples we tried {including the one above), the overall arca
obtained using the greedy algorithm is no more than 5% larger than the optimal
area obtained using the branch and bound algorithm. Therefore, we suggest
first generating an approximate set of solutions for different area and latency
using the greedy algorithm. Once a solution is selected, it may be optimized
using the branch and bound algorithm.

Z A switch node is equivalent to & pair of True and False nodes.

18 Designing Co-processors Using the Data-Fiow Paradigm

Int In2 in3

D <
S
52)
5o &

CAECOID

SUBS @

Figure 21.10: An example from MAHA [14])

21.5. Layout Generation 19

Hm I | T T T T T
15

Area 14

(mm®) 13p % .
12
11| -
10 S -
9 .,

m 1 1 1 1 1 1 _.

0 5 10 15 20 25 30 35 40
Latency (clock cycles)

T

1
I

Figure 21.11: Area vs. time for the DFG of figure 21.10

21.5 Layout Generation

The final step in the synthesis of data-driven AsICs is the layout generation.
The DFG for the application is translated into a netlist from which the Asic
is generated using the OcT tools [18]. The cells in the final layout may either
be predesigned or generated as needed. The alternatives are standard cell or
macrocell based layout generation schemes, as outlined below.

The first approach generates the final layout using standard cells only (all
the cells are of uniform height). A library of the behavioral description of all
the nodes is prepared in the language BDS [18). The BDS description of a
parallel adder (16-bit) is shown in figure 21.12. The BDS description of a node
is translated into a netlist using BDSYN and Misll [2]. The netlist for the
complete AsIC is then obtained by combining the netlists of the nodes and the
netlist of the DFG using BDNET. This netlist, when placed and routed using
the standard cell based placement and routing program Wolfe [16], generates
the complete layout for the Asic.

We have generated different layouts for the conditional statement of fig-
ure 21.13, and their area and latency are shown in figure 21.14. The “final
area” in this figure indicates the area of the Asic afier placement and routing,
and the “estimated area” indicates the area calculated by the area minimization
algorithm (ignoring interconnects). It can be observed that the nature of both
curves is similar. The timing analysis using Crystal [13] shows that all of these
initial implementations will operate at least at 5SMHz clock. One sample layout
is shown in figure 21.15.

We have also generated layouts for several implementations of the DFG of

20

Designing Co-processors Using the Data-Flow Paradigm

MODEI add_16

out_1<16:1>, Ithe output

send_o1<0>, tsend signal for output

ack_i1<0>, ack_i2<0>, tack signal for each input
= in_1<16:1>, in_2<16:1>, Itwo inputs .

send_i1<0>, send_i2<0> Isend for each input

ack_o1<0> lack signal at output port
ROUTINE add;

ack_i1<0> = ack_ol1<0>,
ack_i2<0> = ack_o1<0>;
send_o01<0> = send_i1<0> AND send_i2<0>;
out_1<16:1> =in_1<16:1> + in_2<16:1>;
ENDROUTINE;
ENDMODEL,

Figure 21.12: The BDS description of a 16-bit adder

T F V.

Merge

Figure 21.13: A conditional statement

21.6. Conclusions 21

6 T T T T
¢
5.5 -
E ...%>.. final area
5 |- ...4.. estimated area _
+
45 F 1 2 —_
Area @
(mm?)
4 - S -
+. RS N &
35+ N -
3] | | I
5 10 15 20 25 30

Latency (clock cycles)

Figure 21.14: Area vs. time for the DFG of figure 21.13

figure 21.10. For example, the total area required for two designs with latencies
of 12 and 16 cycles are 19.4 mm? and 17.9 mm?, respectively. This clearly
demonstrates the applicability of this approach to large DFGs.

The requirement that the complete Asic be generated using a standard
cell based generator may result in a suboptimal design. Instead, frequently
used cells can be predesigned for optimal area/performance ratio and others
may be generated using different target architectures (such as PLA). Finally, a
macrocell based placement and routing tool (e.g., Mosaico [3]) should be used
to place and route the separate cells,

21.6 Conclusions

An innovative approach to the design of Asics has been presented in this pa-
per. The designed Asics operate in a data-driven mode that supports fine
grain parallelism and pipelining. The developed CAD tool includes a compiler
for translating the application specified in SISAL to a data-flow graph. This
compiler also provides estimates for the performance of the Asic. In the next
step, the area of the AsIc is minimized and then the final layout is generated.
Examples illustrating the various steps in the design of the Asic have been
presented.

QOur preliminary experiments show that a DFG with about 50 to 100

22

Designing Co-processors Using the Data-Flow Paradigm

Figure 21.15: Layout of the DFG of figure 21.13

References 23

add/subtract operators can easily be implemented on a 1 em? chip. Also, the
timing analysis using Crystal and Spice shows that these Asics can be opezated
at 5MHz to 10MHz clock rate.

References

1l

2]

[3]

(4]

[5]

t6]

{7l

(8l

[¢]

[10]

(1)

(12]

A.V. Aho and 5.C. Johnson. Optimal code generation for expression trees.
J. ACM, 23:488-501, November 1976.

R.K. Brayton et al. MIS: A Multiple-Level Logic Optimization System.
IEEE Transactions on CAD, CAD-6(6):1062-1081, November 1987.

J. Burns et al. Mosaico: An integrated macro-cell layout system. In
C.H Sequin ed., editor, Proc. of VLSI '87, Vancouver, Canada, 1987.

D.D. Gajski. Silicon Compilation. Addison-Wesley Publishing Co., 1987.

G.R. Gao. Algorithmic aspects of balancing techniques for pipelined data
flow code generation. Joeurnal of Parallel and Distributed Computing,
1(6):39-61, Febrnary 1989.

L.B. Jackson. Digital Filters and Signal Processing. Kluwer Academic
Publishers, 1986.

I. Koren, B. Mendelson, I. Peled, and G.M. Silberman. A data-driven VLSI
array for arbitrary algorithms. Computer, 21(10):30-43, October 1988.

C.E. Leiserson and J.B. Saxe. Optimizing synchronous systems. J. of VLSY
and Computer Systems, 1(1):41-67, Janunary 1983.

M.C. McFarland, A.C. Parker, and R. Camposano. Tutorial on high-level
synthesis. In Proc. of 25rd Design Automation Conference, pages 330-336,
1988,

J. R. McGraw et al. SISAL: Streams and iteration in a single assignment
Ianguage: Reference manual version 1.2. Manual M-146, Rev. 1, Lawrence
Livermore National Laboratory, Livermore, CA, March 1985.

B. Mendelson and I. Koren. Estimating the potential parallelism and
pipelining of algorithms. Technical Report TR-90-CSE-5, ECE Dept. Uni-
versity of Massechusetts, Amherst, 1989.

K.M. Nichols and J.T. Edmark. Modeling multicomputer systems with
PARET. Computer, 21{5):35-48, May 1988,

24
(13]
[14]

[15]

(16]

[17]

(18]

Designing Co-processors Using the Data-Flow Paradigm

J.K. Ousterhout. A switch-level timing verifier for digital MOS VLSL
IEEE Transactions on CAD, CAD-4(3):336-348, July 1985.

A.C. Parker et al. MAHA: A program for datapath synthesis. In Proc. of
23rd Design Auiomation Conference, pages 461466, 1986.

B. Patel, I. Koren, and D.K. Pradhan. Designing highly pipelined ASICs
using the data flow paradigm. Technical Report TR-89-CSE-9, ECE Dept.
University of Massechusetts, Amherst, 1989,

C. Sechen and A. Sangiovanni-Vincentelli. The TimberWolf placement
and routing package. IEEE Journal of Solid State Circuits, 20(2):510-522,
April 1985,

R. Sethi and J.D. Ullman. The generation of optimal code for arithmetic
expression. J. ACM, 17:715-728, October 1870.

R. Spickelmier, editor. Oct Tools Distribution 3.0. University of California,
Berkeley, March 1989.

