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When porting an application to a parallel data driven machine
is considered, the maximum achievable parallelism and pipelining
need to be estimated. These estimates can be obtained in a hierar-
chical manner from a data flow graph representation of the given
algorithm. A method for estimating these performance measures
has been developed and is presented in this paper. Examples illus-
trating our method and comparing the estimated performance to
simulation results are also included. ¢ 1992 Academic Press, Inc.

1. INTRODUCTION

When adapting an algorithm to a parallel data driven
machine one has to ask what is the speedup that can be
achieved for the given algorithm that may justify the nec-
essary changes in the algorithm. The speedup that an
algorithm may achieve on a data driven machine is deter-
mined both by the algorithm structure, as well as by the
translation of the algorithm to the parallel machine, re-
ferred to hercafter as the Mapping process. The algo-
rithm structure imposes limitations on its speed of execu-
tion, specifically on the maximum potential parallelism
that can be achieved and the maximum potential through-
put of the outcoming results. This paper presents a
method to estimate the bounds on the performance of a
given algorithm. When trying to find upper bounds on the
performance of a given algorithm the overhead associ-
ated with a particular implementation of the given algo-
rithm should not be taken into account. Therefore, opera-
tion under ‘“‘ideal’’ conditions is assumed. The ideal
conditions include:

» Unbounded number of execution units.
 Inputs to the algorithm are accessible to every execu-
tion unit.

* This work was done while B. Mendelson was with the University of
Massachusetts at Amherst and was supported in part by SRC under
Contract 90-DJ-125.

« Qutputs from the algorithm are accessibie from every
execution unit.

« Full connectivity——any two e¢xecution units can com-
municate with each other with negligible cost.

Estimating the potential parallelism and pipelining is
essential to any procedure for mapping algorithms onto
parallel data driven architectures. Knowing the estimates
for the above performance parameters allows the user to
modify his/her algorithm if the required performance is
not met. The performance estimations can also serve as
bounds for evaluating the quality of the mapping to a data
driven machine. An example for using the presented
method for designing special-purpose data driven copro-
cessors can be found in [19].

The performance of an algorithm can be analyzed
through either macroanalysis or microanalysis [5]. Mac-
roanalysis of algorithms is a complexity analysis (e.g.,
[17]) while microanalysis is concerned with evaluating
the execution time of a program as a function of the time
needed to execute each operation in the program and is
the focus of this paper. Only few works have attempted
to analyze the potential parallelism and pipelining of
given application algorithms using microanalysis. A
method for microanalysis of sequential algorithms exe-
cuting on a sequential machine has been described
by Cohen [5]. Some estimations of parallelism in
FORTRAN programs were reported in [14]. There, D. J.
Kuck surveys theoretical estimations of performance
measures for some general programming constructs (e.g.,
arithmetic expressions and linear recurrences) but not for
a particular program. Other works have attempted to es-
timate the paralielism and speedup, but they were re-
stricted to specific architectures such as [16] which sug-
gests a software tool for measuring parallelism in large
scientific/engineering applications using simulations of
various machines. Other research efforts were aimed at
analyzing the potential parallelism and pipelining under
limited resources resulting in the need for scheduling
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since not all the operations that are ready at the same
time can be executed simultaneously [4, 9, 22].

Very few studies have concentrated on the analysis of
the performance of algorithms for data driven machines.
Such algorithms are usually represented as a data flow
graph (DFG). Data flow graphs are composed of nodes
which represent the operations and arcs which represent
the data that are transferred from one node to another.
Incoming arcs carry the operands and the outgoing arcs
carry the results of the operation. The most important
property of a DFG is its ability to exhibit all the data
dependencies in the computations being performed. The
potential parallelism and pipelining of a given algorithm
for a data driven machine can therefore be ¢stimated
through a detailed analysis of all possible execution paths
in the DFG of the given program. Arvind et al. [2] pre-
sented a method, using the data flow graph of a given
algorithm, to assess the benefits of fine-grain parallelism
in programs. The performance is estimated there by exe-
cuting the DFG on an interpreter. In [20], experiments to
measure the maximum parallelism of an ideal Very Long
Instruction Word (VLIW) architecture were described.
These measurements, also obtained by using an inter-
preter, were claimed to be equivalent to the execution of
an idealized data flow machine. The authors conclude
that there are substantial amounts of fine-grain paraliel-
ism that can be found in many algorithms. In [24] a
method is presented for analyzing the performance of a
given algorithm by first translating the algorithm to oper-
ation nets and then producing specification equations that
can be solved to find the execution time. The analysis
presented there is restricted to the worst and best case
latencies. We present a method that, in addition to the
above, also analyzes the pipeline period of a given algo-
rithm and the average case of both latency and pipeline
period. Such an analysis is very important for data driven
machines as well as other machines but has not been
done until now [15].

Our method for estimating the performance parameters
for a given algorithm on a data driven machine can be
applied to any data driven machine and is not restricted
to certain architectures since the estimations are done
under ideal conditions. The performance estimation is
based on the data flow graph representation of the algo-
rithm and is obtained automatically at compile time when
the DFG representation of the algorithm is produced. In
our implementation the given algorithm is expressed in
SISAL [18]. We have extended the original SISAL com-
piler to include the estimation of parallelism and pipelin-
ing. In addition to the DFG, the modified compiler pro-
duces the performance estimation for the given algorithm
based on the method presented here. Although most of
the results presented in this paper hold for any parallel
machine, some apply only to data driven machines.

This paper is organized as follows. In the next section
we present our general approach for estimating the po-
tential parallelism and pipelining. In Section 3 we ¢xplain
in detail how to estimate the above measures for various
program structures. In Section 4 we demonstrate the pro-
cess of analyzing given algorithms through several exam-
ples and compare the estimated performance to the
results obtained by an event simulator. A summary and
conclusions are presented in the last section.

2. GENERAL APPROACH

To find the potential parallelism and pipelining for a
given algorithm its data flow graph is generated first. The
parallelism of an algorithm can be evaluated based on the
critical path, i.e., the longest sequence of operations that
have to be done sequentially. By comparing the overall
execution time of the algorithm on a sequential machine
to the accumulated execution time of the operations on
the critical path, we can estimate the maximum speedup
achievable when executing the algorithm on a parallel
data flow machine (e.g., [8]). On the other hand, the long-
est operation in the graph is a good measure for the pipe-
line period. As will be shown later, the pipeline period is
sometimes determined by a set of operations rather than
a single operation in the case of if-then-else and loop
structures.

We have implemented the method presented below for
estimating the performance of a given algorithm. Initially
the algorithm is written in SISAL which is a functional
high level language. The SISAL compiler translates the
algorithm into an intermediate code (IF1) [18]. We have
added an additional phase that translates this intermedi-
ate code into a DFG and produces the estimations for the
performance. The compiler identifies the basic structures
in the program and for each one of them creates the ap-
propriate subgraph. Then the subgraphs are combined to
generate the complete DFG. Estimates for the potential
performance of the program are obtained in parailel to
the DFG creation. For each basic structure in the pro-
gram we compute at compile time the performance pa-
rameters. Each basic structure thus carries a set of esti-
mated performance parameters which are then employed
to calculate the performance measures for the compound

_structures. The estimated measures are upper bounds on

the performance. These bounds do not take into account
some implementation overheads of the architecture.

Two performance measures are used: /atency and pipe-
line period. The latency is the time, in clock cycles,
elapsed from entering the input operands until the output
is produced. The latency measures the potential parallel-
ism of the given algorithm. We distinguish between two
types of latencies:
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» worst case latency—the input to output latency if the
longest possible execution path is taken;

» gverage latency—the average input to output la-
tency, based on branch probabilities and estimated num-
ber of loop iterations.

The first one is clearly a bound for the algorithm latency,
while the second one provides a better estimate moH. the
typical behavior of the algorithm.

The pipeline period is the mean time between succes-
sive results, allowing us to calculate the throughput,
which is its reciprocal. We define two types of pipelining
measures:

» worst case pipeline period—the elapsed time be-
tween successive results if the longest operation in the
algorithm is always executed;

* average pipeline period—the average pipeline period
based on branch probabilities and estimated number of
loop iterations.

The worst case pipeline period provides a bound for
the possible pipelining that can be achieved when the
longest operation is executed. For example, in an if-
then—else structure, the longest operation may be part of
the Then path or the Else path and, consequently, the
throughput of the algorithm will depend on which path is
taken. The average measure yields a better estimate for
the typical throughput of the algorithm than does the
worst case one.

Many studies have been conducted to characterize the
typical behavior of an algorithm (e.g., [11, 26]} to be used
for compile time optimization. This characteristic behav-
ior includes number of iterations in loop structures and
branch probability in if—then—else structures. There are
two ways to obtain the characteristic behavior of a given
algorithm: to use known statistics of the characteristic
behavior of similar algorithms [11, 26] or to run the given
algorithm with typical data on any machine and analyze
its execution. The latter was justified by J. A. Fisher [6]
who found strong correlation between the behavior of &
program (in terms of branch probability and number of
loop iterations) with one set of data and its behavior with
a different set of data.

3. PERFORMANCE MEASURES FOR THE
BASIC STRUCTURES

We decompose the DFG into three types of basic
structures: arithmetic/logic expressions, if-then—-else ex-
pressions, and loops, and estimate the potential parallel-
ism and pipelining for each one of them. By combining
the performance estimates for the basic structures hierar-
chically we analyze the performance of the complete al-
gorithm. In the next three subsections we present the
data flow graphs of the three bhasic structures and derive
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FIG. 1. An arithmetic expression.

expressions for the above-mentioned performance mea-
sures.

3.1, Arithmetic/Logic Expressions

A common way to implement an arithmetic/logic ex-
pression and achieve the best performance is through a
computation tree [1, 23] like the one shown in Fig. 1. The
best parallelism can be achieved when the computation
tree is balanced [13, 25]. We balance the computation
tree not only according to the number of operations but
also according to their execution time. Such computation
trees require the data to pass through all possible paths of
the arithmetic expression. Therefore, the latency of the
arithmetic/logic expression is given by the length of the
critical path.

All the operations in the computation tree need to be
executed to produce the correct result of the expression.
Therefore, there is no difference between the worst case
and average values of the latency and pipeline period of
an arithmetic/logic expression and we use the same nota-
tion for both.

The latency of an expression is denoted by L{expres-
sion). The execution time of an operation is denoted by
EX(op). Given the estimated latencies of two subexpres-
sions, the estimated latency of the compound expression
is calculated by the recursive formula

= Max{L{sub_expression_1),
L(sub_expression_2)} + EX{op),

Liexpression)

where op is the operator that generates the final expres-
sion out of these two subexpressions. The above formula
assumes binary operation but it can be easily extended to
n-ary operations.

The pipeline period of an expression is given by the
execution time of the longest operation in the expression.
This is true when a single execution unit serves the
stream of operations executed within a single node of the
DFG. However, if the pipeline period is of importance
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FIG. 2. Multi-Node structure—a structure for replicating an execu-
tion unit.

then multiple execution units can be used in order to
increase the throughput. In such a case, we can replace
the single node with the structure shown in Fig. 2, the
Muiti-Node structure, which consists of replicated exe-
cution units and additional synchronization nodes. The
Stream Module node (5.Mod) routes the incoming data
stream to the appropriate outgoing link in a round Robin
fashion. The Stream Merge (§.Merge) guarantees the
proper ordering of the results.

The input to the structure in Fig. 2 is a stream of data
elements with interarrival time ¢. For simplicity, we as-
sume that ¢ is a constant. If the interarrival time is not a
constant we may use its ¢xpected value. Replicating the
node can reduce the pipeline period of the original node
o

P{Multi-Node structure) =

s&v , EX(S.Mod),EX(S.Merge), m|ﬁe£,

m

where m is the number of replications.

We want to find the optimal number of node replica-
tions needed to reduce the pipeline period of the new
structure to its minimum value of

max{t, EX(S.Mod), EX(5.Merge)}.

It is denoted by m,,, and is equal to

A ﬁ EX(op) #
I max{t, EX(S.Mod), EX(S§.Merge)}

Note that this replication with its additional synchroniza-

tion nodes is worthwhile only when m = 2. When we do

replicate a node, EX{op) will be replaced by
EX(5.Mod) + EX(op) + EX(S.Merge)

which increases the latency but the pipeline period is
reduced.

3.2. If~Then—-Else Expressions

When pipelining through an if-then-else expression,
the outputs produced should be in the same order as their
corresponding inputs. This can be accomplished by intro-
ducing three types of synchronization nodes: True,
False, and Merge. The True and False nodes are denoted
by T and F, respectively. These nodes receive a data
input and a Boolean control input. When the control
value is true (false) the 7 (F) node passes the data to the
outgoing arcs or consumes it otherwise. The Merge node
has two data inputs and a Boolean control input. The
control input determines which one of the two data inputs
will pass to the output.

A DFG representation of a general if-then—else ex-
pression is shown in Fig. 3. This structure is composed of
three parts: computing the condition, executing the Then
or Else part, and routing the resuit of either branch
through a Merge node. Routing of input data to either the
Then or the Else part is achieved using the True (T) and
False (F) nodes.

The DFG representation of the if-then—else structure,
shown in Fig. 3, enables us to achieve the best through-
put because it allows overlapping between consecutive
passes through the if-then—else structure. We have ex-
amined other possible DFG representations that require
less synchronization nodes but after a careful analysis we
concluded that they do not achieve the same throughput
as that of the proposed structure.

Unlike the arithmetic/logic expression, the if—then—
else structure is not deterministic, since the computation
performed depends on the input data, and the path taken
by the computation cannot be determined a priori. There-
fore, the average and the worst case performances may
differ.

The worst case analysis assumes that data passes al-
ways through the critical path or the path with the longest
operation in the structure when the latency or the pipe-
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FIG, 3. If-then—else structure.
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line period is considered, respectively. In the average
case analysis we consider the probability that the Then or
Else part is taken. An estimate for this probability is as-
sumed to be known.

The worst case latericy of an expression is denoted by
WL{expression). The latency of the Then and Else paris
is equal to WL(expl) + EX(T) and WL(exp2) + EX(F),
respectively. EX(T) can be assumed to be equal to EX(F)
because of their similarity. Therefore, we use the nota-
tion EX(T). The worst case latency of the if—then—eise
structure is

WL(if_then_else) = Max{WL(expl), WL(exp2)}
+ EX(T) + WL(Cond)
+ EX(Merge)

The probability of passing through the Then and the
Else parts is denoted by p and (1 — p), respectively. The
average latency of the Then part is equal to AL(expl) +
EX(T) and that of the Else part is equal to AL(exp2) +
EX(T). The average latency of the complete if-then—else
structure is, therefore,

AL(if then_else) = p * AL({expl) + (1 — p) * AL(exp2)
+ EX(T) + AL(Cond)
+ EX(Merge).

The worst case pipeline period is given by the longest
operation in the structure. The calculation of the average
pipeline period of an if-then—else structure is based on
the average pipeline periods of the Then and Else paths.
We term the path with the largest pipeline period the
“long™’ path while the other is termed the “‘short’ path.
The corresponding average pipeline periods are denoted
by AP(long) and AP(short), respectively. We also denote
the ratio between the average pipeline periods of the two
branches by R, i.e., R = AP(long)/AP(short). Let the
probability of passing through the short path be denoted
by p;. Clearly, p, equals either p (the probability of pass-
ing through the Then part) or (1 — p). Assuming that path
selections in consecutive passes are independent, the
probability to select the same path successively follows a
geometrical distribution. Consequently, the average
number of times that the short path will be selected suc-
cessively is denoted by D and is equal to D = p,/(1 — p;).

If D is smaller than R, then R computations in the short
path are completely overlapping the single preceding
computation in the other branch. Therefore, the average
pipeline period will be equal to AP(long) divided by
(D + 1). On the other hand, if D is larger than R, then the
time to complete (D + 1) consecutive computations is
determined by the time needed to complete the D compu-

tations in the short path. The computation in the short
path can start only AP(Cond) time units after the compu-
tation in the long path has started. Hence, we need to add
this term to the overall computation time. The average
pipeline period of the if-then—else structure is, therefore,

AP(if_then_else) =

AP(long) )
D+ 1 fD<R
D = AP(shorty + AP(Cond) )
otherwise.

D+1

The above estimations are based on the assumption
that the incoming data are always available when needed;
i.e., the input rate is not smaller than the internal
throughput or, in other words, the input bandwidth is
sufficiently high. Also, we assume that complete overlap-
ping between Then and Else paths is possible. As was
shown in [3], the addition of some delay nodes might be
necessary to achieve the maximum throughput. Linear
programming can be employed to produce the optimal
allocation of the delay nodes in the DFG [7]. Such delay
nodes may be needed in loop structures as well.

3.3. Loop Structures

A data flow graph of a typical loop structure is shown
in Fig. 4. This structure is composed of two parts: the
body and the control. The body is the computation that
must be repeated. The control part determines the num-
ber of iterations to be executed. There are two types of
control parts: one corresponds to For loops and the other
corresponds to While loops. The first is count controlled
while the second evaluates a Boolean expression to de-
cide whether to perform an additional computation.

The DFG representation depicted in Fig. 4 allows par-
allelism between the control and body parts. As men-
tioned earlier, if the number of iterations is not specified
in the program, we estimate the latency and pipeline pe-
riod based on user supplied values of the average or
worst case number of iterations which will, in turn, yield
average or worst case estimations, respectively. There-
fore, we use, for simplicity, the same notation for the
average and worst case measures.

@...h
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FIG. 4.

Iterative structure.
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FIG. 5.

For loop structure.

The For loop control part includes two subexpressions
lo_exp and hi_exp to compute the bounds on the iteration
count and three additional nodes as shown in Fig. 5. The
plus (+) node increments the current count which is then
checked by the greater_than (>>) node. The latter gets
two values, compares them, and produces a Boolean
value accordingly. The current value of the count is
passed through the Merge synchronization node.

In general, a loop may generate either a single result or
a stream of results. We next estimate the performance
when the loop structure produces a single result and then
we analyze the other case.

3.3.1. Single Result Loop Structure. The DFG of a
typical loop structure with a single result is shown in Fig.
6. The controf signal (which can be the count value in a
Forloop or a Boolean value in a While loop) passes to the
synchronization nodes, which control the input streams
(stream_1, ..., stream_!). These synchronization nodes
are Stream Modulo nodes (S.Mod). To accelerate the
execution of the loop structure, we may replicate the
iteration body several times. This way we reduce the
number of passes through the loop and as a result reduce
the overall latency of the loop structure. We want to
point out that replicating the body in a single result loop
can be done oniy if it consists of an associative operation
(summation of partial results, finding minimum, etc.).
With a nonassociative operation, replications are not al-
ways permitted. For example, if the algorithm must find
the average number of positive clements between two
consecutive negative elements then replicating the body
can yield wrong results.

In what follows we analyze a loop structure containing
several replicas of the body,! denoted by f blocks in Fig.
6. The partial results generated by all copies of the fblock
have to be accumulated to produce the loop output. This

! Note that this analysis includes, as a special case, the situation
where no replication is done.

FIG. 6. Single result loop structure.

task is accomplished in two steps; first the partial results
are combined using a computation tree (consisting for
example, of plus (+), Max, or Min nodes) and then the
partial results of the various iterations are accumulated
using, for example, a Sum node. In summary, the loop
body consists of m replicas of the fblock and a computa-
tion tree which may be, for example, a summation tree as
shown in Fig. 6.

The input to the loop body in the DFG is a stream of
data elements with interarrival time ¢. For simplicity, we
assume, as was done in Section 3.1, that ¢ is a constant.
The delay associated with the result of the loop structure
depends on the original number of iterations, »n, the la-
tency of an f block, denoted by L(f), the interarrival
time, ¢, and the number of f block replications, m. The
lower bound on the delay of the single result loop struc-
ture is determined by the bandwidth of the inputs. The
goal of the fblock replications is to reduce the latency of
the loop structure and make it as close as possible to its
lower bound nz.

To produce the final result, the data must pass through
the f blocks and the summation tree. The latency of the
tree depends on the number of replications, m. We can
divide the summation tree into two subtrees, One is a
complete binary tree with [log m_levels and the second
is a partial tree. We can further divide the partial tree
into two subtrees. One is a complete tree with log
Lm — 2Uesm! |levels and the other is a partial tree. We may
continue this process until the partial tree is either a com-
plete tree or is empty.

The above subtrees have been introduced to take into
account the possible overlap between the subtrees’ com-
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putations. The latency of the summation tree (accounting
for the overlap) is given by the recursive formula

Lyum, reelm) = Max{LC(m), LP(m}} + 8(m)EX(+),

where LC(m) is the latency of the complete tree and is
given by

LC(m) = (2teem] — 1)t + EX(+)llog m,

LP(m) is the latency of the partial tree and is given by

0
LP(m) =
N_-_owain + H..E.i. __Emﬂs - N_r_omi._v
m = 0orm— 2teml=(
otherwise,
and

0 m = 2* (kis an integer)
&(m) = .
1 otherwise.

The latency of the body, as a function of the number of
replications, can be therefore estimated as

Libody, m) = A_‘Wé - _v P(body) + CL + Ly, red(m),

where n is the original number of iterations,
CL = L(f) + EX(S.Mod} + EX(Sum) + EX(F),

and P(body) is the pipeline period of the body determined
by Max{IP(body), mt}. IP(body) is the internal pipeline
period of the body. This can be either the execution time
of the longest operation in the body or the execution time
of a sequence of operations in the body when there is a
dependency between iterations, as is illustrated in Sec-
tion 4.

Theorem 1 gives the optimal number of f'block replica-
tions, denoted by m,,,, that minimize the latency of the
loop structure. Even if the number of replications is de-
termined at run time rather than compile time, the value
of m,, still allows us to calculate the minimum latency of
the loop structure.

THEOREM 1. The optimal number of f block replica-
tions necessary to achieve the minimum possible execu-
tion time of a single result loop structure is

( -:c@o&j
t
Mopr =4 I “

:.@&j

=
\n
T_u@&j 1 /\w N n_+ IP(body)
— 7 1 =3t V17 1+ EX(+) + IP(body)

t
1 1 n - IP(body) IP(body)
57t /\h t T EX(+) + IP(body) = ﬁlﬂ _ <n

otherwise,

where IP(body) is the internal pipeline period of the
body.

The proof can be found in the appendix.
Finally, the latency of the single result loop structure is

L(loop) = L(control) + L(body, m),

where L{control) denotes the latency of the control part
of the loop. The pipeline period of the single result loop is
the same as its latency.

3.3.2. Stream of results loop structures. Consider the
general loop structure shown in Fig. 4. The latency of the
first result is

L(first result) = L(body) + L{control)
and the pipeline period is equal to
Max{t, P(control), P(body)}.

where P(body) and P(control) are the pipeline period of
the loop structure body and the control part, respec-
tively. We wish to check whether replicating the body
can reduce the pipeline period of this structure.

When the pipeline period is determined by the interar-
rival time, ¢, or by P{control), we cannot achieve better
performance by replicating the loop body. On the other
hand, when the pipeline period of the stream of results
loop structure is determined by P(body), we can improve
the performance by replicating the body part. This way
we allow overlapping of consecutive computations within
the loop, producing new results at a rate higher than 1/
Plbody).

A stream of results loop structure with replicated body
part (shown as f block) is depicted in Fig. 7. For synchro-
nization purposes we use two nodes: Stream Modulo
(S.Mod) which synchronizes the stream of inputs and
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FIG. 7. Stream of results loop structure.

Stream Merge (S.Merge) which guarantees the proper
ordering of the results. The pipeline period of this struc-
ture is

Max{mt, EX(5.Mod), EX(S Merge), P(control), P(f)}
p» :

We must find the optimal number of f block replications,
M,pt, t0 achieve the best performance. If there are only a
few replications then the same f block will receive new
input data with interarrival time smaller than P(f). On
the other hand, if m is too large then the same fblock will
receive new input data at a very low rate resulting in idle
time periods. The smallest pipeline period that can be
achieved is

Max{t, P(control), EX(S.Merge)}.

Note that when a complete overlap is achieved, the pipe-
line period is independent of EX(S.Mod). The best m is
therefore

Max{P(f), EX(S.Mod)
Max{t, P(control), EX(S.Merge)} |’

SQ_E_ -

where m, = n.
4. NUMERICAL EXAMPLES

In this section we demonstrate the performance esti-
mation procedure through several examples. We start
with a simple nested if-then—else program. Figure 8
shows the program and its corresponding DFG generated
by our compiler. For the analysis of this example, we use
the execution times from [12]. The number marked on
each arc represents the accumulated worst case latency
at that point. As can be seen from the figure, the latency
of the complete DFG in the worst case is equal to 32

fa=1t
thenife=4d
then g+ (h + g) 32
else 7 + &
endif
else e* f
endif
FIG. 8. Nested if-then—else expression and its DFG representation.

clock cycles and the pipeline period is 11 clock cycles.
The above results correspond to the length of the critical
path and the longest operation (multiply) in the graph,
respectively.

In Figure 9 we compare the estimated values of the
average pipeline period of the example in Fig. 8 to the
simulation results obtained using the PARET [21] event
simulator, developed at AT&T Labs. The purpose of the
simulation is to evaluate the performance of a data driven
machine which operates under the ideal conditions as
outlined in Section 1 in order to verify the previously
presented analytical expressions.

Figure 9 shows the average pipeline period as a func-
tion of the probability of taking the Then path of the outer
if-then—else. The Then path in this example is the short
path. In Fig. 9a the probability to pass through the Then
path of the inner if-then-else is 0.2. We can see that as
the probability to pass through the outer Then path in-
creases, the average pipeline period approaches the aver-
age pipeline period of the Else path of the inner if-then-
else. In Fig. 9b, the probability to pass through the Then
path of the inner if-then—else structure is equal to 0.8
instead of 0.2. In this case, as the probability of passing
through the outer Then path increases, the average pipe-
line period decreases. This continues as long as there is a
complete overlap between the Else and Then branches of
the outer if-then-else. Further increase in the probability
of taking the outer Then path reduces the overlap and
results in an increase in the average pipeline period. As
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FIG. 9. Comparing the estimated pipeline period to simulation
results for the example in Fig. 8. {a) The probability to pass through the
Then path of the inner if—then—else is 0.2. (b) The probability to pass
through the Then path of the inner if-then—¢lse is 0.8.

can be seen from the figure, the estimated values are very
close to the simulation results. Therefore, the calculated
estimates are sufficiently accurate and lengthy simula-
tions can be avoided. In both cases the worst case pipe-
line period is 11 ¢clock cycles which is substantially higher
than the average case pipeline period.

If we allow node replications, we can reduce the pipe-
line period of the algorithm as was discussed before. By
replacing the multiply nodes in Fig. 8 with Multi-Node
structures consisting of four multiply nodes, the pipeline
period reduces to 3 clock cycies. The latency of the com-
plete DFG in the worst case will increase from 32 to 38
clock cycles while the pipeline period will decrease from
11 to 3 clock cycles. The average pipeline period in this
case will also equal 3 since this is the execution time of
the Cond node. The average and worst case pipeline peri-
ods will differ if a smaller number of node replications are
used. Figure 10 compares the average pipeline period
depicted in Fig. 9b to the average pipeline period when
the multiply node is replicated only twice. The worst case
pipeline period now decreases from 11 to 6 clock cycles
while the minimum average pipeline period is reduced
from 5 to 3.7 clock cycles. In summary, by replicating the
nodes with the highest execution time in a DFG, both

11 T T 7 T
10 F with node replications <~ -
oL without node replications —4— |
m - -
pipeline
ne g b -
period
m -
w -
4r /@o@\b\b\.o\b\w
3 1 1 1 ]
0 0.2 0.4 0.6 0.8 1
probability

FIG. 10. Comparing the estimated pipeline period for the example
in Fig. 8 with and without node replications {(the probability to pass
through the Then path of the inner if-then—else is 0.8).

worst case and average case pipeline periods of an algo-
rithm can dramatically improve.

As an example for a single result loop, we have chosen
an inner product algorithm, as shown in Fig. 11a. The
interarrival time between the inputs is equal to 1 time
unit. Figure 11b shows the latency of the loop as a func-
tion of the number of f body replications. In this figure we
compare the estimated latency, for an expected value of
i = 1000, to simulation results where n is uniformly dis-
tributed in the range [800, 1200]. We can see that as the
number of replications increases, the latency of the inner
product loop decreases. This continues until m reaches
the optimal number of f body replications necessary o
achieve the minimum possible latency, which is m,p, =
11. Further increase in m will not decrease the latency (in
some cases it may even slightly increase) and it is there-
fore not recommended. The minimum latency is L(body,
11) = 1030 which is very close to the lower bound nt =
1000,

Figure 11c¢ shows a graph of the cost-performance of
the loop as a function of m. The number of nodes in the
DFG has been chosen for evaluating the cost of the hard-
ware associated with the algorithm implementation. By
sharing hardware the number of functional units required
to execute the algorithm can be smaller than the total
number of operations and still achieve the best perfor-
mance. However, we can use the number of nodes in the
DFG representation: of the given algorithm as a first ap-
proximation for the overhead that is associated with the
algorithm implementation. Consequently, we have cho-
sen the product of the number of nodes in the DFG by the
latency as a cost-performance measure. The cost-perfor-
mance decreases sharply at low values of m while as we
reach m,,, (11 in this case) it decreases modestly; for m >
M., the cost increases with no gain in performance.
Therefore, in order to reduce the cost, one may choose a
value for m smaller than m,, in the region where the
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FIG. 11. Analyzing the performance of the inner product algorithm.
(a) Inner product algorithm. (b) The latency of the inner product loop.
(c) The cost-performance of the inner product loop.

improvement in the performance is not significant while
the cost growth is substantial.

Figure 12 shows a first-order impulse response filter
[10] as an example for a loop structure where the current
iteration depends on the previous iteration. Because of
the dependency between successive iterations, the pipe-
line period of the body is EX(*) + EX(+) + EX(Merge).
Replicating the body will not reduce this pipeline period
and the latency of the loop structure. In this example the
result of the first iteration is produced after 26 clock cy-
cles which is the accumulated execution time of the oper-
ations along the critical path. The second result, how-
ever, is produced 17 clock cycles later and not 11 which
is the execution time of the longest operation in the graph
(the muitiply operation). Here, the pipeline period of the
loop structure is determined by a sequence of operations
that cannot be overlapped, which includes the multiply,
add, and Merge nodes.

In the last example, we combine the nested if—then—
else structure from Fig. 8 with a loop structure as shown
in Fig. 13. Figure 14 depicts the optimal number of repli-

¥ = ba; — ay;y

FIG. 12. First-order impulse response filter.

cations as a function of the probability to pass through
the Then path of the outer if-then—else (denoted by p) in
Fig. 13. This is the number that minimizes the latency of
the loop structure, L(body, m). Figure 15 shows the cost-
performance product for the above algorithm when the
probability p is fixed at 0.4, Note that, unlike Fig. 11c, the
cost-performance here achieves its minimum at a value of
m lower than m,,,, specifically at m = 4 instead of m,,, =
7. This is a result of the high cost associated with replicat-
ing the f block.

Figure 16 shows the sensitivity of the latency to
changes in the probability p for a fixed value of m, say my.
To analyze this sensitivity we use the ratio of L(body,
my) to L(body, m,,). If my = 5, i.e., mg = myp for p =
0.55 (see Fig. 14), the latency is very sensitive to changes
in p. If, however, we assume that the estimated probabii-
ity to pass through the outer Then path is anywhere in the
range 0.55 — 0.2 = p = 0.55 + 0.2 then a value of my = 8
should be selected according to Fig. 14. As might be ex-
pected, the latency ratio for my = 8 is less sensitive to
changes in p. Consequently, the range for p rather than
its expected value should be taken into account when
selecting m,.

5. SUMMARY

Estimating the parallelism and pipelining of a given
algorithm is essential when porting of the application to &
parallel data driven machine is considered. A method for
analyzing the potential parallelism and pipelining was

sum:=0
for i == 1 to 1000
ifa="5
then if ¢ =
ﬁ_uau_ =g x| }_r + g[i])
else r = 3[i] +
endif
else r = efi] » f[i]
endif
sum:=sum-r
endfor

FIG. 13. A nested if-then—else in a loop structure.
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FIG. 14. The dependence of m,, on the probability to pass through
the Then path of the outer if-then-else in Fig. 13.

presented in this paper. The analysis of a given algorithm
is performed on its data flow graph representation since it
exhibits all the data dependencies in the algorithm that
limit the parallelism and/or pipelining. The performance
estimation is done automatically by the compiler while
producing the data flow graph. It has been demonstrated
that the estimated performance measures are very close
to the simulation results.

APPENDIX

Proof of Theorem 1. The latency of the body is

n

L(body, m) = QL - Q P(body)

m
+ CL + h»::&. __..‘mmmsu.

The interarrival time between consecutive items in the
input stream is . We have m f block replications and
therefore the interarrival time for any f block is mit. The
pipeline period of the body, given by P(body) = Max{IP
(body), mt}, becomes mf when m increases. Conse-
quently, L(body, m) can be rewritten as

MDQOG T T T T T T T
18000 A
Cost i ]
performance 16000 - el N
14000 |, & .
12000 P T S T W
1 2 3 4 5 6 7 8 9 10
Number of f body replications (m)
FIG. 15. Cost-performance of the algorithm in Fig. 13 when the

probability to pass through the outer Then path equals 0.4.
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FIG. 16. The ratioc of L{body, my)/L{body, m,,) versus the proba-
bility to pass through the Then path of the cuter if—then—else in Fig. 13,

r
n

QI; 1) - IPGody) + CL + Luum. ecm)

m
L(body, m) = ¢

A\l_“\ﬂll; mt — mt + CL + Lgm, QNQAEU

\
IP(body) > mt

IP(body) = mt.

We must prove that L{body, m) achieves ils minimum
when the pipeline period of the fblock equals the interar-
rival time for any fblock; i.e., mt = IP(body). L(body, m)
is monotonically decreasing with m as long as the de-
crease in latency due to the smaller number of iterations
(n/mD is larger than the increase in the latency of the
summation tree. Therefore, there is a value for m such
that until then L{body, m} is monotonically decreasing
with m and afterwards the decrease due to the smaller
number of iterations is not always larger than the in-
crease in the latency of the summation tree. As will be
shown next, this value is

(172 + V1/4 + n - IP(body)/(t + EX(+) + IP(body))),

denoted by m*. After this value the latency does not
necessarily change for every increase in the number of
replications. Therefore, m,,, will be chosen as the small-
est value of the number of replications that yields the
same number of iterations as [IP(body)/t1 which is

n

We assume that m,,, is a divisor of n. If this is not true
we can increase n to [ n/m,, Im,,,, without changing the
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latency of the loop structure. Consequently, throughout
the proof we will assume that m,, is a divisor of n.

We define the difference between the latency of two
loop structures with f block replications by AL(m, i)
where

AL(m, i) = L{body, i) — Libody, m).

AL veelm, i} denotes the difference between the laten-
cies of the corresponding summation trees.

We want to show that Vim # mgp, AL(Mep, m) = 0.
There are several cases that we need to check:

1. TIP(body)it] < m*:
(&) m > mgp

n

AL(my,, m) = Qﬂg SHI Ev IAEIS%H:

+ DM&:\:. :.mmﬁ.w:nﬁ: Sv

since nt <[ n/mmt < nt + mt, and ALy yreelMppr, M) =
(m — mgp)t.

AL(myp, m) = (nt — nt) — (m — mp )t
+ Dhani. ?mmm_:;_.qn: Sv

= 0.

(b} m < m,,: This case will be proved by induction
on the difference between L{body, m) and L(body, i),
where 1 =i < m and m = m,,. We want to prove that
AL(m, )= 0.
Base of induction. For i = 1

AL{im,m — 1) = Q}A — —MLU - IP(body)

+ Dha:i.mwnnmsu m — uv

In the worst case, the above summation tree latency dif-
ference is t+ + EX(+) (adding one replication and increas-
ing by one the height of the summation tree). Therefore,

AL(m,m — 1) = QEINL - Fv - IP(body)

m

-t — EX(+).

The right-hand side of the above inequality is greater than
or equal to zero when

Q%; - % ._Lv - IP(body) = t + EX(+).

m

This expression holds for

m =172 + V14 + n - IP(body)/t + EX{+) + IP(body))
= m*.

Hypothesis of induction. True for i = j,

AL(m, m — j) = QSFJA - —WL - 1P(body)

+ DH&.ESLE«AS. m |.~_v =0.

Induction step. i = j + 1:

n

ALim,m —j—1) = Q %; - Td . IP(body)

+ DHG:E. ?mmmwzu m |k. - C

The difference of the latencies betweenm — j — 1 and m
replications can be divided into the difference of the la-
tencies between m — j and m replications and the differ-
ence of the latencies between m — j — 1 and m — j
replications. In this case,

DHG:S. __wmmﬂsq m — .\ - mv = thti. :.mmﬁn;u m — L&
+ DHGE:. :.mmﬁs |.m.u m |.\. - mv

Therefore,

ALGn, m — j— 1)

n

A_\S JI .\/4 - ‘wllc - IP(body} + ALum. yelm, m — j)

m

(==l =[] oy

+ Dh.ﬁ:ﬁ. :.Q&AE |.~.u m |.~. - HVV
AL(m,m — j) + AL(m — j,m — j — I).

v

1}

AL(m, m — j) = 0 from the hypothesis. The second term
is greater than or equal to zero as proven in the base part.
2. [IP(body)/t] > m*:
(a) m > [IP(body)/t | = myp:

AL(myp, m) = _\Wg::. - mt - A:H: ) - _v
op;

) M&uﬁub&w\,v + ALgym, %nmﬁ:eah: nt)
and since [n/m Imt = nt and IP(body) > Mt

= Awu - EVH - A_a - Sovnvu + DHG_:_S. :.mmASPE_ sv

v

A._Sc? — mit + AL, see(Mopts m)

0.

v
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() [1P(body)/f] > m > mg,,:

AL m) = (| 2] -

m

n

Sﬁv - IP(body)

+ AL, tree(Mop, m) = 0.

In this case,

n 2
"
Tm.@w%v.‘

Mopr =

n

which is the smallest value of the number of replications
that yields the same number of iterations as [ IP(body)/f ],
Hence, for [IP(body) 1> m > my,,, [nim1=Tnimy, 1=
_:_.hw:oﬁa and AL, :«%E%: m) = 0, &
(c) m* <m < mgp,: Let k denote n/m,,, and let (k + 1)
denote the number of iterations needed when m is the
number of replications, and / = 1. 7.

12]-

+ DH.EE. :.mmﬁw.x_.&u: Ev

I NWAWQQ@Q + Dhm:ﬂ. ﬁﬂmmﬁsan_: 3@

n
Mopr

AL(Mpss 1) v - IP(body) 8

il

10.

In the worst case, the above summation tree latency 1

difference is (m -~ m,,)t + (log m — log m,,) (adding

(m,p: — m) replications and increasing the height of the |5
summation tree). Therefore,
AL )= - IP(body) + (2~ 7) ¢ -
Mopiy T} = oV T \k+1 %
n n
N P
n i A» +1 15.
= 1+ IP(body) = § * =y £ = log (<) EX(+).
IP(body) > my,t = (n/k)t and, therefore, 16.
AL(m,,,, m) = @ - Fv 1P(body) 17.
opb k+1
- log m|» * _v EX(+)=0 18,
k
since IP(body) = EX(+) and ( - Uk+D > ¥
log(tk + DY/kyfori = 1.
(d) m = m* < m,,: In this case AL(m,p, m) = 0 for
the same reason shown in case 1(b). W 20.
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