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Abstract 

Data-driven armys provide high levels of pamllelism and pipelining for algorithms with 
no internal regularity. Most of the methods previously developed for mapping algorithms 
onto pmessor armys assumed an unbounded army (i.e., one in which there will always be 
a suficient number of PES for the mapping). Implementing such an army is not pmctical. 
A more pmctical approach would be to assign the PES to chips and map the given algorithm 
onto the new army of chips. 

In this paper, we describe a way to directly map algorithms onto a multiple-chip data- 
driven army, where each chip contains a limited number of processing elements. There are 
two optimization steps in our mapping. The first i s  to produce an eficient mapping by  
minimizing the area (i.e., the number of PES used) as well as optimizing the performance 
(pipeline period and latency) for the given algorithm, or finding a trade-off between area 
and performance. The second i s  to divide the unbounded army among seveml chips each 
containing a bounded number of PES. 

1: Introduction 

Computationally demanding problems which do not exhibit high regularity are unsuit- 
able for systolic and wavefront arrays [l]. The data-flow mode of computation seems to 
be an appropriate approach to follow for this type of problem. We therefore adopt the 
approach proposed in [4] (and used also in [9] and [8]), where the algorithm is first rep- 
resented in the form of a data flow graph and then mapped onto a data-driven processor 
array. The processors in this array execute the operations included in the corresponding 
nodes (or subsets of nodes) of the data-flow graph, while regular interconnections of these 
elements serve as edges of the graph. A dabdriven processor array is a programmable and 
homogeneous array which is composed of a mesh of identical processing elements (PES). 
The hexagonal topology of the array, shown in this paper, serves only as an example of a 
regular structure. 

A data-driven PE is capable of performing arithmetic, logical, routing and synchro- 
nization operations, and can contain more than one operation. In particular, the routing 
operations can be performed in parallel to the arithmetic and logic operations. In this 
way, data passing through a PE is not blocked by internal computations. However, the 
remaining operations assigned to the same PE are executed sequentially according to the 
arrival of their operands. 

A method for mapping a given algorithm onto a data-driven array to achieve a better 
performance was presented in [7]. This mapping involves assigning every node of the data 
flow graph (DFG) to an element in a data-driven processor array. Figure 2 shows a mapping 

0-8186-3492-8/93 $3.00 0 1993 IEEE 41 

http://bilhaOvnet.ibm.com
http://korenQeuler.ecs.umass.edu


42 International Conference on Application-Specific Array Processors 

A 8 

Figure 2. The mapping of the graph in Fig- 
ure 1 onto a hexagonally connected array. Figure 1. A data flow graph. 

of the graph in Figure 1 onto a hexagonally connected array. Note that the use of the data- 
flow graph identifies the implicit parallelism of the computation as described in [4]. There 
are two optimization steps in this mapping. The first is to produce an efficient mapping by 
minimizing the area (i.e., the number of PES used) as well as optimizing the performance 
(pipeline period and latency) for the given algorithm, or finding a trade-off between area 
and performance. The second is to divide the unbounded array among several chips each 
containing a bounded number of PES. 

Most of the methods previously developed for mapping algorithms onto processor arrays 
assumed an unbounded array (i.e., one in which there will always be a sufficient number 
of PES for the mapping). Implementing such an array is not practical because of the 
unbounded number of PES it contains. A more practical approach would be to assign the 
PES to chips and map the given algorithm onto the new array of chips. 

Most designs of very large regular arrays (such as systolic and gate arrays) do not deal 
with the question of how the elements of the array should be divided into individual chips. 
There are two main approaches to solving this problem. The first is to enlarge the capacity 
of a chip, which means designing a large piece of silicon that will contain the original design 
in one piece (i.e., wafer scale integration [l]). This approach is expensive and necessitates a 
fault tolerant implementation due to defects from which this technology suffers. A different 
approach, and the one most commonly used, is to divide the large array into a number 
of clusters. The restrictions of the available technology (i.e., number of transistors and 
number of pins) can then satisfied. A commonly used algorithm for this problem is the 
min-cut algorithm [5. 3, 21 which divides a graph into clusters with a minimum number of 
connections between them, while preserving the limit on the number of nodes that every 
cluster can contain. 
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This paper addresses the problem of how to  map the given algorithm onto a multiple-chip 
data-driven array. Section 2 briefly describes the use of the simulated annealing for mapping 
DFGs. Section 3 discusses the arrangement of the chip. Section 4 describes the proposed 
algorithm and several examples illustrating this algorithm are presented. Conclusions and 
future research are presented in the last section. 

2: Simulated Annealing and the Mapping Problem 

Simulated annealing is a powerful algorithm for solving combinatorial optimization prob- 
lems [6] .  If the given problem has a regular structure, it is likely that a good heuristic 
algorithm, which can take advantage of the problem’s structure, will yield better results. 
On the other hand, when there is no such structure it is better to use some variant of the 
simulated annealing algorithm. 

As was shown in [7], the mapping algorithm for data-driven arrays falls into the last 
category. Hence, we choose this method in order t o  find a good mapping. To use the 
simulated annealing algorithm for the mapping process, we have to  define some basic pa- 
rameters. These include the initial configuration, acceptable moves and the cost function. 
The initial configuration is some feasible mapping where every DFG node is assigned to a 
P E  (the simple mapping procedure presented in [4] can be used to generate such an initial 
configuration). 

Acceptable moves that change a configuration are: 
moving a node from one PE to another. 
exchanging nodes between PES. 

The first move allows the nodes to move from one P E  to another PE which has not used all 
its capacity, while the purpose of the second move is to  allow reassignment of nodes even 
for PES that ha.ve used all of their capacity. 

For several applications there is a need for area minimization or performance maximiza- 
tion. But in most of the applications, there is a need to  combine these two. Therefore, 
three criteria for evaluating a mapping were suggested in [7]: 

Area - number of PES utilized by the mapped DFG 
Pipeline period - mean time between successive results 
Latency - time elapsed from entering the input operands until the output is produced 
A good mapping is one that optimizes all three criteria according to  the weight coefficients 
that are supplied to  the simulated annealing algorithm. The cost function, which is used 
to evaluate the new configuration, is given by 

X,A + X,P + XiL 

where A is the area (number of PES) being used, P is the estimated pipeline period. L is 
the estimated latency and X,’s are weight coefficients (CXj = 1, i = a , p , l ) .  

3: Chip Description 

We must now figure out how to  divide the data-driven PES into chips in order to imple- 
ment the proposed hexagonal array. There are several parameters that need to be considered 
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in order to determine the number of PES that can be packaged into a single chip, such as 
the number of transistors a chip can contain and the number of pins it can have. The 
amount of transistors that can be included in a single chip has increased dramatically in 
the last few years (chips with 2 to  3 million transistors are currently being designed). On 
the other hand, the number of pins a chip can have is a more restrictive limit. Currently. 
the limit on the number of pins is around several hundred pins per chip. Figure 3 shows 
three suggestions for chip arrangement (i.e., number of PES in a single chip). Figure 3(a), 
Figure 3(b) and Figure 3(c) illustrate the packaging of 3, 4 and 6 PES on a single chip, 
respectively. The PES are connected to  their neighbors through double links like those in 
the homogeneous array regardless of whether they are inter-chip or intra-chip links. 

The number of pins of a chip containing n PES can be computed according to the following 
recursive equation: 

pm(1) = p o n e  

P,n(n) = P;n(n - 1) + (Pone  - 2 * E .  IN) 

where n is the number of PES in the chip, Pi, is the number of edges of a PE, E is the 
number of edges connected to  a neighbor and IN is the number of inner neighbors of the 
PE that was added. Note that the number of the edges that must be deducted is twice the 
number of edges connected to  the neighbors since they are removed from both PES. 

The ratio of the number of pins to the number of PES in a chip must be examined 
in order to  select a suitable packaging. Figure 4 shows this ratio as a function of the 
number of PES accommodated in a single chip. From this figure we can see that the ratio 
decreases rapidly for small numbers of PES. Therefore, packaging less than four PES in a 
single chip is not recommended. The number of pins that a chip can have is limited and 
it should be considered. We assume that several hundred pins on a chip will be available 
in the near future. Six PES that comprise a single chip require 36.16 = 576 pins for data 
communication. 

We have seen that the number of connections outside the chip is the major limit for our 
proposed multiple-chip array. We can increase the number of PES that are packaged in 
the same chip by limiting their degree of communication outside the chip. PES that are 
facing the chip sides will not have their full degree of connectivity. Figure 5 demonstrates a 
suggestion for such a chip. The solid lines and dashed lines represent intra-chip and inter- 
chip communication lines, respectively. We can see that the PES that are on the rectangular 
edge have a limited number of links for communication outside the chip. In this design we 
have chosen to limit the number of pins to 38.16 = 608. 

Note that the connectivity between neighboring PES inside the chip can be increased by 
adding registers and links for routing data from one PE to another PE. These additional 
links may reduce the number of long routing links between the nodes of the DFG. The 
additional internal links may also release some links that are connected to  the edge of the 

In this design we have conserved the structure of the array. However, there is a difference 
in the communication delay associated with each link. After being divided into chips, the 
data-driven array changed from a homogeneous array to  a non-homogeneous one. The next 
section will explain how the same simulated annealing algorithm used for homogeneous 
arrays can be modified for this new multiple-chip data-driven array. 

chip. 
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Figure 3. Chip arrangements: (a) 3 PES in a chip (b) 4 PES in a chip (c) 6 PES in a 
chip. 
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Figure 4. Ratio of number of pins to the number of PES in a single chip. 

Figure 5. A chip with a limited degree of inter-chip communication. 
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4: Mapping onto Multiple-Chip Data-Driven Arrays 

By dividing the identical PES into chips the data-driven array becomes non-homogeneous. 
Therefore, the method for mapping algorithms onto homogeneous data-flow arrays must 
be modified. The intuitive solution to  the problem of mapping onto multiple-chip data- 
driven arrays is to divide the mapping into two steps, first mapping the algorithm onto 
the homogeneous array, and only then trying to minimize the number of chips used. In 
this process, two different heuristic algorithms need to  be developed. one for mapping onto 
the homogeneous array, and the other for slicing it into groups of PES t o  accommodate 
the proposed chip. Because of the increase in the inter-chip communication delay, several 
disadvantages arise. The first mapping tries to maximize the performance assuming a 
homogeneous array [i.e., there is a uniform delay on the links among the neighboring PES). 
By slicing the array and dividing it into individual chips, the number of routing edges and 
their delays are increased and thus, the execution time of the mapped algorithm increases. 
Our solution is to combine the two steps and modify the simulated annealing algorithm for 
mapping algorithms onto multiple-chip data-driven arrays. In what follows, we present the 
modifications needed in the mapping algorithm. 

When applying the modified mapping algorithm, the basic structure of the array is 
preserved, changing only the links of the PES that are on the boundaries. The array links 
are no longer identical. In a multiple-chip data-driven array there are three types of edges: 
on-chip edges. which connect PES on the same chip, inter-chip edges, which connect PES in 
different chips, and disconnected edges, which have only one P E  connected to  them. We will 
assign a weight to each edge of the data-driven array to reflect the associated communication 
cost. There is a substantial difference between on-chip communication speed and inter-chip 
communication speed. Hence, the ratio between the weights assigned to  on-chip edges and 
inter-chip edges should be determined by the ratio between speeds of on-chip and inter-chip 
communication. A value of 00 is assigned to disconnected edges. 

The simulated annealing algorithm presented in [7] assumes a single type of link and 
the delay on the links has therefore been neglected. In our case, there is a need to update 
the simulated annealing cost function in order to  take these different types of links into 
account. The nodes that are assigned to the same PE are executed sequentially and affect 
the pipeline period. In data-driven computation, a node cannot be operated until all its 
outputs have been consumed. Since not all the output links have equal communication 
delays, the pipeline period becomes 

where N is the number of nodes in the DFG of the given algorithm, M is the number of 
PES utilized in the mapping, D, is the largest delay of the output from node,, and n, is 
the number of nodes that were assigned to the same PE. 

We also modified the calculation of the latency to  include the additional delay which 
affects it. We differentiate between routing and data manipulation inside the chip and 
outside it and add the time it takes for the data to move from one PE to its neighbor. We 
will demonstrate the modification in the simulated annealing mapping algorithm through 
examples with chips containing six PES. 

When integrating several PES on a single chip, the communication speed (between neigh- 
boring PES) can increase by a factor of four. The communication delay on the links between 
neighboring PES inside the chip is one clock cycle, and the delay outside the chip is four 
times larger than that. 
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Figure 6. Mapping using the modified simulated annealing process. 

Figure 6 shows the result of mapping the DFG in Figure 1 after performing the modified 
simulated annealing process. In this example the goal was to minimize the area as well 
as the pipeline period. In this mapping the number of PES decreased by 43.33% from the 
initial mapping, which is a substantial improvement over the initial configuration and the 
pipeline period is the best that can be achieved. We can see that two chips are needed for 
this mapping. 

In order to analyze the efficiency of our method, we need to see what additional over- 
head was introduced by the modifications we made in the cost function of the simulated 
annealing. Figure 7 compares the average number of iterations needed by the simulated 
annealing to obtain a mapping of the algorithm in Figure 1. We can see that the modifica- 
tions we added to the cost function had actually decreased the number of iterations. The 
reason is that since the array is no longer homogeneous, the required search time to find 
the minimum pipeline period is reduced. 

Figure 8 describes the average area, pipeline period and latency achieved when mapping 
the example in Figure 1 onto a homogeneous data-driven array. Figure 8 illustrates the same 
parameters when mapping the same example onto the multiple-chip data-driven array. We 
used simulated annealing with almost equal weight coefficients ((Aa, A,, A,) = (0.4,0.3,0.3)), 
and with (A,,, A,, Ai) = (0.5,0.5,0) as a function of the cooling rate. 

We can observe that for a cooling rate of 0.95 (which was recommended in [7]) the 
same number of PES is used. The performance improves as the cooling rate increases and 
therefore, the cooling rate of 0.95 is also recommended here. The difference between the 
pipeline period and latency data in the two figures is due to the fact that links weights are 
introduced in the multiple-chip array. However, the same behavior can be seen in both cases. 
An interesting phenomenon can be seen in the latency graphs. In the unbounded array, if 
area minimization was of interest, the latency did not decrease as the area decreased. In 
the multiple-chip array cases, there is a correlation between the area and the latency. 
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Figure 7. Average number of iterations needed by the simulated annealing to obtain 
a mapping of the algorithm in Figure 1 for the unbounded array and the multiple-chip 
data-driven array (for two sets of values for (Aa, A,, A,) ). 

In order to illustrate the mapping method for the multiple-chip data-driven array with 
limited chip connectivity, we reduced the inter-chip communication capacity of the array 
shown in Figure 3(c)  to  a single link (instead of a double link) for the inter-chip communica- 
tion, as shown in Figure 9. There is no significant difference in the area and performance of 
the first example when mapped either onto the unbounded array or onto the multiple-chip 
array, due to  its size. We have also applied the simulated annealing algorithm to the second 
example in [7] (shown in Figure 10). Figure 11 demonstrates a mapping of the example 
shown in Figure 10 onto the chip array shown in Figure 9. The average number of chips 
this example needs increased from 6.1 chips on the multi-chip array shown in Figure 3(c) 
to 8.7 on the limited one shown in Figure 9. 

5: Conclusions 

A method for mapping algorithms onto multiple-chip data-driven arrays has been pre- 
sented. This is achieved by assigning weights to  the data-driven array connections. The 
method can be used on arrays that limit their out-degree and therefore remain homoge- 
neous in regard to  their topology, but have different delays on the links. It can also be 
applied when the number of outgoing links of PES at the chip boundary is reduced. 
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Figure 8. Average area and performance achieved when mapping the example in 
Figure 1 onto a homogeneous unbounded array and multiple-chip data-driven array. 
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Figure 9. Chip arrangement of 6 PES in a chip with reduced connectivity. 

Figure 10. Nested if-thenelse expression and its DFG representation. 
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- -  

Figure 11. Mapping of the example in Figure 10 onto the reduced connectivity chip 
array. 
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