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Abstract—Most mechanisms in current superscalar processors
use instruction granularity information for speculation, such
as branch predictors or prefetchers. However, many of these
characteristics can be obtained at the basic block level, increasing
the amount of code that can be covered while requiring less
space to store the data. Furthermore, the code can be profiled
more accurately and provide a higher variety of information by
analyzing different instruction types inside a block. Because of
these advantages, block-level analysis can provide more oppor-
tunities for mechanisms that use this information. For example,
it is possible to integrate information of branch prediction and
memory accesses to provide precise information for speculative
mechanisms, increasing accuracy and performance.

We propose BLAP, an online mechanism that profiles bot-
tlenecks on the micro-architectural level, such as delinquent
memory loads, hard-to-predict branches and contention for
functional units. BLAP works on the basic block level, providing
information that can be used to optimize these bottlenecks. A
prefetch dropping mechanism and a memory controller policy
were created to use the profiled information provided by BLAP.
Together, these mechanisms are able to improve performance by
up to 17.39% (3.9% on average). Our technique showed average
gains of 13.14% when evaluated with higher memory pressure
due to higher prefetch aggressivity.

I. INTRODUCTION

Characterization of basic blocks is an important, recur-
ring technique, used for automatic optimization of several
kinds. Software tools such as Vtune [1] allow manual anal-
ysis to detect performance improvement opportunities, such
as rewriting code to avoid high cache miss rates or high
branch misprediction rates for specific basic blocks, known as
hotspots. The basic block granularity is especially useful [2]
as basic blocks represent portions of code that always end
with conditional or unconditional branch instructions. Thus, a
program’s execution path is defined by basic block execution
sequence due to these branches, which enables a general
program phase characterization and dynamic optimization. A
recent example is the work of Kambadur et al. [3], which uses
basic blocks to characterize the thread-level parallelism of an
application in its different phases.

General purpose processor designs [4] only collect infor-
mation on the instruction level. Although several research
papers used basic block analysis, most did so using a software
approach, even for hardware adaptations [5], [6]. One of the
few techniques that actually performed basic block analysis on
hardware level was the rePlay framework [7]. It analyses the
code to perform on-line code optimization which is stored in

a trace cache for future use, although no bottleneck profiling
is performed.

Block profiling is usually done in software due to the
high complexity of detailed profiling and analysis available.
Nevertheless, profiling in hardware is interesting as it can
leverage current hardware state information to efficiently gen-
erate relevant information of a program’s execution, requiring
no pre-analysis or source code modification.

In this paper, we propose a Block-Level Architecture
Profiler (BLAP). It characterizes basic blocks according to
the most relevant delays occurring per block, thus allowing
improvement of a block’s future executions. BLAP has several
advantages over other mechanisms. It automatically adapts to
program phase changes, as it dynamically keeps track of basic
blocks. It requires less storage than instruction-granularity
mechanisms, as we aggregate the behavior per block. We are
able to use the Branch Target Buffer (BTB) to efficiently
store this information, as it retains the initial address of each
block. BLAP is also capable of detecting different types of
performance issues within a block, thus being able to provide
information to a wide range of mechanisms.

In order to show the potential of BLAP, we explored
the use of its profiling information to design an improved
memory controller. Compared with the instruction-granularity
information used by Ghose et al. [8] and Lee et al. [9], our
mechanism’s profile provided better execution performance
with scalable hardware overhead. Moreover, BLAP’s basic im-
plementation can be extended to provide detailed information
regarding a wide range of bottlenecks at efficient hardware
costs. To the best of our knowledge, no previous research has
profiled basic blocks in hardware. Moreover, we present an
integration between BLAP and other mechanisms, in order
to show the relevance of the profiled information. The main
contributions of this paper are the following:

Characterization Mechanism: We propose BLAP, an efficient
detection mechanism capable of characterizing applications on
the basic block level during their execution.
Low Overhead Profile: Our mechanism requires negligible
storage to keep information about the relevant characteristics
for each basic block. Such a mechanism can be implemented
by extending the BTB with a few extra bits per entry.
Performance Improvement: We integrated BLAP with mech-
anisms that improve memory performance, by adapting them
to use the profile information or by creating a new mechanism
that used their concept based on BLAP.



The final objective of this work is to propose and study a
hardware mechanism, capable of detecting the blocks which
build a program and characterizing their behavior. Such char-
acterization must make it possible to improve the performance
through its usage by other mechanisms, such as prefetchers or
priority policies.

II. MOTIVATION

In this section, we will explore the relationship between
blocks and performance. We actually use a relaxed definition
of a basic block [10], [2], [11]. A basic block is a portion of
code with a single point of entry and a single point of exit.
Thus, every basic block ends with a branch instruction, either a
conditional or unconditional branch. This enables mechanisms
based on basic blocks to keep up with the program phase
automatically, as a program’s phase is characterized by the
blocks being used [6]. Our definition allows for multiple entry
points, as it is not possible to efficiently detect the beginning
of a block which was not targeted by a branch.

A design issue to be considered when extending the BTB
is that it only records information for blocks that begin after a
taken branch. Given that the behavior to be exploited is usually
repetitive, this is normally not a problem, as code layout
of loops will likely make repetitive blocks begin after taken
branches. Another issue is that we cannot recognize branch
targets unless their respective branch occurred. This breaks the
definition of basic block, as we will likely record blocks with
overlapping information. These blocks will aggregate behavior
from all the instructions in the few, smaller real basic blocks in-
side them, and thus will not be characterized separately. But the
smaller basic blocks will be correctly characterized once they
are branched to, thus obtaining their correct starting address.
As in most cases smaller blocks represent conditions inside
loops, they will be executed enough times to be characterized.
If they do not, then they are likely not relevant.

To demonstrate the behavior that can be observed for our
relaxed block definition and its correlation with performance,
we statistically correlated execution events (such as branch
mispredictions) to performance, using the Pearson Moment-
Product Correlation Coefficient. This is a generalization of the
linear regression model, and it is used to observe how closely
two different sets of data correlate. The resulting coefficient
lies between −1 and 1. The higher the absolute value the
stronger is the correlation between the parameters. If the
coefficient is negative, the parameters are inversely correlated
(e.g. the value of the parameters influence each other, but
when one increases, the other decreases). If it is positive, they
are correlated, both values increase or decrease together. The
closer to 0, the smaller is the correlation between parameters.

The details of the configuration and benchmarks used can
be found in Section V. To calculate the correlation, we gen-
erated a trace of the execution. This trace contained the most
important processor events relevant for execution performance:
L1 data cache misses, L2 cache misses, Last-Level Cache
(LLC) misses, branch mispredictions, and amount of floating
point arithmetic-logic instructions and division instructions.
Whenever a basic block finished executing, we recorded the
amount of instructions the block contained, and how many
cycles it took to execute, in order to measure its perfor-
mance. We then recorded how many of the events happened

TABLE I. PEARSON MOMENT-PRODUCT CORRELATION COEFFICIENTS
OF ABSOLUTE STATISTICS PER BLOCK AND PERFORMANCE IN IPC.

Benchmark L1D
Misses

L2
Misses

LLC
Misses

Branch
Mispred.

FP ALU
Inst.

FP DIV
Inst.

N
A

S-
N

PB

BT -0.28 -0.34 -0.39 -0.01 -0.14 -0.15
CG -0.63 -0.44 -0.48 0.00 0.13 0.13
FT -0.51 -0.31 -0.25 -0.05 0.04 0.05
IS -0.18 -0.16 -0.16 -0.01 -0.00 0.00
LU 0.04 0.02 -0.14 0.01 0.11 0.10
MG -0.34 -0.28 -0.28 -0.02 0.06 -0.23
SP -0.40 -0.36 -0.31 -0.05 -0.27 -0.34

SP
E

C
-O

M
P

20
01 Applu -0.45 -0.45 -0.39 -0.01 0.26 0.00

Apsi -0.13 -0.14 -0.14 0.01 -0.27 -0.26
Fma3d -0.27 -0.33 -0.33 -0.03 -0.00 0.12
Galgel -0.18 -0.21 -0.08 -0.01 0.21 0.25
Mgrid -0.30 -0.29 -0.28 -0.01 -0.49 -0.45
Swim -0.69 -0.60 -0.59 -0.01 -0.40 -0.32
Wupwise -0.58 -0.50 -0.47 -0.00 0.01 -0.06

for that block. For each parallel application from NAS-NPB
and SPEC-OMP2001 suites, each correlation coefficient was
calculated considering blocks from all the threads together.

The correlation results can be seen in Table I. In bold, the
highest correlation coefficients for each benchmark. Looking
at the cache misses correlation coefficients, we can observe a
diminishing correlation as we go from faster to slower, larger
caches. Although a miss in the LLC means a main memory
access, which is likely to make the processor stall, the number
of accesses the LLC receives is small, because most accesses
are filtered by high level caches. Therefore, although a LLC
miss has a great impact on the final performance, it happens
much less frequently than L1 and L2 misses, in such a way
that it does not correlate highly to performance differences
between blocks.

Although a misprediction in a 15-stage pipeline will result
in flush latency and lack of instructions, the other instruction
types correlation seem to render the branch instruction correla-
tion useless. This low correlation coefficient is because the low
branch misprediction rate of less than 1% in the benchmarks.
Floating points instructions per block correlate well on a few
benchmarks. We can observe that for Apsi and Mgrid, floating
point ALU instruction count is the statistic that correlates the
most with degraded performance.

Following this analysis, we seek to improve the memory ac-
cess bottleneck. However, obtaining detailed hardware counter
statistics per block during execution is a complex matter. As we
aim to aggregate behavior and singularly identify blocks, for a
reduced storage, using statistics gives us three challenges. First,
a statistic must show a direct impact on the performance. While
cache misses are intuitively correct in expressing delinquent
loads [5], current architectures are usually tolerant to L1D
misses due to high Instruction Level Parallelism (ILP), which
provides enough computation to overlap the cache access
latency. That is, for most cases, L1D misses do not stall the
processor.

Second, different hardware events cannot be directly com-
pared. When a L1D miss occurs, we know that it will take
at least L1D access time plus L2 access time for a request to
be serviced, but we do not know the state of the Miss-Status
Handling Registers (MSHR) of each cache, or even if the cache
line will be serviced in L2. Even such a large latency could be
hidden in the presence of a branch misprediction. If we want
to find what was the most relevant bottleneck in a block, we



cannot compare such a value directly to the delay generated
by a floating point division unit, as we do not know whether
there is any instruction that actually depends on the unit result,
or if it is actually going to stall the commit stage.

Third, hardware counters cannot be used directly to profile
the block. As blocks of instruction are committed, we do not
know which statistics belong to which block. As an example, if
instructions from a block have executed and are ready to com-
mit, we gathered all its statistics, and once the last instruction
from the block commits, we should reset the counters to gather
statistics for the next block. However, instructions from the
next block making accesses to the data cache or committing
floating point instructions might be altering these statistics,
preventing us to accurately evaluate a block.

To overcome these challenges, we exploit the commit stage.
Instructions only cause bottlenecks or delay the pipeline if
eventually this leads to the commit stage being blocked. So, in
order to compare instruction delays, we only look at how many
cycles each instruction stalled the commit stage. This technique
will obtain information that directly impacts performance (first
issue), since we are looking the commit stage stalls. We can
directly compare commit stall between instructions, since they
are measured in terms of cycles (second issue). Finally, as we
do not use hardware counters, the statistics are not skewed
(third issue).

In summary, a potential hardware mechanism that identifies
the bottlenecks using the commit stage stalls has new relevant
applications and requirements. It must be able to meaningfully
characterize blocks, requiring small logic overhead. This is
possible by recording the stall of the instructions at the head
of the Reorder Buffer (ROB), and detecting branch instructions
to observe block boundaries. It is also required to effectively
storage this profile. Therefore, the information for each block
should be kept to a minimum. Additionally, the size of the in-
formation has an impact as we need to communicate the profile
to different mechanisms. Finally, the mechanism should be able
to provide varied characterization, so multiple mechanisms
can use the profile provided. Accordingly to the correlation
results, we chose to record the following characteristics: None
to denote that the block presents no problems, Brch to denote
hard-to-predict branches, Mem to denote commit stalls due to
loads and FP to denote commit stalls due to any floating point
unit.

III. RELATED WORK

Sherwood et al. [12] is the precursor to SimPoints [13] and
other works, such as Pinpoints [14]. The authors characterize
the behavior of entire programs based on the analysis of
basic block execution distribution. The concept of Basic Block
Vector (BBV) is first introduced to characterize a program.
A basic block vector is a simple vector containing execution
count for all basic blocks, normalized by the total amount of
executions. Therefore, the vector gives the execution frequency
of each basic block in relation to the entire program. This way
the authors are able to compare the behavior for executions of
different sizes, for different inputs. Next, a BBV comparison
method is created, by treating each BBV as a fingerprint of the
program slice observed. To generate this difference, a BBV is
subtracted from another, and all absolute values are summed,

generating a value between zero and two. Zero means the
BBVs are identical, as there was no difference between their
fingerprints, while two means the BBVs don’t execute any
block in common.

With this comparison, the authors show a variety of features
of their implementation. They are able to identify the different
phases of a program, such as the initialization phase of a
program, due to the great difference between the BBV obtained
for the first 100 million instructions and the BBV of the entire
program. With the BBV of the entire program, they are also
able to identify or create BBVs that have a near-identical
fingerprint, but with a much smaller amount of instructions.
They show that the behavior of selected program slices with
near-identical BBV are similar, with statistics pertaining cache
misses, branch mispredictions and overall type of instructions
executed differing at maximum by 3%. This was further
improved on SimPoints, and Pinpoints is basically a tool to use
Pin [15], an instrumentation tool from Intel, to build simulation
points based on this technique. The importance of these
techniques for our work is that our methodology uses Pinpoints
to simulate programs in a reasonable time. Sherwoord’s work
also shows that by improving only the performance of the
repetitive blocks that define the entire program behavior, we
can achieve overall improved performance.

The rePLay framework [7] has a similar concept to our
work. In this work, the authors use an extended definition of a
trace called a frame. A frame aggregates several basic blocks,
as it ignores unconditional branches, and promotes easy to pre-
dict branches into assertions [16]. They also provide a scheme
to replay a frame in case an assertion fires, which signals a
misprediction. This way, they achieve a coarse granularity,
enabling compiler-like code optimizations during execution,
and alongside the rollback mechanism, the opportunity for very
aggressive speculative techniques, such as value prediction
and value reuse [17]. Although the framework is proposed,
it is not explored in the paper. Frames intuitively have few
opportunities for value reuse and value prediction, as they are
coarse enough to capture several executions of loops, and seem
to represent distinct phases of data progression in programs.
The authors only show manual optimizations in single frame
examples, and do not show any mechanism that can make
automatic online optimizations using the frames collected.
Currently, improving performance of the code itself is hard, as
compiler technology is quite evolved. Because of this work,
we changed our approach to try and characterize our fine-
granularity blocks in a simple, so we can better inform other
mechanisms, instead of aiming to provide complex analysis.

The recent work of Kambadur et al [3] also uses a
simple profiling method they develop called Parallel Basic
Block Vectors. It can be seen as an extension of Sherwood’s
work, as now each entry in the vector contains n slots, each
representing a degree of parallelism. When a basic block is
executed, the number of parallel threads is observed and used
as index to increment the appropriate part of the entry. This
allows the authors to identify which basic blocks execute with
which frequency at which parallelism levels, clearly identifying
sequential and parallel code blocks. They also identify the
most critical regions of code in terms of performance, which
one would hope to be executed at high thread counts. Several
scenarios are then illustrated, showing where this analysis can



be applied, such as in serial and parallel application partitions,
or analysis of program features by degree of parallelism and
parallelism hotspot.

The Criticality Binary Prediction (CBP) mechanism was
actually the base for our mechanism. It observes how many
cycles each load instruction stalls the commit stage and gives
priority to the loads that do. As it only keeps track of the loads,
it uses a small 64 bits tagless SRAM table per core, which is
reset every 100000 cycles to adapt to program phase. It then
gives priority to the loads found in the table. The actual paper
explores more options, such as storing the number of stalled
cycles for more complex policies, but overall using only 1 bit
per table entry and for all structures proved to be the best trade-
off, which is used in this paper. Our idea is a generalization
of [8], used in a novelty way.

Following the work of rePlay and Ghose et al. [8], we take
a new direction, by using the behavior detected to improve
on existing hardware mechanisms that need to detect phase
changes and bottlenecks online, namely Ghose’s criticality
binary prediction and Lee et al. [9] prefetch-aware DRAM
controller. We intend to implement these works with our basic
block framework, aiming to improve their performance or
adapt them in a radically new way.

IV. BLOCK LEVEL ARCHITECTURAL PROFILER

In this Section, we present the detailed implementation of
Block-Level Architecture Profiler (BLAP) in hardware. We
divide the implementation in three parts: Behavior Detec-
tion, Behavior Labeling and Behavior Storage. Afterwards,
we explain potential critical path implications and how they
were avoided. We then provide the hardware overhead cost
calculation for these three stages and additional optimizations
to improve profile information.

A. Behavior Detection

With an in-order commit stage, instructions that take long
to commit may stall the whole processor, according to the
latency and the ILP of the application. We consider that the
instructions which stall the commit stage the longer in a block
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Fig. 1. BLAP implementation abstraction in a superscalar processor.
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Fig. 2. Flow chart of commit stage modifications.

are the instructions that characterize a block’s performance
issues. We propose BLAP, which modifies the commit stage
to obtain profile information on basic block level. Figure 1
shows an abstraction of the BLAP implementation inside an
Out-of-Order (OoO) processor.

In Figure 2, we show a flowchart of the commit stage
in a superscalar processor with the additional events needed
to implement our detection mechanism. Notice that BLAP
implementation requires an in-order commit stage, which is
widely used in current commercial processors.

In the commit stage, we must check whether the older
instruction is ready to commit 1 . Whenever an instruction
stalls the commit, counter Stall Counter is incremented 2 . In
the case the instruction is ready to be committed, we must
check if it is a branch 3 , as branches indicate the end of
blocks. If it is not a branch, we must also check whether it is
the first instruction being committed in that cycle, as we only
need the instructions which stalled the commit 4 . If it is not
the first instruction being committed and it is not a branch,
no action is necessary, as the instruction has not blocked the
stage nor is it a branch. However, if this is the first instruction,
we must compare it’s accumulated stall time to the previous
largest stall time of the current block 5 . If the stall is larger,
we update the register keeping track of the bottleneck with
the current instruction type 6 and reset the stall counter 11 .
Otherwise, we skip the update and reset the stall counter at 11 .

If the instruction is a branch, we must store the block
information. First, we check whether the branch was correctly



predicted 7 . As branch instructions do not stall the commit
stage, the only way to characterize a block as branch is to
directly access it’s accuracy information. If the branch is not
correctly predicted, we change the block’s bottleneck type to
Brch 8 . We then store the bottleneck type in the storage
used, using the value of the Block_Address register as index
(the address of the branch that started the block) and store
the instruction address of the current branch instruction in
the Block_Address (as we are starting a new block) 10 . This
way, in the end of each block, we store the block information
using the instruction address of the branch of the previous
block as the index 9 . We also reset the counters related to
largest stall 9 and bottleneck 10 , followed by resetting the
stall counter 11 .

In order prevent profiling characteristics to be affected by
cold start effects in caches, prefetchers and branch predictors,
we designed a stabilizer for BLAP. This stabilizer deals with
problems such as when a block has an unstable characteristic in
the beginning. It uses a saturated counter to record the amount
of times the basic block was executed. When this counter
saturates, the last detected characteristic is considered to be
stable, and thus it is used as bottleneck for that block. Further
changes in the block bottleneck will not overwrite the BTB
entry, in order to avoid disabling the improvements that lead
to the bottleneck change.

B. Behavior Storage

In order to use the profile, we must store it for future
use. Accordingly to the correlation results, we use 2 bits
per block, expressing 4 characteristics (None, Brch, Mem,
FP). The number of characteristics can be incremented by
using more bits per entry, for future extensions. As the BTB
contains all the conditional and unconditional branch targets,
instead of using a new cache, we can extend the BTB to store
characteristics for each block targeted by each branch. That
way, if a branch is taken, we can load the characteristic in
its entry as we know it is the characteristic profiled for the
next block. The register mentioned in the previous section,
Block_Address, is responsible for indexing each block in the
BTB. A 2 bits saturating counter is also used per entry to
stabilize a block’s characteristic.

C. Behavior Labeling

To use our profile information, we created a general
approach to allow implementation of multiple mechanisms.
When a branch is predicted at the fetch stage, we access the
BTB using the address of the branch instruction. The character-
istic is loaded into a new register called Block Characteristic.

The information of this register is copied to a new field
for every instruction until the content of Block Characteristic
is updated by the next block profile information. Thus, the
fetch buffer’s entries, the decode buffer’s entries and the ROB
entries are all augmented by 2 bits to store the characteristic
pertaining the block.

D. Critical Path Implications

Detection: The detection scheme of BLAP implies addi-
tional hardware to update the mechanism’s registers. There
is a corner case which occurs when two branches commit in

the same cycle. This means the block initiated by the first
branch had no stalls, so we aggregate the block with whatever
instructions are committed after the second, ignored branch.
In our evaluations, cycles which committed more than one
branch represented less than 1% of the execution cycles for
NAS-NPB and SPEC-OMP2001 benchmarks. Finally, storing
information in the BTB in the same cycle could require a
longer cycle time. Thus we write to a buffer and create an
additional pipeline stage used only for BLAP, which stores
the information received by the last block in the BTB. This
extra stage does not affect processor’s performance, as it is not
in the critical path.

Storage: The extra stage in BLAP is used to pipeline the
actual write to ensure synchronization with the BTB reads
performed by all instructions being fetched, so the written
value is only valid for the next cycle.

Labeling: Labeling has no implications on critical path,
requiring only additional information bits going through the
pipeline along their respective instructions.

E. Hardware Costs and Design Considerations

To implement BLAP, we can divide the hardware costs
into three parts: detection, storage and labeling. As can be
seen in Figure 2, detection requires two 8 bit counters, Stall
and Largest Stall. It also requires an 8 bit adder and a 8 bit
comparison for these registers. We use two 2 bit Bottleneck
registers, and two Block Address registers, to pipeline the ac-
tual write to the BTB with an additional BLAP Internal stage.
To determine whether a branch prediction was a misprediction,
we add 1 bit for each reorder buffer entry. For storage, we
require an additional BTB write port to write the extra BTB
bits. We reuse all tags and logic from the BTB. The extension
is composed of 2 bits for characteristics and 2 bits saturating
counter to stabilize each entry.

We store the labels in a Block Characteristic register, as
we obtain the information bits from the BTB in the fetch
stage. Every following instruction of the block must copy
this information, so we must add these bits to the entries of
all structures. We add 2 bits to every entry from the fetch
buffer, decode buffer and ROB. The calculated costs in terms of
hardware are shown in Table II. For each core, BLAP requires
the total storage of 2142 bytes, plus 2 bit multiplexer, 8 bit
adder and 8 bit comparison.

V. EVALUATION METHODOLOGY

A. Simulation Environment and Workloads

To validate our mechanism, we used a cycle-accurate in-
house simulator. It accurately simulates the microarchitec-
ture modeling all functional unit contention, register depen-
dency, processor system restrictions, besides cache architec-
ture, DRAM memory and interconnections. In Table III, we
specify the details of the simulated system, whose configu-
ration is based on the Intel Sandy Bridge microarchitecture.
We used two parallel workload suites for evaluation, running
with 8 threads. 7 applications from the NAS-NPB workload
suite, with the A input size. 7 applications from the the SPEC-
OMP2001 workload suite with ref input size. Each thread
executes 150 million instructions on average in the trace. The



TABLE II. HARDWARE COSTS OF BLAP
D

et
ec

tio
n

8-bit Stall counter; 8-bit Largest Stall counter;
8-bit adder for Stall counter;
8-bit comparison (Stall counter with Largest Stall);
2-bit Bottleneck reg. (Commit); 2-bit Bottleneck reg. (BLAP);
64-bit Block Addr. reg. (Commit); 64-bit Block Addr. reg. (BLAP);
1-bit branch prediction information per ROB entry (168 entries in total);
2-bit multiplexer, uses branch prediction information to update BLAP;
Total of 316 bits for detection;

St
or

ag
e 2-bit Bottleneck reg. per BTB entry (4096 entries in total);

2-bit Stabilizer counter per BTB entry (4096 entries in total);
1 additional BTB write port;
Total of 2048 bytes of storage;

L
ab

el

2-bit Block Characteristic reg.;
2-bit Block Characteristic per fetch buffer entry (18 entries in total);
2-bit Block Characteristic per decode buffer entry (28 entries in total);
2-bit Block Characteristic per ROB entry (168 entries in total);
Total of 430 bits for labeling;

overall trace of each application represents one parallel time
step from each algorithm. The applications uses OpenMP and
were compiled with gcc 4.6.3, with the -O3 options.

B. Evaluated Memory Controller Policies

Given the correlation coefficients presented in Section II,
we chose to improve memory controller because of the high
correlation the memory accesses have with performance. Fol-
lowing the proposals of Ghose et al. [8] and Lee et al. [9],
we designed an improved memory controller that can use
the profile information provided by BLAP to give different
priorities to memory accesses depending on their relevance for
the application’s critical path. The baseline for the memory
controller policies is the FR-FCFS [18] policy, which gives
priority to row hits (First Row), thus lowering average memory
wait time, and then priority to older accesses (First-Come,
First-Serve). In order to compare our solutions with the state-
of-the-art, we also implemented the original CBP from Ghose

TABLE III. SIMULATED ARCHITECTURAL PARAMETERS.

Baseline Configuration

Pr
oc

es
so

r
C

or
es

8 cores OoO @ 2.0 GHz, 32 nm; in-order front-end and commit;
16 stages (3-fetch, 3-decode, 3-rename, 2-dispatch, 3-commit stages);
16 B fetch block size (up to 6 instructions);
Decode and commit up to 5 instructions;
Rename/dispatch/execute up to 5 µ instructions;
18-entry fetch buffer, 28-entry decode buffer;
3-alu, 1-multiplication and 1-division integer units (1-3-32 cycle);
1-alu, 1-multiplication and 1-division floating-point units (3-5-10 cycle);
1-load and 1-store functional units (1-1 cycle);
MOB entries: 64-read, 36-write; 168-entry ROB;

B
ra

nc
h

Pr
ed

. 1 branch per fetch; 8 parallel in-flight branches;
4 K-entry 4-way set-assoc., LRU policy BTB;
Two-Level PAs 2-bit; 16 K-entry BHT;

L
1-

D
C

ac
he

32 KB, 8-way, 64 B line size; LRU policy; 2-cycle;
MSHR: 8-request, 10-write-back, 1-prefetch;
Stride prefetch: 1-degree, 16-strides table;

L
1-

I
C

ac
he

32 KB, 8-way, 64 B line size; LRU policy; 2-cycle;
MSHR: 8-request, 1-prefetch;
Stride prefetch: 1-degree, 16-strides table;

L
2

C
ac

he

Private 256 KB, 8-way, 64 B line size; LRU policy;
MSHR: 4-request, 6-write-back, 4-prefetch; 4-cycle;
Stream prefetch: 4-degree, 64-dist., 64-streams;

L
3

C
ac

he

Shared 16 MB (8-banks), 2 MB per bank; MOESI coherence protocol;
16-way, 64 B line size; LRU policy; 6-cycle; Inclusive;
MSHR: 8-request, 12-write-back; Bi-directional ring interconnection;

D
R

A
M

an
d

B
us

On-chip DRAM controller, 8 banks/channel; 4-channels; DDR3 1333 MHz;
8 burst length; 8 KB row buffer per bank, Open-row first;
1.5 core-to-bus frequency ratio; 9-CAS, 9-RP, 9-RCD and 28-RAS cycles;
MSHR: 128-request, 64-write-back, 32-prefetch;

et al. [8] and the Prefetch-Aware DRAM Controller (PADC)
from Lee et al. [9].

The CBP mechanism gives priority to the load instructions
that stall the commit stage. As it only keeps track of the loads,
it uses a small 64 bits tagless SRAM table per core, which is
reset every 100000 cycles to adapt to program phase. It then
gives priority to the loads found in this internal table. The
authors explore more options, such as storing the number of
stalled cycles for more complex policies, but the results using
only 1 bit per table entry proved to have the best trade-off
between hardware cost and performance, which is used in our
evaluations.

For the PADC mechanism, each cache line is extended by
adding 2 bits, a prefetch bit and an access bit. These bits track
which prefetches were useful. By measuring prefetch accuracy
every 100000 cycles, PADC decides whether it should give the
same priority for prefetches and demands, or whether it should
prioritize demands and drop prefetches given the pollution
present by using 4 values defined by the authors for their ar-
chitecture. Over 70% prefetch accuracy, the mechanism treats
all requests equally and does not drop prefetches. Between
30% and 70% prefetch accuracy, it prioritizes demand requests
and drops prefetches that waited in the memory request buffer
for longer than 50000 cycles to be serviced. Between 10%
and 30% accuracy, the mechanism drops those prefetches who
waited for longer than 300 cycles to be serviced. If accuracy
is lower than 10%, drop any prefetch which waits for more
than 100 cycles to be serviced.

The BLAP-based mechanisms were implemented as fol-
lows. BLAP-CBP is the adaptation of CBP using the basic
block profile information provided by BLAP. The idea is to
give priority to blocks that BLAP characterized as Mem, by
using the CBP memory controller policy. BLAP-CBP makes
the following priority order: 1) Give priority to critical row
hits; 2) Give priority to non-critical row hits; 3) Give priority
to critical non-row hits and 4) give priority to non-critical,
non-row hits.

In BLAP-PADC-8L, generated prefetches get BLAP infor-
mation from the requests that triggered them. To emulate the
concept of PADC, we drop prefetches above average demand
request wait time. We implemented an 8-level priority memory
controller. As we have information of which demand requests
are critical, which prefetch requests are critical, and whether
the request is a row hit, we need 23 levels of priorities. The
8 levels are: 1) Critical demand row hit requests; 2) Critical
prefetch row hit requests; 3) Non-critical demand row hit
requests; 4) Non-critical prefetch row hit requests; 5) Critical
demand requests on another row; 6) Critical prefetch requests
on another row; 7) Non-critical demand requests on another
row; and 8) Non-critical prefetch requests on another row.

Figure 3 illustrates the request selection logic for different
memory controller mechanisms. The mechanism compares the
information bits from the request as a single number, by
concatenating all bits and considering the left-most bits as most
significant. The age represents how many cycles the request
has been waiting for service in the memory controller request
buffer. The prefetch bit is set to 0 on prefetches and 1 on
demand requests, to give priority to demand requests. The
critical bit is the information fed either by CBP or BLAP.



Row hit Critical Prefetch Age

Present in FR-FCFS policy (baseline)

Added by
CBP, BLAP

Added by
PADC, BLAP
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Fig. 3. Request selection logic for different memory controller mechanisms.

Finally, row hit is 1 if the address of the request matches the
currently open row.

In comparison to CBP, the first advantage of BLAP-CBP
is that we can exploit other processor bottlenecks beyond
memory pressure. The second advantage of this characteri-
zation which makes us gain performance is that as we also
have information of branch mispredictions. We will not give
priority to loads that are followed by a mispredicted branch.
Doing so would not help the block performance, which is
why branch prediction is given the highest value. Third, as
we can address blocks and store their information using the
branch target buffer, we are able to store a much larger
amount of information, 4096 entries, compared to 64 entries in
CBP’s table. Both implementations require the same amount
of hardware in the memory controller and channels to pass the
extra criticality information bit.

Compared to PADC, BLAP-PADC-8L required four times
less storage by using the BTB to store the profile information.

VI. EXPERIMENTAL RESULTS

Figure 4 presents results for different mechanisms running
NAS-NPB and SPEC-OMP2001 benchmarks. In the Figure,
we show total execution time for all benchmarks, normalized
to the baseline. The first observation that must be made is
that the average gains of both related work are different from
the ones found in their work, due to different benchmarks,
architectural parameters and simulators. Although the effect
of the mechanism implementation is noticeable, as seen in the
IS benchmark, the benchmark average results is low.

For this experiment, PADC offers the highest improvement,
achieving 19.02% for IS. We have average performance im-
provements of 1.89% for CBP, 0.80% for BLAP-CBP, 3.10%
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Fig. 4. Performance results for NAS-NPB and SPEC-OMP2001, relative to
FR-FCFS baseline.

for PADC and 3.90% for BLAP-PADC-8L. In general CBP
obtained better results than BLAP-CBP. This is due to CBP
information being specifically designed for load instructions,
while BLAP profiles in a coarser granularity.

BLAP-PADC-8L outperforms PADC on average as we
adapted it to perform in a flexible way, by using the average
demand request time. Using BLAP information, the mecha-
nism is able to drop prefetches more aggressively while still
servicing important prefetches. This is because the prioritized
prefetches come from critical, repetitive blocks. This fact
also makes BLAP-PADC-8L inclinable to drop false-positive
triggered prefetches, as they are not prioritized and left to be
dropped.

In order to stress the memory controller mechanisms
and their profiling methods, Figure 5 shows results with
an increased stream prefetcher agressivity for CBP, PADC,
BLAP-CBP and BLAP-PADC-8L, with prefetch degree 8 and
prefetch distance 128. This experiment shows that BLAP-
PADC-8L offers the highest improvement, achieving 37.05%
for Wupwise. We have average improvements of 3.99% for
CBP, 1.72% for BLAP-CBP, 4.24% for PADC and 13.14%
for BLAP-PADC-8L.

CBP perfomed better than in the baseline experiment as
it only gives priority to demand requests. Thus, improving
performance by only servicing prefetches when there are no
critical demand requests. For the reasons mentioned for the
previous test, BLAP-CBP also improves, but not reaching the
same level as CBP.

PADC obtains the same performance improvements as in
the baseline. This happens because our evaluations used the
same parameters proposed by the authors, although different
system architectures may require different internal parameters.
This way, PADC is not able to drop prefetches as aggressively
as needed. On the other hand, BLAP-PADC-8L achieved high
performance improvements for several benchmarks due to its
highly aggressiveness on prefetch dropping.

Figure 6 shows results for BLAP-PADC-8L, comparing
the BLAP mechanism implemented with the BTB and imple-
mented with a large cache, which is large enough to avoid any
conflict and capacity misses in all benchmarks. Moreover, it is
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Fig. 5. Performance results for NAS-NPB and SPEC-OMP2001 with
increased aggressivity prefetcher, relative to FR-FCFS baseline.
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Fig. 6. Performance Results comparison between BTB and a large cache,
relative to FR-FCFS baseline.

able to differentiate and store blocks targeted by branches as
well as fall-through blocks.

Comparing the BTB to the large cache implementation,
we can notice similar performance improvements over the
baseline. It shows that the large number of entries in the
BTB is enough to keep the profile information for most of
the benchmarks.

VII. CONCLUSIONS

Our results show that basic block granularity can be
more relevant than single instruction granularity for memory
accesses. The findings indicate that as basic blocks naturally
track a program’s phase progression, we are able to more
accurately adapt to different memory pressures that occur
in different program phases. On average, we were able to
improve performance by 3.9% compared to the baseline FR-
FCFS, with a low hardware overhead. We have also shown
that our technique scales better than the state-of-the-art when
faced with higher memory pressure due to higher prefetch
aggressivity.

For the future, we intend to characterize blocks regarding
more events, such as data-dependent branches [19]. The idea of
basic block detection at commit stage can also be overlapped
with group commit [20], and enables the implementation of
several ideas based on basic block analysis.
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