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Abstract. Studies of the fault-tolerance of graphs have tended to largely concentrate
on classical graph connectivity. This measure is very basic, and conveys very little in-
formation for designers to use in selecting a suitable topology for the interconnection
network in embedded systems. In this paper, we study the vulnerability of interconnec-
tion networks to the failure of individual links, using a set of four measures which, taken
together, provide a much fuller characterization of the network. Moreover, while tradi-
tional studies typically limit themselves to uncorrelated link failures; our model deals
with both uncorrelated and correlated failure modes. This is of practical significance,
since quite often, failures in networks are correlated due to physical considerations.

1 Introduction

The interconnection network is an integral part of most embedded systems. It has
often as considerable an impact on the system’s performance as the nodes themselves.
The choice of an appropriate interconnection network is therefore key to determining
the performance of the embedded system. Performance measures for interconnection
networks are essential to guide the designer in choosing an appropriate topology. In
large systems — especially those which must operate for long durations without any
possibility of repair — the probability is significant that one or more nodes and/or links
are down at any time and this can affect the performance of the system considerably.
Studies of the fault-tolerance of networks have tended to largely concentrate on measures
such as classical node (link) connectivity. They measure the extent to which the network
can withstand the failure of individual links and nodes while still remaining functional.
Such measures are very basic and limited in what they can express of reliability (see [4]
for a survey of measures of network vulnerability). They are worst-case measures and
convey very little information for designers to use in selecting a suitable topology for
the interconnection network in embedded systems.

In this paper we study the vulnerability of an interconnection network to the failure
of individual links, using a set of four measures which, taken together, provide a much
fuller characterization of the network. Moreover, while traditional studies typically limit
themselves to independent link failures, our studies deal with correlated failure modes,
as well.

We start in Section 2 by defining four measures of network vulnerability. We follow this
in Section 3 with some numerical results. A brief discussion in Section 4 concludes the

paper.



2 The Performance Measures

The four performance metrics used to assess network vulnerability can be grouped into
two pairs. The first pair assesses the tendency of the topology under study to become
disconnected due to link failures. The two measures under this category are:

— 1. The probability that the network becomes disconnected, 7.

— 2. The size of the biggest connected component, Xmax.
The probability that the network becomes disconnected gives us guidance as to the
chance that all the processors remain usable (assuming the processors themselves do
not fail) by being reachable from every other processor. If the network does get discon-
nected, we are interested in what happens to the splinters that are left. In particular, we
are concerned with whether the graph breaks up into a large number of small compo-
nents, or whether there is one large component which contains most of the nodes. The
latter is obviously preferable. All other things being equal, therefore, we would prefer
a network which would disconnect in such a way that the biggest component left after
disconnection contains a large fraction of the nodes.
The second pair of measures focuses on node-pair distances. They are:

— 3. The diameter of the network, A.

— 4. The average distance between node pairs, D.
Node pair distances play a role in determining the time it takes for messages to be
sent from one node to another. A graph whose diameter is relatively stable is obviously
superior to another whose diameter exhibits rapid variations upon link failure.
The notion of diameter stability is not new: the previously-defined measure of edge
persistence [3] is the minimum number of edges that must be removed to increase the
graph diameter. Persistence, however, being a worst-case measure, conveys much less
information about graph vulnerability than does the diameter, as a function of the
component failure probability.
Inter-node distances play a large role in determining the communication delays between
nodes. Algorithms that assign tasks to nodes (processors) have to account for inter-node
communication delays when dealing with tasks which communicate with one another.
The smaller the delays between the nodes, the greater are the options available to the
task assignment algorithm. This is especially true when the original task assignment
(on a computer without any failures) is sought to be done in such a way that any task
reassignment required upon failure is reduced. For hard real-time systems, it becomes
important that the system state on the failed node be transferred to another node with
very little delay. This parameter gives a good estimate of the amount of delay that would
be involved in the movement of data that would be required to re-establish the state.
A close estimation of such delays can help in the efficient calculation of fault-recovery
policies[2]. It also gives an indication of how closely the nodes are connected to each
other and this can help in the scheduling of tasks.

3 Simulation Models and Results

We consider two link failure models: uniform and clustered. In the uniform model, link
failures follow an IID (independent and identically distributed) stochastic process. Each
link fails with probability py, and link failures are independent of one another. In the
clustered model, a probability of either p — § or p + 4 (for some given p, §) is randomly
selected for each node. Each link incident on a node fails with the failure probability
drawn for that node. This failure mechanism results in adjacent links being correlated



with regard to faults, and consequently, in bigger clusters of faulty links and of fault-free
links than those generated by the IID link failures. § is the clustering parameter. The
greater the value of §, the more clustered the failing links will be. Note that since the
failure probability is applied twice to the same link, the actual probability of a random
link failure in the correlated model is py = 1 — (1 — p)°.

Three different classes of topologies have been used for the simulation runs, namely,
the mesh, the hypercube and the generalization of a chordal ring proposed by Arden
and Lee[1]. This is a chordal ring in which extra links are added (apart from the 2 links
connected to each of its neighbors) among the nodes in some regular fashion. The exact
placement of these extra links has an impact on both the traditional measures as well
as the ones proposed here.

All the simulation runs were on networks of 64 nodes. Some of the networks had degree
4 and the rest degree 6. A simple rectangular mesh as well as its counterpart, the
mesh torus (a mesh with an end-around connection) and both 2-D and 3-D meshes
were tested. Simulation runs were performed to measure the effect of the link failure
probability, ps, as well as the the effect of the clustering parameter, §, on the different
performance measures, for the mentioned graph families. A number of interesting results
can be concluded from the plots.

Figures 1, 2, 3 and 4 depict the dependence on the link failure probability p; (in the IID
link failure model) of the probability of network disconnection 74, the maximum com-
ponent size Xmaz, the diameter A, and the average node-pair distance D, respectively,
for the different topologies.

The conclusions we can derive from these figures are as follows. Though the rectangular
mesh is the topology of choice when scalability is concerned, it is certainly not the best
topology when considering resistance to link failures. The probability that the network
becomes disconnected increases rapidly as the probability of link failure increases. The
other topologies in its class do better in all the other parameters as well. Similarly,
among the degree-6 networks, the 3-D mesh performs very badly compared to the other
topologies in its class.

The chordal ring of degree 4 has better diameter stability compared to the mesh torus.
One word of caution though: The diameter of the chordal ring depends on the placement
of the extra links (i.e. not those connected to immediate neighbors). For the simulations,
an extensive search was performed to find a placement of links which would result in
the minimum diameter.

The chordal ring of degree 6 performs only marginally better than the hypercube and
the 3-D mesh torus in the diameter and average distance measures.

Figures 5 and 6 show the dependence of the probability of network disconnection, g,
and that of the maximum component size, Xmaz, respectively, on the fault clustering
parameter, §, for several graph topologies. The incidence of disconnected graphs in-
creases with the failure clustering (even though the link failure probability remains the
same). Again, the meshes without the end-around connection perform badly compared
to the other networks. Each family of graphs has a distinctive sensitivity to the level of
failure clustering.

The size of the largest connected component decreases as the degree of clustering in-
creases. Also, the maximum component size is dependent on the clustering of links in
the topology. This is illustrated in Figure 6 with the two types of the chordal ring.
The good placement refers to an optimal placement of the links whereas bad placement
refers to a sub-optimal placement. The dependence of the extra link placement on the
component size becomes negligible as the degree of the network increases.

Our experiments also showed that the two other measures, namely, the diameter and the



average node-pair distance (in graphs that remain connected) are not very sensitive to
the failure clustering, with the diameter being slightly more sensitive than the average
distance. This result holds across graph families.

4 Discussion

In this paper, we have studied the vulnerability of various topologies to link failure.
These results — and others like them — can be used by designers in choosing the appro-
priate topology. We have confined ourselves to a set of symmetric networks: we plan to
extend our studies to irregular topologies.

There is also room for modeling correlated failures in other ways. One of them would
be to use a “wave-propagation” model, in which the effect of the correlated failure at a
node ripples through the network so that all the links which are at the same distance
from the failed node has the same probability of failure and this probability decreases
as the distance increases. It would also be interesting to look at the combined effect of
both node and link failures.
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