
Measuring the Vulnerability of InteronnetionNetworks in Embedded SystemsV. Lakamraju, Z. Koren, I. Koren, and C. M. KrishnaDepartment of Eletrial and Computer EngineeringUniversity of Massahusetts, Amherst, MA 01003Abstrat. Studies of the fault-tolerane of graphs have tended to largely onentrateon lassial graph onnetivity. This measure is very basi, and onveys very little in-formation for designers to use in seleting a suitable topology for the interonnetionnetwork in embedded systems. In this paper, we study the vulnerability of interonne-tion networks to the failure of individual links, using a set of four measures whih, takentogether, provide a muh fuller haraterization of the network. Moreover, while tradi-tional studies typially limit themselves to unorrelated link failures, our model dealswith both unorrelated and orrelated failure modes. This is of pratial signi�ane,sine quite often, failures in networks are orrelated due to physial onsiderations.1 IntrodutionThe interonnetion network is an integral part of most embedded systems. It hasoften as onsiderable an impat on the system's performane as the nodes themselves.The hoie of an appropriate interonnetion network is therefore key to determiningthe performane of the embedded system. Performane measures for interonnetionnetworks are essential to guide the designer in hoosing an appropriate topology. Inlarge systems { espeially those whih must operate for long durations without anypossibility of repair { the probability is signi�ant that one or more nodes and/or linksare down at any time and this an a�et the performane of the system onsiderably.Studies of the fault-tolerane of networks have tended to largely onentrate on measuressuh as lassial node (link) onnetivity. They measure the extent to whih the networkan withstand the failure of individual links and nodes while still remaining funtional.Suh measures are very basi and limited in what they an express of reliability (see [4℄for a survey of measures of network vulnerability). They are worst-ase measures andonvey very little information for designers to use in seleting a suitable topology forthe interonnetion network in embedded systems.In this paper we study the vulnerability of an interonnetion network to the failureof individual links, using a set of four measures whih, taken together, provide a muhfuller haraterization of the network. Moreover, while traditional studies typially limitthemselves to independent link failures, our studies deal with orrelated failure modes,as well.We start in Setion 2 by de�ning four measures of network vulnerability. We follow thisin Setion 3 with some numerial results. A brief disussion in Setion 4 onludes thepaper.



2 The Performane MeasuresThe four performane metris used to assess network vulnerability an be grouped intotwo pairs. The �rst pair assesses the tendeny of the topology under study to beomedisonneted due to link failures. The two measures under this ategory are:{ 1. The probability that the network beomes disonneted, �d.{ 2. The size of the biggest onneted omponent, �max.The probability that the network beomes disonneted gives us guidane as to thehane that all the proessors remain usable (assuming the proessors themselves donot fail) by being reahable from every other proessor. If the network does get dison-neted, we are interested in what happens to the splinters that are left. In partiular, weare onerned with whether the graph breaks up into a large number of small ompo-nents, or whether there is one large omponent whih ontains most of the nodes. Thelatter is obviously preferable. All other things being equal, therefore, we would prefera network whih would disonnet in suh a way that the biggest omponent left afterdisonnetion ontains a large fration of the nodes.The seond pair of measures fouses on node-pair distanes. They are:{ 3. The diameter of the network, �.{ 4. The average distane between node pairs, D.Node pair distanes play a role in determining the time it takes for messages to besent from one node to another. A graph whose diameter is relatively stable is obviouslysuperior to another whose diameter exhibits rapid variations upon link failure.The notion of diameter stability is not new: the previously-de�ned measure of edgepersistene [3℄ is the minimum number of edges that must be removed to inrease thegraph diameter. Persistene, however, being a worst-ase measure, onveys muh lessinformation about graph vulnerability than does the diameter, as a funtion of theomponent failure probability.Inter-node distanes play a large role in determining the ommuniation delays betweennodes. Algorithms that assign tasks to nodes (proessors) have to aount for inter-nodeommuniation delays when dealing with tasks whih ommuniate with one another.The smaller the delays between the nodes, the greater are the options available to thetask assignment algorithm. This is espeially true when the original task assignment(on a omputer without any failures) is sought to be done in suh a way that any taskreassignment required upon failure is redued. For hard real-time systems, it beomesimportant that the system state on the failed node be transferred to another node withvery little delay. This parameter gives a good estimate of the amount of delay that wouldbe involved in the movement of data that would be required to re-establish the state.A lose estimation of suh delays an help in the eÆient alulation of fault-reoverypoliies[2℄. It also gives an indiation of how losely the nodes are onneted to eahother and this an help in the sheduling of tasks.3 Simulation Models and ResultsWe onsider two link failure models: uniform and lustered. In the uniform model, linkfailures follow an IID (independent and identially distributed) stohasti proess. Eahlink fails with probability pf , and link failures are independent of one another. In thelustered model, a probability of either p� Æ or p+ Æ (for some given p, Æ) is randomlyseleted for eah node. Eah link inident on a node fails with the failure probabilitydrawn for that node. This failure mehanism results in adjaent links being orrelated



with regard to faults, and onsequently, in bigger lusters of faulty links and of fault-freelinks than those generated by the IID link failures. Æ is the lustering parameter. Thegreater the value of Æ, the more lustered the failing links will be. Note that sine thefailure probability is applied twie to the same link, the atual probability of a randomlink failure in the orrelated model is pf = 1� (1� p)2.Three di�erent lasses of topologies have been used for the simulation runs, namely,the mesh, the hyperube and the generalization of a hordal ring proposed by Ardenand Lee[1℄. This is a hordal ring in whih extra links are added (apart from the 2 linksonneted to eah of its neighbors) among the nodes in some regular fashion. The exatplaement of these extra links has an impat on both the traditional measures as wellas the ones proposed here.All the simulation runs were on networks of 64 nodes. Some of the networks had degree4 and the rest degree 6. A simple retangular mesh as well as its ounterpart, themesh torus (a mesh with an end-around onnetion) and both 2-D and 3-D mesheswere tested. Simulation runs were performed to measure the e�et of the link failureprobability, pf , as well as the the e�et of the lustering parameter, Æ, on the di�erentperformane measures, for the mentioned graph families. A number of interesting resultsan be onluded from the plots.Figures 1, 2, 3 and 4 depit the dependene on the link failure probability pf (in the IIDlink failure model) of the probability of network disonnetion �d, the maximum om-ponent size �max, the diameter �, and the average node-pair distane D, respetively,for the di�erent topologies.The onlusions we an derive from these �gures are as follows. Though the retangularmesh is the topology of hoie when salability is onerned, it is ertainly not the besttopology when onsidering resistane to link failures. The probability that the networkbeomes disonneted inreases rapidly as the probability of link failure inreases. Theother topologies in its lass do better in all the other parameters as well. Similarly,among the degree-6 networks, the 3-D mesh performs very badly ompared to the othertopologies in its lass.The hordal ring of degree 4 has better diameter stability ompared to the mesh torus.One word of aution though: The diameter of the hordal ring depends on the plaementof the extra links (i.e. not those onneted to immediate neighbors). For the simulations,an extensive searh was performed to �nd a plaement of links whih would result inthe minimum diameter.The hordal ring of degree 6 performs only marginally better than the hyperube andthe 3-D mesh torus in the diameter and average distane measures.Figures 5 and 6 show the dependene of the probability of network disonnetion, �d,and that of the maximum omponent size, �max, respetively, on the fault lusteringparameter, Æ, for several graph topologies. The inidene of disonneted graphs in-reases with the failure lustering (even though the link failure probability remains thesame). Again, the meshes without the end-around onnetion perform badly omparedto the other networks. Eah family of graphs has a distintive sensitivity to the level offailure lustering.The size of the largest onneted omponent dereases as the degree of lustering in-reases. Also, the maximum omponent size is dependent on the lustering of links inthe topology. This is illustrated in Figure 6 with the two types of the hordal ring.The good plaement refers to an optimal plaement of the links whereas bad plaementrefers to a sub-optimal plaement. The dependene of the extra link plaement on theomponent size beomes negligible as the degree of the network inreases.Our experiments also showed that the two other measures, namely, the diameter and the



average node-pair distane (in graphs that remain onneted) are not very sensitive tothe failure lustering, with the diameter being slightly more sensitive than the averagedistane. This result holds aross graph families.4 DisussionIn this paper, we have studied the vulnerability of various topologies to link failure.These results { and others like them { an be used by designers in hoosing the appro-priate topology. We have on�ned ourselves to a set of symmetri networks: we plan toextend our studies to irregular topologies.There is also room for modeling orrelated failures in other ways. One of them wouldbe to use a \wave-propagation" model, in whih the e�et of the orrelated failure at anode ripples through the network so that all the links whih are at the same distanefrom the failed node has the same probability of failure and this probability dereasesas the distane inreases. It would also be interesting to look at the ombined e�et ofboth node and link failures.AknowledgmentThis e�ort was supported in part by the Defense Advaned Researh Projets Agenyand the Air Fore Researh Laboratory, Air Fore Materiel Command, USAF, un-der agreement number F30602-96-1-0341, order E349. The government is authorizedto reprodue and distribute reprints for Governmental purposes notwithstanding anyopyright annotation thereon.The views and onlusions ontained herein are those of the authors and should notbe interpreted as neessarily representing the oÆial poliies or endorsements, eitherexpressed or implied, or the Defense Advaned Projets Ageny, Air Fore ResearhLaboratory, or the U. S. Government.Referenes1. B.W.Arden and H.Lee. \Analysis of Chordal Ring Networks", IEEE Transationson Computers C-30, 1981.2. M.Berg and I. Koren, \On Swithing Poliies for Modular Fault-Tolerant Comput-ing Systems", IEEE Transations on Computers Vol. C-36, 1987.3. F. T. Boesh, F. Harary, J. A. Kabell, \Graphs as Models of Communiation Net-work Vulnerability: Connetivity and Persistene," Networks, Vol. 11, 1981.4. M.Choi and C.M.Krishna, \On Measures of Vulnerability of Interonnetion Net-works", Miroeletronis and Reliability Vol 29, No. 6, 1989.5. T.Cormen, C. Leiserson and R.Rivest, Introdution to Algorithms, Cambridge: MITPress, 1990.6. C. M. Krishna and K. G. Shin, Real-Time Systems, New York: MGraw-Hill, 1997.
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