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Filtering Random Networks to Synthesize
Interconnection Networks with Multiple Objectives

Vijay Lakamraju, Israel Koren and C.M. Krishna

Abstract— Synthesizing networks that satisfy multiple re-
quirements, such as high reliability, low diameter, good em-
beddability etc., is a difficult problem to which there has
been no completely satisfactory solution. In this paper,
we present a simple, yet very effective, approach to this
problem. The crux of our approach is a filtration process
that takes as input a large set of randomly generated graphs
and filters out those that do not meet the specified require-
ments. Our experimental results show that this approach
is both practical and powerful. The use of random regu-
lar networks as the raw material for the filtration process
was motivated by their surprisingly good performance with
regard to almost all properties that characterize a good in-
terconnection network. This paper provides results related
to the generation of networks that have low diameter, high
fault tolerance and good embeddability. Through this, we
show that the generated networks are serious competitors
to several traditional well-known networks. We also explore
how random networks can be used in a packaging hierarchy
and comment on the scope of application of these networks.

Keywords— Interconnection networks, synthesis, random
regular graphs, filters, diameter, fault tolerance, embedding,
packaging.

I. INTRODUCTION

HE design of the interconnection network is an im-

portant and integral part of the design of any multi-
processor system. Interconnection networks are as much a
determinant of the performance and reliability of the sys-
tem as the processors themselves. The network impacts
the cost of the architecture and the cost of communicating
between processors, as well as system reliability and the
extent to which the system can degrade gracefully under
processor or link failures. Considerable attention must be
paid to ensure the network provides the services required
of it, without greatly increasing the cost and complexity of
the system.

A plethora of interconnection network topologies have
been described in the research literature. They range from
very simple structures such as bus, ring or tree, to more so-
phisticated ones such as the shuffle-exchange, hypercube,
chordal ring, or the Banyan network [1], [2], [3]. Many
of these networks were designed to target a particular
interconnection requirement or to efficiently run specific
applications. There are however many application areas

The authors are with the Department of Electrical and Com-
puter Engineering, University of Massachusetts, Amherst MA 01003.
Email: {vlakamra,koren krishna}@ecs.umass.edu

This research was supported in part by DARPA and the Air Force
Research Laboratory under Grant F30602-96-1-0341. The views and
conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the Defense Advanced
Projects Agency, the Air Force Research Laboratory, or the US Gov-
ernment.

where multiple requirements need to be satisfied, e.g., a
distributed spacecraft computer. Here, the computer must
not only be designed to have small internodal distances and
good embeddability so as to minimize the energy consumed
but must also be designed to have sufficient reliability so
that it can last the entire mission. Most traditional net-
works are not apt for such applications because they do
not perform well when it comes to multiple performance
measures. Moreover, very little has been reported in the
literature on the problem of synthesizing networks that sat-
isfy multiple performance and reliability criteria [4].

This paper describes a simple, yet effective, approach
to the synthesis of interconnection networks that satisfy
multiple requirements. The requirements are specified in
terms of appropriate measures and the available resources
are specified in terms of the number of nodes and their
degrees. First, a large number of random regular graphs
of the desired size and degree are generated. They are
then passed through a bank of filters. These filters identify
a subset of networks which have the desired performance
with respect to the specified measures. The crux of our
approach lies in this simple filtration process. The distin-
guishing features of our technique are that it can be eas-
ily tailored to the specific performance and fault-tolerance
measures of interest to the designer, and that it can be
used even by those who are not experts in interconnection
network design. Although the input to the filtration pro-
cess is not limited to random networks, the selection of
random networks was motivated by their surprisingly good
properties and their flexibility and ease of generation.

Random graphs have been investigated for a long time:
one of the earliest key papers being that of Erdés and Rényi
[5]. From then on, interesting results have been reported
on random graphs [6], [7], and the past few decades have
seen the use of random graphs in many applications from
computer science [8], [9], engineering [10], sociology, and
ecology [11]. However, most of the results from random
graph theory are of an asymptotic nature, in that a random
graph is said to have a certain property @ if the propor-
tion of graphs with this property tends to 1 as the size of
the graph (i.e., the number of nodes in the network) tends
to infinity. Therefore, these results are less useful for our
problem in which the size of the network we are consider-
ing can range from tens of nodes to hundreds, or at the
most, thousands of nodes. Moreover, the usefulness of our
filtering approach rests on its efficiency, which is a measure
of the number of random networks one has to generate be-
fore obtaining a useful short-list of “good” networks. This
problem does not readily lend itself to theoretical analy-
sis, and hence must be studied by simulation experiments.



102 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, MONTH 2002

This paper provides extensive experimental results on the
performance of random regular networks with regard to
various performance measures and the efficiency of the fil-
tering process.

A. Performance Measures

Appropriate measures are required to convey the
network-specific needs of the application in a form that
is intelligible to the designer. A number of measures have
been proposed for interconnection networks and there has
been a lot of argument about which of these measures are
most informative [12]. In this paper, we consider a subset
of those measures in order to illustrate the advantages of
our approach, rather than to provide a survey of the per-
formance of random networks. We describe these measures
in a graph-theoretic setting and use the terminology of [13].
The size of the network, which is the number of its nodes,
is denoted by n and its degree by d. The measures we
consider relate to the following desirable properties of an
interconnection network: small internodal distances, good
embeddability and good fault tolerance.

Processors in a distributed system communicate with
each other through messages, and an important factor in
determining the communication delay are the node-pair
distances. The greater the node-pair distances, the greater
the communication delay, the greater the time a message
will spend in the network, the greater the energy consumed
in delivering it, and the greater the chances of network con-
gestion. Two measures used to describe the node-pair dis-
tances are the diameter (A) and the average node-pair dis-
tance (D). The diameter is the maximum of the node-pair
distances and provides an upper bound on the inter-task
communication time, in terms of the number of hops. It
can have a dominant impact on application runtime.

The efficient execution of parallel programs on a mul-
tiprocessor machine requires that the communicating pro-
cesses of the program be assigned to the processors in such
a way that the overall execution time is minimized. This is
the mapping problem [14]. What we are more interested in,
from the point of view of network design, is how to design a
network that lends itself well to mapping different parallel
programs. Some networks can embed different communi-
cation patterns more efficiently than others. This feature
of a network is called embeddability and is important when
applications with different communication patterns need
to run on the same network. An interconnection network
ill-suited to the prevailing communication pattern can re-
sult in message congestion and excessive communication
delays which can greatly impact the execution time and
the power consumption. A good network should be able
to embed a wide range of topologies with low dilation [15],
thus ensuring that a large number of algorithms will run
efficiently on the system. We provide a precise definition
for embeddability later in Section III.

Systems used in applications requiring high levels of re-
liability need to take into account the vulnerability of the
interconnection network to link failures. Traditional mea-
sures, such as connectivity, are worst-case measures and

can have limited expressiveness. Recently, more useful net-
work measures have been proposed [16]. The probability
of disconnection, m4(pys), refers to how easily the network
gets disconnected in the presence of link failures occurring
independently with probability ps. The diameter stability,
A(py) and the average node-pair distance stability, D(py),
measure the impact of link failures on the node-pair dis-
tances, given that the network is still connected. The size
of the maximum connected component size, Xmaz (Ps), CAP-
tures how the network splinters after it gets disconnected;
is it more likely to splinter into one large component which
is still useful, and several small and useless components, or
will all the components be too small to be useful? We will
use these measures to assess the fault tolerance capabilities
of the network.

B. The Problem Statement

The designer is provided with a set of resources and a set
of design requirements. Cost is one of the main factors that
limits the resources that the designer has to work with. In
most cases, this manifests itself as a fixed number of nodes
and a fixed number of communication links. A network
should have good construction flexibility so that the net-
work can be constructed for any desired size and degree. It
is often advantageous to consider networks with small de-
grees since a small degree translates to reduced wiring and
fewer I/0O interfaces. Furthermore, if the degree is constant
over all nodes, only one basic node design may be neces-
sary. It is therefore preferable for the designer to consider
fixed n and d.

The design requirements, on the other hand, are typi-
cally specified in the form: m; < M < ms where M is
the performance measure and m; and ms are thresholds
between which the performance of the network must fall.
Sometimes, the designer does not have definite values for
specifying the requirements but has some idea of the rela-
tive importance of the requirements. In such cases, thresh-
olds for the design requirements can be specified in terms of
relative rather than absolute terms (e.g., the best 5%). In
summary, the designer is faced with the following problem:

Given a fized set of nodes and a set of design require-
ments, how should the nodes be interconnected such that
the given requirements are met under the specified degree
constraints?

C. Organization of the paper

Our approach to the above problem consists of a two-step
process: first, the generation of a large set of random regu-
lar networks, and then the isolation of just the right ones in
the filtration step. We describe both these steps in some de-
tail in the next section. Section III illustrates the effective-
ness of our filtering approach by considering the synthesis
of networks with required diameter, fault-tolerance char-
acteristics and embeddability. En route, it also provides
extensive experimental evidence to the good properties of
random regular networks. In this section, we also explore
the use of the filtration process to study tradeoffs between
various performance measures. Such a tradeoff can help
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us obtain better insight into the measures and could also
help us reduce the time required to synthesize the required
networks. One of the main impediments to the practical
applicability of random networks is their lack of symmetry.
This aspect can render them difficult to manufacture. In
Section IV, we point out areas where random networks can
be used in spite of their lack of symmetry and what per-
formance advantages they have over traditional networks
when used in a hierarchical packaging environment.

II. APPROACH
A. The Graph Generation Step

Random regular networks can be constructed for any
value of n and d as long as nd is even. This flexibility of
generation has been another reason that motivated their
use. Two factors need to be considered while generating
these networks for our purpose; speed and selection strat-
egy. It is practically impossible to explore the entire space,
G(n,d), of all d-regular graphs with a fixed set of n ver-
tices, because this space is huge even for small values of n;
for example, the number of connected regular graphs for
n = 20 and d = 4 is 985870522 [17]. Since we typically
need to work with a limited time budget, only a subset
of those graphs can be evaluated. Clearly, how we select
these graphs from G(n,d) can have an impact on the final
output. In this paper, we explore schemes that attempt to
select the graphs uniformly and randomly.

While a number of algorithms that generate d-regular
graphs uniformly at random have been proposed, only few
of them are of practical significance [18]. Bollobds’ algo-
rithm [19] takes an expected time of the order nde(@*=1)/4
and hence is not practical. In [20] a polynomial time
algorithm of the order O(nd®) is given, however, it is
prohibitively difficult to implement, and only applies to
d = O(n'/?). Simpler algorithms have been proposed in
[21], [22], however, the graphs there have not been proven
to be generated uniformly at random. Recently, Steger and
Wormald [18] presented an algorithm that is both easy to
implement as well as fast in practice, with an expected run-
time of O(nd?). Although it does not generate the graphs
uniformly at random, they prove that the algorithm gener-
ates d-regular graphs approximately uniformly, in the sense
that all d-regular graphs on n nodes have in the limit the
same probability to be selected as n — oo. We use this
algorithm for our random graph generation. To generate a
graph, we start with a set U = {1,2,...,nd} of unpaired
points. These nd points are grouped into n groups, each
corresponding to a node in the graph. A pair of points is
chosen at random from U and an edge is placed between
nodes corresponding to their groups if they are suitable,
i.e., they lie in different groups and no edge currently ex-
ists between nodes corresponding to the same two groups.
The selected points are then deleted from U and another
pair chosen. This process continues till no suitable pair
exists or until the graph is d-regular. Finally, the graph is
checked for connectedness; after all, at the end, each node
in a network should be reachable from all other nodes.

In order to ascertain its practical applicability, the algo-
rithm was implemented using simple data structures and
run on a 500MHz machine with 256MB of memory. Fig-
ure 1 shows the runtime averaged over 1000 graphs for var-
ious sizes and degrees. Note that this time also includes
the runtime of the trials in which the graphs had to be dis-
carded, i.e., when no suitable pairs were available and when
the graph was not connected. In spite of these cases, it was
observed that networks of even 2048 nodes could be gener-
ated in about one second using this algorithm. This shows
that the algorithm is quite fast in practice, which is im-
portant if we wish to generate a large number of graphs for
filtering. The fraction of times a graph had to be discarded
was well under 5% for graph sizes greater than 32. It is also
important that the generated networks not be isomorphic
to each other, since otherwise there will be multiple copies
of the same network. We tested isomorphism between all
the pairs of graphs using the NAUTY tool [23], [24] and
observed that more than 95% of the networks generated
were non-isomorphic to each other.
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Fig. 1. Average runtime of the generation algorithm

B. The Filtering Step

This step takes as input the generated networks and tries
to identify those that have the properties desired by the
designer. It consists of a set of filters, one filter for each
requirement to be satisfied. A filter consists of two parts:
the evaluation part calculates the value of the measure as-
sociated with the requirement, and the checking part com-
pares the value of the measure with the threshold as spec-
ified by the requirement. Each filter takes as input a set
of random networks and outputs only those that pass the
checking part. By using the output of one filter as input
to the next, the output at the end of the series of filters,
if there is one, is a set of networks that satisfy all the re-
quirements. If the filtering process produces no output,
the designer could either start all over again with a new
batch of random networks or refine the thresholds of the
filters. It helps to sequence the filters in decreasing prior-
ity order of the measures they represent if the designer has
the option of relaxing the thresholds of some filters. The
threshold of a higher-priority filter should not be relaxed
before that of every lower-priority filter has been relaxed to
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the maximum allowed extent. As the results in Section III
will show, this simple technique produces networks that
compare favorably to many traditional networks. The key
feature of this filtering approach is its versatility, as the set
of selected filters and their order is easily determined by
the specific application requirements. For a different set
of application requirements, we simply use the appropriate
new set of filters and arrange them accordingly.

The evaluation part of the filter is typically much more
time-consuming than the checking part and is mainly influ-
enced by the computational complexity of the correspond-
ing measure. For each filter, simulation or some algorithm
is used to compute the measure. While the checking part is
quite simple when thresholds are given in absolute terms,
when relative thresholds are used, it requires that the net-
works be sorted according to their values obtained from
the evaluation part. The time spent in the filtration pro-
cess depends on the order in which the filters are arranged.
The filters can be arranged in a serial or parallel fashion
as shown in Figure 2. In sequential filtering, the threshold
determines the number of networks that pass through at
each stage. If a stringent threshold is used, a smaller num-
ber of networks pass through, and this greatly impacts the
time spent in the remaining filters. The most time-efficient
ordering would depend on both the thresholds and the eval-
uation times of each filter. In parallel filtering, the eval-
uation corresponding to each of the filters is carried out
in parallel, and a single checking part that combines the
checking parts from all the filters sifts out networks that
comply with all the requirements. Here, the time spent in
the filtration process is bounded by the maximum evalua-
tion time among the filters. Note that, in either case, the
final output is not impacted as the output of the filters is
set-associative.

Output from

j graph generation phase

Filter 1 =
1
Filter 2
e

E -= Evaluation part
C - Checking part

Fig. 2. Sequential and parallel filtering

III. EXPERIMENTAL RESULTS

Networks synthesized using our approach are compared
with various well-known and promising networks to illus-

trate the effectiveness of the approach. Though most of
our examples are networks of degree 3 and 4, our approach
is not restricted to these degrees. We use the following
standard topologies for comparison against our degree-3
networks: shuffle exchange networks [25], cube connected
cycles(CCC) [26], chordal rings of degree 3 [27], Moebius
trivalent graphs [28] and multi tree structures (MTS) of
degree 3 [29]. In the degree-4 category, we use meshes,
torii, chordal rings of degree 4 [30], and wrapped butterfly
networks.

A. The Diameter Filter

The problem of constructing a network of a given size and
degree with the smallest possible diameter has been the fo-
cus of much research [31]. While the diameter of random
graphs has also been studied [32], the asymptotic results
provide little guidance for network sizes of interest to us. In
order to evaluate the performance of random regular net-
works in conjunction with a diameter filter, we generated
graphs sized between 8 and 256 nodes, with degrees rang-
ing from 3 to 6, and calculated their diameters. For each
size and degree, 1000 random networks were generated and
the ones with the smallest diameter were selected. Figure 3
shows how the diameter varies as the size and degree is in-
creased. These results give an idea of the lower bound that
the threshold can be set to, for the diameter filter.
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Fig. 3. Diameter of random regular networks

Figure 4 compares the diameter of random networks of
degree 3 with other networks of the same degree. The di-
ameters of the networks plotted are the ones with the least
diameter as specified in the respective references. From
Figure 4 it is clear that random networks have lower di-
ameter than almost all the other networks considered, but
they fail to win over some well-crafted interconnection net-
works such as the MTS network for some network sizes.
However, graphs such as MTS do not have sufficiently good
construction flexibility. The MTS network is defined only
for certain sizes given by m(d — 1)!~! where m and t are
integer parameters'. Among networks of degree 4 that we
have considered, random regular networks performed the

IDiameters of incomplete MTS networks have not been analyzed
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Fig. 4. Diameters of different networks of degree 3

best. Experiments have shown that random networks have
better diameter than networks such as hypercubes, whose
degree is a function of the size of the network. In fact,
the higher the degree, the better is the performance that
one can expect from random networks. All these results
show that if we generate a sizeable number of random net-
works and select one with the smallest diameter, we will
(with a high probability) get a network that is diameter-
competitive with most of the interconnection networks de-
scribed in the literature. In fact, a comparison between
diameters obtained using this method and the entries in
the (d,A) table? show that the diameters of the random
graphs are greater by at most 1 than the corresponding
best known diameters [34]. Note however that while the
networks from the (d, A) table are constructed by different
methods for different degrees and diameters, the random
networks follow the same simple construction algorithm.

It is also worthwhile to find out the number of graphs
that pass through the diameter filter when its threshold
is set to different values. Figure 5 shows the fraction of
the generated networks that passed through filters whose
thresholds have been set at the minimum diameter (as
shown in Figure 3). It gives some idea of the “yield” one
can expect from a diameter filter.

B. The Embeddability Filter

Many parallel applications are designed to run efficiently
on a certain network topology, e.g., parallel implementa-
tions of the Fast Fourier Transform run very efficiently on
hypercubes. On the other hand, there are many other ap-
plications that do not make use of just one regular commu-
nication pattern but involve a mixture of several computa-
tional tasks and many patterns. One such suite of applica-
tions is that being considered by NASA’s Remote Explo-
ration and Experimentation (REE) project [35]. These ap-
plications not only exemplify the need for substantial com-
puting power in future space missions, but also indicate the

2The (d, A) table gives the state of the art with respect to a largest
known graphs with degree d and diameter A. The table can be ob-
tained from [33]. Elsewhere, this table has also been referred to as
the (A, D) table.
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diversity of communication patterns that could be used in
a single application. Each of these applications consists of
multiple modules which use different algorithms and hence
have different communication patterns. Table I shows the
various modules, and the associated communication pat-
terns for NGST (Next Generation Space Telescope), one of
the applications in the REE application suite.

Running such an application efficiently on a distributed
system requires that the interconnection network embed
all the communication patterns without much performance
degradation [36]. Similarly, while designing networks to
support general-purpose parallel programming, the design
cannot be unduly influenced by the characteristics of a sin-
gle program. Moreover, a network that lends itself easily
to embedding various communication patterns can greatly
decrease the power requirement, which is an important is-
sue in space systems where power is limited. The problem
of designing such networks is NP-hard [37] and hence does
not readily yield itself to theoretical solutions. Our filter-
ing approach proves again to be an effective method here.
Each filter in our filtration step now corresponds to one of
the application modules. Putting these filters in tandem
and relaxing their relative thresholds until some output is
obtained, we can obtain networks that have good overall
embeddability. Before we continue, we will first define em-
beddability.

A parallel program can be modeled as a graph, in the
same way we model interconnection networks. This graph
is termed the guest graph G = {V(G), E(G)} whereas the
interconnection network is termed the host graph H =
{V(H),E(H)}. For our purposes, a mapping is a function
7 :V(G) = V(H) and each edge in E(G) is mapped to a
shortest distance path. The goal of the mapping is to bal-
ance the computational weight of the processes among the
processors of the machine (i.e., the load), while reducing
the cost of the communication by keeping intensively inter-
communicating processes on nearby processors. A measure
of how well the mapping algorithm has achieved this goal
can be obtained from the communication cost. The com-
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TABLE I
MODULES AND ASSOCIATED COMMUNICATION PATTERNS IN NGST

| NGST Module | Procedures | Communication pattern
Cosmic Ray Detection Matrix inversions, summations | Mesh
Adaptive Optics Optimization || Derivatives, logarithms Adaptive meshes
Spacecraft Attitude Control Expert systems, logic trees Trees
Data Compression Searching, sorting, FFTs Hypercube

munication cost that we have chosen is

2een(@) W(e) - lpe)]
2een(a) w(e)

Ca.n=

where |p(e)| is the length of the path in H used to route
edge e and w(e) is a weight function indicative of the
amount of communication on edge e. A strong positive
correlation between values of this function and effective
execution times have been experimentally verified by some
researchers [36], [38]. Since every hop that a message takes
counts towards energy consumed, this function also encap-
sulates the amount of power spent on communication. Em-
beddability, as we define it, is a measure of how well a net-
work is able to embed several guest graphs and is given
by

Cuo=wi-Cq,,g+wrCqym+ws-Cqyr+...+wn-Ca, m

where the graphs G1,G2,Gs, ..., G, represent the various
communication patterns of programs to be run on the host
graph and the weights wy,ws,ws, - .., w, represent the rel-
ative frequency with which those communication patterns
manifest themselves. A network is said to have better em-
beddability than another network for a certain certain set
of guest graphs if it has a lower C'y value.

We used the following guest graphs for our experimen-
tal results: a binary tree, a mesh, a hypercube and a star.
They represent the filters we would have to use to design
a network to run the NGST application. The intuition
behind choosing a star graph was to account for collective
communication primitives such as broadcast, reduction and
parallel prefix sums which are common in data parallel ap-
plications. We made a few assumptions while obtaining the
results. First, we took the weights w;, ws, w3 and wy to be
equal. We also assumed that all the edge weights are equal
to 1. Both the guest graph and host graphs used were of
the same size and only one guest node was allowed to be
mapped to a host node. We believe that these assumptions
are valid in many cases and do not greatly skew the results
obtained. Moreover, they help us to show the effectiveness
of the filtering process without getting too specific about
any particular application. Table II compares the perfor-
mance of the “best” random network that we obtained with
our filtering technique with some traditional well-known
networks. The thresholds on each filter were adjusted to
obtain at least one network at the output. This network is
evidently the one with the least C'y value. 1000 networks
were used in the filtering process.

For a fair comparison, we divided the candidate net-
works according to their degrees. Results from the table
show that for the set of four guest graphs chosen, random
graphs seem to perform better than any of the traditional
networks considered in both the degree-3 and the degree-4
category. Since C'y is a normalized function, a small dif-
ference in the values could translate to big differences in
execution time and power dissipation depending on the to-
tal communication volume. It is important to note that
the results obtained are dependent on the mapping algo-
rithm used. Since the mapping problem is NP-complete,
nearly all practical implementations use heuristic methods
to achieve a near-optimal solution. An important criteria
for choosing the mapping algorithm is that it should not
make any assumptions about the type of graphs used as
inputs. Though a number of packages for solving map-
ping problems are publicly available [39], their main focus
is to produce results quickly rather than reaching optimal-
ity. We have found, through numerous experiments, that
a simple implementation based on the simulated annealing
heuristic works better for the input graphs that we have
considered and so, we used that to provide the mapping. In
instances such as the embedding of the 64-node hypercube
into the 8 x 8 mesh where theoretical results are available in
the literature [40], the reported mapping was used. For a
fuller treatment of the embeddability of random networks,
see [41].

C. The Fault Tolerance Filter

Four fault tolerance measures introduced earlier, namely
diameter stability, A(py), average node-pair distance sta-
bility, D(ps), probability of disconnection, m4(ps), and
maximum connected component size, Xmaz(Pr), ade-
quately capture network qualities such as graceful degrada-
tion and robustness. Here, we evaluate the vulnerability of
regular random networks of size 64 and degree 3 and 4 and
compare their performance with other networks of similar
size and degree. The random networks were first passed
through a diameter filter with threshold set to the mini-
mum value and a network was selected at random from the
output. Figure 6 shows the comparison of diameter stabil-
ity among degree 3 and degree 4 networks. Here again, the
random network of degree 4 outperforms all the networks in
its category whereas in the degree 3 category, it is second-
best. Figure 7 shows the average node-pair distance stabil-
ity for degree-3 networks. The node-pair distance stability
of degree-4 random networks behaves similarly to their di-
ameter stability. The performance of random graphs in
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TABLE II
COMPARING THE EMBEDDABILITY OF NETWORKS OF SIZE 64 AND DEGREE-3 AND DEGREE-4

Guest — 6D 8 x 8 64-node 64-node || Composite

Host | | degree | hypercube | mesh | binary tree star application

64-node CCC 3 2.333 1.705 1.380 4.698 10.116

64-node chordal ring 3 2.448 1.784 1.349 4.412 9.993

64-node random 3 2.442 1.714 1.317 3.792 9.268

8 x 8 mesh 4 2.333 1.00 1.222 4.063 8.618

64-node butterfly 4 1.667 1.50 1.190 3.428 7.785

8 x 8 mesh-torus 4 1.667 1.00 1.190 4.063 7.920

64-node random 4 1.979 1.553 1.111 2.936 7.580
comparison with other networks with respect to the prob-
ability of disconnection and the maximum connected com- i
ponent size followed the same trend [21]. All these results i
show that random networks perform better than most of |
their counterparts with respect to fault tolerance as well. S " |
Careful examination of the results reveals that networks 2 + g 2 |
that are not regular are more vulnerable compared to those E + % o *
that are regular, as can be see in the case of shuffle ex- a 9 +" %x 645_4n_0r?§dsehgfcﬂce ? i
change networks and meshes. This is another reason that IE % 64-node chordal ring of degree 3 -~ |
motivates the use of regular random graphs rather than 7 Moebius graph of order 6 >~ 4
. 64-node random network of degree 3 ~-4-- |
irregular ones. 6% 64-node MTS graph of degree 3 -~ *¥

Each of the fault tolerance measures is a function of the 5 : : : :
link failure probability, py. If the designer knows the ex- 0 0.05 O'l(_)_ ) M? 0.20 0.25
act link failure probability, then the value of the measure Probability of link failure
corresponding to that failure probability can be used for (a) Comparison among degree 3 networks
comparison with the threshold of the filter. However, in
most cases, the designer would have to deal with a range
of link failure probabilities. In this case, the designer would 7
have to convert the values obtained for different link failure 7
probabilities to a single number for use in filtering. This — |
can be done by introducing a weight function, w(py), and 51: |
using a weighted sum of the values corresponding to differ- 2 i
ent link failure probabilities. Figures 6 and 7 give an idea 5 9 T |
of the threshold values that can be applied for the A(py) P . + ;/,.x/”: 296 % 4 mesh torus —<— |
and the D(pf) filters. ! 7,, ,,,,,, rg";i’_"ﬁg’;‘é‘@liode chordal%i);]g(r)?%sg]gtrgreuz g
B TLE 4-D wrapped butterfly X
D. Putting the Filters Together 54 64-node random network of degree 4 - -4 - -
| | | | | | |
We now analyze the filtration process further by using 0 005 010 015 020 025 030 035 040

it to study tradeoffs between measures. In other words,
how much do we have to lose in terms of one performance
measure in order to achieve a desired level of performance
with respect to another measure? Filters corresponding to
two measures are taken and their thresholds set such that
only those networks, say within the top %, pass through
the filter. If the sets of networks output by both filters
are identical (or nearly so), we can conclude that the mea-
sures associated with these filters are closely related. In
such a case, we might even make do with just one of the
two measures, which translates to one less filter. In this
way, the filtering process can be used to determine how
orthogonal two measures are with respect to each other.
The greater the orthogonality between two measures, the
higher should be the relative threshold set in each filter to
obtain at least some non-zero output when the two filters

Probability of link failure

(b) Comparison among degree 4 networks

Fig. 6. Diameter vs. probability of link failure

are used in tandem.

As an example, we use the filters corresponding to the
four fault tolerance measures. Experiments were performed
using networks of size 64 and degree 3. For each filter,
the networks were ranked according to their performance
over link failure probabilities in the range [0.0,0.2], with
each link failure probability having the same weight. The
filters were then taken in pairs and the best % at the
output of the each filter were set aside. Let y denote how
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Fig. 7. Average node-pair distance vs. probability of link failure

many of the % at the output of the first filter were present
among the % at the output of the second filter. Figure 8
shows y as a function of x for different pairs of measures.
Pairs that are closer to the straight dotted line are less or-
thogonal compared to other pairs. It is clear from the fig-
ure that (A(py) and ma(py)) are quite orthogonal whereas
A(py) and D(py)) are not. Looking at the closeness of the
(A(py), D(pys) curve to the (ideal) dotted line, we may be
able to make do with one of the two and so, only three of
the four measures may be sufficient to describe the fault
tolerance characteristics of the generated interconnection
networks.

30
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y% (output of second filter)
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25

10 15 20
X% (threshold of first filter)

30

Fig. 8. Orthogonality between different pairs of measures

Let us now consider diameter, embeddability and fault
tolerance together and see how random networks perform
with regard to these measures simultaneously, keeping in
mind the example of the spacecraft computer. For embed-
dability, consider the same set of guest graphs as considered
earlier and for fault tolerance, consider average node-pair
distance stability, D(py), for link failure probabilities be-
tween 0.0 to 0.2. Table III compares the performance of
random networks with other networks of size 64 and degree
3. Results of the random network are based on an input set
of 1000 graphs. It is clear that random networks perform
consistently better than the other networks for each of the
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filters.
TABLE III

COMPARING THE NETWORKS WITH RESPECT TO THREE MEASURES

| Graph | Diameter | Embeddability | D(py) |
8 x 8 mesh 8 8.618 1.116
& x 8 Mesh-torus 6 7.920 0.845
Chordal Ring 6 7.785 0.748
Random 5 7.580 0.690

IV. DiscussiON

In this section, we comment on the practical applicabil-
ity of random networks. Whether a random network can
be used in a certain system or not is influenced by a num-
ber of factors. In the case of a network of workstations
(NOWs) [42], there is usually a great deal of freedom with
regard to the way the workstations can be interconnected.
This provides the flexibility of employing a random net-
work which can be synthesized using our approach, with
the requirements of the application(s) that would run on
the system. Cluster computing [43] provides another re-
lated application area for random networks. In reconfig-
urable computers [44] where the interconnection network
can be programmed through a series of reprogrammable el-
ements, random networks find immediate applicability. In
commercial multiprocessor systems however, random net-
works have long been considered “misfits” for purposes of
interconnection due to their lack of symmetry and hence,
are not favored by designers in spite of their good over-
all properties. However, one must also realize that only a
miniscule fraction of the multitude of interconnection net-
works that have been described in the literature have ever
been employed in commercial systems; the mesh and the
hypercube being the most popular [45]. The main reason
for the popularity of these networks is their amenability to
packaging.

A. Using Random Networks in a Hierarchical Structure

For large-scale multiprocessor systems?®, multi-level hier-
archies become inevitable due to technological constraints
[46]. Tt is not practical to have a 256-node network of pro-
cessors inside a single VLSI chip using the current packag-
ing technology. The current packaging hierarchy typically
consists of chips, boards, racks and cabinets. This model
allows increasing flexibility with regard to the interconnec-
tion between the elements of a level as we move up the
hierarchy®. At the higher levels of the hierarchy, intercon-
nections are typically done manually using wires or special
cables. This increasing flexibility allows a designer to em-
ploy random networks higher up in the hierarchy. Here, we
report on the performance advantages obtained by using
random networks in such a hierarchical structure.

3By “large-scale”, we mean network sizes greater than a couple of
hundreds.

4Level 0 corresponds to processing elements packaged into chips
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The packaging model that we use is similar to the one
proposed in [46]. It reflects a generic packaging technology
consisting of two levels, in which the processors are orga-
nized into a number of modules at the lower level. What a
module physically corresponds to depends on the scale of
the machine; it could be a board containing an interconnec-
tion of processor chips, a rack consisting of multiple boards
or even a cabinet consisting of multiple racks. The inter-
connection within a module forms the intra-module net-
work, whereas the interconnection between modules forms
the inter-module network. A schematic of the hierarchy is
shown in Figure 9. Each module has a fixed number of pins
through which they communicate with each other. This pin
count can also be viewed as the degree of the inter-module
network. We consider the intra-module network to be some
regular network and the pins at the boundary of the module
as the outcome of some edges in the intra-module network
being deleted and replaced by lines that connect to the
pins. Such a procedure was adopted to enforce the notion
of regularity which we have been considering throughout
this paper. For every edge that is deleted, we get two pins
at the boundary of the module. We then design the inter-
module network using our filtering approach with the num-
ber of pins as the degree and the number of modules as the
size of the network. We are interested in the performance
advantage provided by such a design.

Inter-module network

Modules

Intra-module network

Fig. 9. Schematic of a 2-level packaging hierarchy

For our first set of experiments, we chose a 4 X 4 mesh-
torus for the intra-module network. We considered 64 such
modules for a machine size of 1024 processors. Our filtering
technique was used to generate the inter-module network
that would give the least overall diameter. Note that, as
always, we could use any other measure or set of mea-
sures besides diameter in the filtration process but we feel
that considerable insight can be obtained using a simple
measure like diameter. The 4 x 4 mesh-torus was then re-
placed by a random network of size 16 and degree 4 and
the experiments rerun. Figure 10 summarizes the results
obtained for different values of the pin-count. For a pin-
count of 2, there is no other option of interconnecting the
modules other than as a ring. Increasing the pin-count to
4 provides a substantial improvement in the diameter. A
diameter of 21 is obtained when the inter-modular network
is implemented as a random network. This should be com-

pared against a diameter of 36 (not shown in Figure 10)
which would have been obtained if the inter-modular net-
work used a 8 x 8 mesh-torus interconnection. The figure
shows that further improvements can be obtained if both
the intra-modular as well as the inter-modular networks
are implemented using random networks. This improve-
ment is not significant as we further increase the number
of pins from 6 to 12. Note that a greater pin count trans-
lates to a greater cost and the cost per wire is higher at
higher levels of the hierarchy. A simple cost analysis fa-
vors the use of 4 as the pin-count. It is important to note
that for each pin count, selecting a different set of edges to
be deleted can give a different diameter. For this reason,
we tried a number of edge combinations for each pin-count
and used the one that gave the minimum diameter.

140 1
[ meshtorus

120 1 M random | |

100 o 1
3 80 r 7
£
S 60 - b
o

40 - 7

21
20 W 1614 1413 1019 1299 ]|
0
2 4 6 8 10 12
Number of module pins
Fig. 10. Diameter as a function of the number of pins in the module

Our next set of results examines the effect of the number
of modules and the topology of the intra-modular network
on the diameter of the entire network. The size of each
module is reduced as the number of modules is increased
in order to keep the size of the network constant. For exam-
ple, for the number of modules equal to 128, the size of each
module is reduced to 8. As before, results were generated
for both the mesh-torus and the random network as the
intra-modular network. Figure 11 shows a plot of the re-
sults obtained with a pin-count of 4. Advantages obtained
from using random networks are apparent from the figure.
If the entire network were implemented as a 32 x 32 mesh-
torus, the best diameter we can get is 32 which is much
larger than the 22 we get if it is implemented as a 2-layer
network, with a 32-node mesh-torus forming the layer-1
network and a 32-node random network, obtained through
our filtering approach, forming the layer-2 network. A fur-
ther improvement is obtained if the layer-1 network is also
generated using our filtering technique. Such a design can
be justified for applications requiring customized solutions
[47] where the system is designed from scratch and the de-
signer has complete freedom. Further analysis of packaging
using a detailed cost model is presented in [34].
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B. Closing Remarks

The contribution of this paper is two-fold: First, we
demonstrate that random regular graphs are serious com-
petitors to several traditional networks that are used in
practice. Second, we show that filtering these networks
provides a more flexible and practical method to design
networks that satisfy multiple performance requirements
than the traditional approach of choosing one of the stan-
dard networks or constructing a network by hand.

The strength of this approach lies in the versatility and
extendability of the filtering step, in that a different set
of filters can be used for a different set of requirements
and new filters can be added as and when newer measures
are developed. This paper demonstrates the effectiveness
of this approach through extensive experimental results.
Superior interconnection networks were synthesized using
a moderate number of graphs; around 1000 graphs were
sufficient in most of the cases that we studied. We have
also used the filtering approach to test orthogonality and
study tradeoffs between various measures. Lastly, we have
tried to motivate the future use of random networks by
discussing where and how they can be used.
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