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Abstract

Emerging networking technologies have complex net-
work interfaces that have renewed concerns about net-
work reliability. In this paper, we present an effec-
tive low-overhead fault tolerance technique to recover
from network interface failures, more particularly net-
work processor hangs. We demonstrate the technique
in the context of Myrinet. Fault recovery is achieved
by restoring the state of the network interface using
a small backup copy containing just the right amount
of information required for complete recovery. Our
fault detection is based on a software watchdog that de-
tects network processor hangs. Results on the Myrinet
platform show that the complete fault recovery can be
achieved in under 2sec while incurring a latency over-
head of just 1.5us during normal operation. The paper
also shows how this fault recovery can be made com-
pletely transparent to the user.

1 Introduction

The complexity of network hardware has increased
tremendously over the past couple of decades. This is
evident from the amount of silicon used in the core of
network interface hardware. A typical dual-speed Eth-
ernet, controller uses around 10K gates whereas a more
complex high-speed network processor such as the Intel
IXP1200 [8] uses over 5 million transistors. This trend
is being accentuated by the demand for greater net-
work performance, and so communication-related pro-
cessing is increasingly being offloaded to the network
interface. Nowadays, interfaces with a network proces-
sor and large local memory are not uncommon. For
example, the Myrinet host interface card uses a cus-
tom 32-bit RISC processor core and onboard SRAM
ranging from 512K to 8M bytes.
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Unfortunately, such increased complexity renews
concerns regarding reliability and availability of the
system. Network interface hardware is prone to the
same type of failures as the host hardware. Network
interface failures can however be more detrimental to
the reliability of a distributed system. As we will see
in the next section, faults can cause the network pro-
cessor to hang, causing the node to be cut-off from the
rest of the system. Not only that, faults can also cause
the host computer to crash/hang, and worse still, can
sometimes even affect a remote network interface. So,
detecting and recovering from such network interface
failures as quickly as possible is crucial for a system
requiring high availability and reliability.

In this paper, we present an efficient, low-overhead
fault-tolerance technique for network interface failures.
The focus will be on a specific type of failure, namely
network processor hangs. The central philosophy be-
hind our technique is to keep around enough network-
related state information in the host so that the state
of the network interface can be correctly re-established
in the case of a failure. Clearly, the challenge in such
a scheme is to provide for this “checkpointing” with as
little performance degradation as possible. Having the
host checkpoint the state of the network interface (in
the classical sense) can substantially degrade the per-
formance of the system. In our technique, the ”check-
pointing” is a continuous process in which the appli-
cations make a copy of the required state information
before sending the information to the network interface
and update it when the network notifies the applica-
tion that the state information is no longer required.
As the results will show, such a scheme greatly reduces
the impact on the normal performance of the system.
Our technique also incorporates a quick fault detec-
tion scheme based on software implemented watchdog
timers. We believe that both the fault detection and
recovery techniques are general enough to be applicable
to many modern network technologies, primarily those
that are microprocessor-based.



Before we detail our fault tolerance technique in Sec-
tions 3 and 4, we will briefly describe Myrinet, which
is the platform for this case study and report on fault
injection experiments that expose the vulnerability of
such microprocessor-based network systems to faults.
In Section 5, we discuss some implementation details
and report on the performance and overhead of the
fault tolerance scheme. We conclude the paper in Sec-
tion 6.

2 Mpyrinet: An Example System

Myrinet [3] is a cost-effective, high-bandwidth (2
Gb/s), packet-communication and switching technol-
ogy from Myricom Inc [11]. It employs wormhole
switching, backpressure flow control and source routing
to achieve low-latency (~ 8us) transfer of messages. A
Myrinet network consists of point-to-point, full-duplex
links that connect Myrinet switches to Myrinet host
interfaces and other Myrinet switches.

The Myrinet host interface card is designed to pro-
vide a flexible and high performance interface between
a generic bus, such as the SBus or PCI, and a Myrinet
link. Figure 1 shows the organization and location of
the Myrinet host interface card in a typical architec-
ture. At the center of the microarchitecture is a chip,
called the LANai, which contains a RISC processor,
(Direct Memory Access) DMA logic (packet interface)
to/from the network, External (or E) bus interface logic
to/from the host, timers, and local configuration reg-
isters. The fast local synchronous memory (SRAM)
is used to store the Myrinet Control Program (MCP)
and for packet buffering. The MCP is the program
that runs on the LANai RISC processor and provides
the basic functionality for reliably transfering messages
from the host to the Myrinet link.
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Figure 1. Myrinet host interface card

The Myrinet host software consists of a device driver
that runs as part of the host operating system and a

user library that provides a light-weight communica-
tion layer and API for the application software. The
device driver provides important I/O device related in-
terfaces to the user library, such as port opening and
closing, memory mapping, interrupt handling and load-
ing the MCP. The ability to change the network be-
havior through the MCP has made possible the imple-
mentation and testing of a number of communication
protocols on Myrinet, including Active Messages [4],
Fast Messages [12] and BIP [13]. Myricom’s own soft-
ware, called GM, borrows many features from these
protocols and is currently the most widely used and
preferred software for Myrinet. All these protocols are
low-overhead protocols that avoid operating system in-
tervention by providing a zero-copy mode of operation
directly from the user space to the network (Figure 2).
The scheme, however, requires that the user virtual
memory on both the sending and the receiving side be
pinned to an address in physical memory so that it
will not be paged out during DMA carried out by the
network interface. Thus, a user program employs sys-
tem calls to allocate a number of unswappable pages of
memory used for data-exchange, and thereafter avoids
system calls.
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Apart from the small latency, two other fea-
tures make GM worth considering in distributed sys-
tems: reliable in-order delivery of messages and self-
configuration. GM automatically handles transient
network errors such as dropped, corrupted or misrouted
packets. This handling is done transparent to the user
and is mainly carried out in the MCP. For configuring
the network, a program called the GM mapper is run on
anode. The GM mapper initiates the mapping process
and at the end of the mapping protocol, each interface



has a map of the network and routes to all other inter-
faces stored in its local memory. The GM mapper can
also reconfigure the network if links or nodes appear
or disappear. Inspite of these fault tolerance features,
as we show next, Myrinet/GM may still not be favor-
able for systems requiring high availability for special
applications, like the NASA REE supercomputer [6].

All of Myrinet’s high availability features assume
that the LANai processor executes error-free. This can
be a very costly assumption to make in some applica-
tions, more particularly space applications. For exam-
ple, a cosmic ray could cause an instruction in the MCP
to flip a bit which could make it an invalid instruction.
When the LANai executes the invalid instruction, it
could simply crash. In some cases, the host applica-
tion accessing the Myrinet card also hangs and hence
it may be required to restart the application/machine.

Such were the type of effects seen in fault injection
experiments performed by our research group as well
as other research groups [15]. Transient faults in the
network processor were simulated by flipping bits ran-
domly in the code segment of the MCP. Rather than
injecting faults into the entire LANai SRAM, one sec-
tion of the MCP code, namely send_chunk, was selected
and for each experiment, a fault was injected at a ran-
dom bit location in this section while it was handling
some network communication. Since send_chunk corre-
sponds to a serial piece of code that is executed by the
LANai each time a message is sent out, we are assured
that all the faults are activated. Table 1 shows a sum-
mary of the results from these experiments and those
reported in [15]. The network hardware (LANai 9) and
software (GM 5.1) used in our experiments is the latest
(as of this writing) and hence validates a more recent
Myrinet technology.

Table 1. Results of fault injection on a Myrinet
system (1000 runs)

Failure Category % of Injections

Our work | Iyer et al.[15]
Local Interface Hung 28.6 234
Messages Corrupted 18.3 12.7
Remote Interface Hung 0.0 1.2
MCP Restart 0.0 3.1
Host Computer Crash 0.6 0.4
Other Errors 1.2 1.1
No Impact 51.3 58.1

It is clear from the table that interface hangs and
dropped/corrupted messages account for more than
90% of the failures that affect the network interface
in some undesirable way. Surely, these results could
be different if fault injection is carried out on some

other section of the code, but the results give a fla-
vor of the different types of failures one can expect.
A interface hang could mean that the LANai simply
stopped executing instructions or that it has entered
into an infinite loop , causing it to stop responding to
user requests. While dropped/corrupted messages are
already well handled by the GM software, there is no
easy way to correctly recover from interface hangs. The
driver could be reloaded and the application restarted
from a safe checkpoint (if there is one). But, as we shall
see in the next section, this does not always ensure cor-
rect recovery. Middleware, such as MPI, built on top
of GM, consider GM send errors to be fatal and exit
when they encounter such errors. This can cause a dis-
tributed application using MPI to come to a grinding
halt if proper fault tolerance is not implemented.

The table also shows other types of failures, such
as host computer crashes, which are caused by faults
that propagate from the network interface to the host
system. While we will not concern ourselves with such
types of failures in this paper, the point of all this dis-
cussion is to show that faults affecting the network in-
terface can have a substantial effect on the reliability
of the system. For the rest of the paper, we will con-
centrate on interface hangs.

3 Recovery Strategy

Recovery from a host interface failure primarily in-
volves restoring the state of the interface to what it
was before the failure. Simply resetting the interface
and reloading and restarting the MCP would not be
sufficient as it can cause messages to be lost or dupli-
cate messages to be received. In order to elucidate this
aspect, let us take a closer look at the programming
model and design of GM.

3.1 GM Programming Model

Communication between user processes in separate
nodes using GM takes place through endpoints called
“ports” with two non-preemptive priority levels for
messages. The programming model is “connectionless”
in that there is no need for the client software to estab-
lish a connection with a remote port in order to commu-
nicate with it. The sender simply allocates DMAable
memory, initializes the memory segment and informs
the LANai that the message needs to be sent out. The
receiver, on the other hand, allocates DMAable mem-
ory and notifies the MCP that it is ready for receiving.
The MCP is responsible for the rest of the communica-
tion process, i.e., DMAing the contents of the message
from/to host memory, building the packet according



to the Myrinet specifications, setting up connections,
sending and receiving the packet and ensuring reliable
in-order delivery of messages. A “connection” corre-
sponds to a logical link to a remote node which the
MCP uses to multiplex all the traffic to that node.
The MCP uses a version of the Go-Back-N protocol
to handle transient network errors such as dropped,
corrupted, or misrouted packets and ensure in-order
delivery of packets over each connection. Finally, the
MCP informs the user process of a message arrival or a
successful send by posting an event in its event queue.

Flow control in GM is managed through a token
system, similar to that used in credit-based flow con-
trol [10]. Both sends and receives are regulated by
implicit tokens, which represent space allocated to the
user process in various internal GM queues. A send to-
ken consists of information about the location, size and
priority of the send buffer and the intended destination
for the message. A receive token contains information
about the receive buffer such as its size and the prior-
ity of the message that it can accept. A process starts
out with a fixed number of send and receive tokens
and relinquishes a send token each time it calls GM
APT’s gm_send() function and a receive token with a
call to gm_provide_receive_buffer(). A send token is im-
plicitly passed back to the process when its callback
function is called and a receive token is passed back
when a message is received from the receive queue us-
ing the gm_receive() call. Apart from the notification
of received messages and completion of sends, the re-
ceive queue is also used for other sundry purposes such
as alarms. There are other GM internal events which
a process is not expected to handle and can simply
pass them to gm_unknown() which handles them in a
default manner. This programming style allows maxi-
mum overlap between computation and asynchronous
communication. Figure 3 shows the schematic of a typ-
ical control flow in a GM application.

Sender Receiver

User process prepares message
User process sets send token

User process provides receive buffer
User process sets recv token

LANai sdmas message
LANai sends message

LANai receives ACK

LANai sends event to user process

|_——> LANai receives message

— | | LANaisends ACK

LANai rdmas message
LANai sends event to user process

User process handles notification event
User process reuses send buffer

User process handles notification event
User process reuses receive buffer

Figure 3. A typical control flow

3.1.1 Duplicate Messages

Reliable transmission in GM is achieved through the
use of sequence numbers and these sequence numbers
are maintained solely by the MCP and are therefore
transparent to the user. If the MCP is simply reloaded
and restarted on failure, the state of the connections
and the sequence numbers are lost. This loss of infor-
mation does not allow the messages to be retransmitted
reliably. Consider the example shown in Figure 4. A
sending node crashes when an ACK is in transit. After
recovering from the failure, since all state information
is lost, the sender may try to resend the message with a
invalid sequence number. The receiver would reply by
sending a NACK with the expected sequence number.
At this point, if the sender resends the messages with
this sequence number, the receiver would incorrectly
accept a duplicate message.
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Figure 4. The case of duplicate messages

This problem arises due to the lack of redundant
state information. If information of all streams of se-
quence numbers was stored in some stable storage, then
the MCP could use this redundant information dur-
ing recovery to send out messages with the correct
sequence number and avoid the problem of duplicate
messages. The key, however, is to manage redundancy
so that the performance of the network is not impacted
greatly.

3.1.2 Lost Messages

The GM programming model is “connectionless” in
that the sender does not explicitly set up a connec-
tion with the receiver. So, if the faulty node is a re-
ceiver, then there is not much state information that
needs to be restored. The receiver in GM sends out
an ACK as soon as it receives a valid message. This
can lead to faulty behavior as shown in Figure 5. Con-
sider the case when the LANai crashes after the send of
the ACK is complete but before the entire message has



been DMAed to the host memory. This can happen if
the host DMA interface is not free and so, the DMA
is delayed. The receiver will never receive that mes-
sage again because as far as the sender is concerned,
it received the ACK for the message and notified the
application that the send was successful. The sender
would not resend the message and so, as far as the
receiver is concerned, the message is lost forever.
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User process sets send token

User process provides receive buffer
User process sets recv token

LANai sdmas message
LANai sends message

LANai receives ACK =<— |
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|_——> LANai receives message

— | | LANaisends ACK

X LANai goes down

Driver reloads MCP

User process handles notification event .
Driver sets recv tokens

User process reuses send buffer

LANai never receives lost message

Figure 5. The case of lost messages

This problem arises because of the lack of a proper
commit point for a send-receive transaction. The re-
ceiver should send out an ACK only when the message
has been copied to its final destination.

4 Putting it Together

The above discussion indicates that reloading the
MCP alone does not guarantee correct recovery. What
is required is to restore the state of the network in-
terface to a point that guarantees the correct handling
of future messages as well as messages in flight at the
time of failure. A crude way to achieve this is by peri-
odically “checkpointing” both the application and the
network interface state and retracting back to the last
checkpoint in the case of a network failure. Such a
scheme however involves a great deal of overhead and
in many ways can work against the very basis of us-
ing a high-speed network. Clearly, storing the entire
state of the network interface is an overkill. What is
important is to keep a copy of just the right amount of
state information required for complete recovery. For
example, the case of duplicate messages can be dealt
with by simply keeping a copy of the sequence num-
ber of the message that was last acknowledged. The
challenge, however, is in recognizing what is required
and what can be left out. The design of our fault tol-
erance scheme was driven by two key objectives: (i)
introducing minimal copy overhead and (ii) maintain-
ing the same application programmers interface (API)
so that minimal or no changes to application source
code would be required.

4.1 Setting the stage

Since we are considering only network interface fail-
ures, a safe place for storing the required network inter-
face state is the host’s memory. Apart from sequence
numbers, it is also important to keep a copy of the send
and receive tokens. As we had discusses earlier, a pro-
cess implicitly relinquishes a send token (and passes it
to the LANai) when a call to a GM send is made and
gets it back when the send is successfully complete. A
send token consists of information about the location,
size and priority of the send buffer and the intended
destination for the message. It is important to keep an
updated copy of all the send tokens that are in posses-
sion of the LANai so that this information can be used
during fault recovery to resend the messages that have
yet to be acknowledged. Similar is the case with the
receive tokens. Keeping a copy of the forfeited receive
tokens allows us to notify the LANai of all the pinned-
down DMA regions that have not yet been filled by the
LANai.

In our implementation, extra space is allocated by
the user process to maintain a copy of the send token
queue and the receive token queue. When a call to any
of the gm_send() functions is made, a copy of the send
token is added to the queue. Since the size of a token
is small, the overhead from a simple memory-copy is
quite insignificant. The process also stores a copy of the
receive token when it provides receive buffers. Apart
from this information, the host also needs to have a
copy of the sequence numbers used for each connec-
tion. This is easily achieved by having the user pro-
cess generate the sequence number and pass it through
the send token to the LANai. The MCP now simply
uses these sequence numbers rather than generating its
own. If messages are to be assigned sequence numbers
strictly on a per-connection basis to maintain the orig-
inal GM protocol, all the processes on a node sending
messages to the same remote node need to be synchro-
nized so that a continuous stream of sequence numbers
for the connection is obtained. Such a synchronization
can however introduce unnecessary overhead. A simple
solution to this is to generate independent streams of
sequence numbers for each remote node on a per-port
basis. This generation can be done entirely within a
single process but requires that the receiver now ac-
knowledge on a per-port basis rather than simply on
a per-connection basis. Thus, the receiver now has to
keep an ACK number for every (connection,port) pair.
The extra memory requirement is however not large
since GM allows only 8 ports per node. This is the
main deviation from the original GM structure, as de-
picted in Figure 6.
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Another difference with the original GM is with re-
gard to the commit point on the receiver side. In our
implementation, we delay the sending of an ACK to
after the DMA of the message into the user’s receiver
buffer is complete. This increases the network occu-
pancy of the message but, as the results in Section 5
show, the impact on performance is not at all signifi-
cant. Since the receiver must also keep a copy of the
ACK number for every stream, the LANai needs to
notify the host of the sequence number of the message
that has just been ACKed. This it does, by including
the sequence number as part of the event posted by the
LANai into the user process’s receive queue. The re-
ceiver, at this time, also deletes the corresponding copy
of the receive token. Similarly, on the sender side, the
copy of the send token is removed just before the call-
back function for that send token is invoked. Note that
all these changes can be implemented within the GM
library functions, thus making them transparent to the
user. There are other pieces of the state information
that need to be stored by the host, such as the prior-
ities and sizes of messages acceptable by the receiver,
but we will not focus on these, as they are not critical
to the understanding of our scheme. Thus, in a nut-
shell, the user keeps a copy of the required LANai state
that is not implicitly stored in the host memory. All
this sets the stage for the actual recovery part.

4.2 Fault Detection

Traditionally, fault detection has been achieved
through heartbeats or “I am alive” messages. The

Myrinet switch uses such heartbeat signals to deter-
mine if a host interface on the other side of the link is
powered down. Having the LANai DMA such a mes-
sage or interrupt the host processor periodically to no-
tify it of its health, can be very expensive. Another
scheme would be to have the host processor poll the
network interface card periodically, but this would re-
quire context switches and, depending on the polling
frequency, can again impose a significant performance
overhead. One way to relieve the host processor of such
a chore, would be to associate a monitor (by way of a
watchdog processor, for example) with the LANai pro-
cessor. This however requires extra hardware which
may not be present in network interfaces. Our fault
detection scheme is based on a fairly simple watchdog,
but one implemented in software and using the low-
granularity interval timers present in most interfaces.
It takes advantage of the structure of the MCP.

The MCP is basically an event-driven program. It
executes a fixed (set of) action(s) when a set of events
occur and some conditions are satisfied. For exam-
ple, a Send DMA routine is started when the following
conditions are true: a proper send has been posted, the
host DMA interface is free and the LANai has sufficient
free space for a DMA operation into its local SRAM.
Similarly, a timer routine is called when an interval
timer expires. The LANai has three interval timers.
These are 32-bit counters that are decremented every
1/2us. In GM’s MCP, only one of the three interval
timers (ITO) is used. When this timer expires, the
corresponding bit in the interface status register (ISR)
is set and in the next dispatch cycle, a timer routine,
called L_timer() is called. The host uses this routine to
notify the LANai of various user actions, such as open-
ing and closing a port, request for pausing the LANai
as well as setting alarms. At the end of the L_timer()
routine, ITO is reset, causing it to expire again after
a predetermined interval. Numerous experiments with
our Myrinet network revealed that the maximum time
between these timer routine invocations during normal
operation is around 800us. Note that this value is not
equal to the predetermined interval as the MCP event
handling is serialized.

We use one of the remaining interval timers for
our fault detection purposes. One of the spare inter-
val timers (say IT1) is first initialized to a value just
slightly greater than 800us. The L_timer() routine is
modified to reset IT1 whenever it is called. The in-
terrupt mask register (IMR) provided by the Myrinet
HIC is modified to raise an interrupt when I'T1 expires.
So, during normal operation, L_timer() resets IT1 just
in time to avoid an interrupt from being raised. When
the LANai crashes/hangs due to a fault, the L_timer()



routine is not executed, causing IT1 to expire and an
interrupt is raised, signaling to the host that some-
thing may be wrong with the network interface. Such
a scheme allows the host to detect host interface fail-
ures with virtually no overhead and so the performance
of the network is not compromised.

This detection technique assumes that a network
interface hang does not affect the timer or the inter-
rupt logic. While this assumption cannot be proved to
be correct, our experimental results show that this is
most often the case. In fact, this simple fault detection
mechanism was able to detect all the interface hangs
reported in Table 1.

4.3 Fault Recovery

The interrupt caused by the expiration of the spare
interval timer is the first indication that something
might be wrong with the host interface card. This FA-
TAL interrupt is handled by GM’s host device driver.
While one might wish to carry out the entire fault re-
covery process in the interrupt handler, it is not al-
ways possible. Functions such as sleep() and malloc()
which need to be called during our fault recovery pro-
cess cannot be called in an interrupt handler because
the interrupt handler does not run in the context of a
process. We use a daemon process instead. We call
this the fault tolerance deamon (FTD).

The FTD can be run anytime before fault recovery
is to be achieved. The daemon, in its simplest sense,
opens up a port and waits for a fault to occur. The de-
vice driver, on receiving the FATAL interrupt, simply
wakes up the FTD which then starts the fault recovery
procedure. First, the FTD checks to make sure that
the LANai has indeed failed. This it does by writing a
“magic” word to a location in the LANai SRAM which
would have been cleared by the LANai had it been
functioning correctly. If the location is not cleared, the
FTD assumes that the interface has hung. The FTD
then disables the interrupts, unmaps the IO and reset
the interface card. It is assumed that the fault caus-
ing the upset is transient and that a card reset will
cause all the components on the card to reset to a non-
faulty state. The FTD then clears the LANai SRAM
and reloads the MCP. The DMA engine is restarted
and the interrupts re-enabled. This brings the state of
the LANai to the same state it reaches when the GM
driver is loaded. The next step would be to restore the
LANai state using the copy stored in the host. Firstly,
the LANai is notified of the page hash table maintained
by the host. The page hash table keeps track of the
mappings of virtual addresses for each port to DMA
addresses. It is big, so it is stored in host memory

and the MCP caches entries into the LANai SRAM.
Next, the FTD restores the mapping and routing table
information in the LANai. Finally, the FTD posts a
FAULT_DETECTED event in the receive queue of all
open ports, before rewinding and standing guard for
the recovery of the next fault.

4.4 Transparency

The asynchronous nature of communication in GM
requires a user process to occasionally poll the receive
queue for new events. As indicated earlier, all GM in-
ternal events are required to be passed to a special GM
library function called gm_unknown(). Transparency
of fault recovery is achieved by modifying this function
to handle the FAULT_DETECTED event. A series of
actions are carried out in the handler to get the pro-
cess back on track. After some initial cursory checks,
the LANai send and receive token queue is restored
using the process’ backup copy. Note that the send
tokens contain the sequence numbers of the messages
that have not been acknowledged, while the receive to-
kens correspond to the host buffers that have not re-
ceived messages. The process then updates the LANai
with the last sequence number received on each stream,
one for each (connection,port) pair. This ensures that
the LANai ACKs the right messages and NACKs those
that arrive out-of-order. Finally, the process clears its
receive queue before notifying the LANai to “reopen”
the port. The LANai initializes the per-port state and,
as usual, starts sending and receiving messages for the
port.

5 Implementation and Performance
Results

It is important to see how our design requires no
changes to be made to previously-written GM applica-
tions to take advantage of the fault tolerance features.
We incorporated our fault recovery scheme into a re-
cent version of the GM software (GM-1.5.1). We will
refer to this modified software as FTGM. We were able
to implement all the required changes into GM library
functions making the failure of the network interface
completely transparent to the applications, or middle-
ware software, such as MPL. What is required however
is for the application to be recompiled with the new
GM library.

An important design criteria during implementation
was to use resources sparingly so that the performance
is not impacted greatly. Hash tables were used wher-
ever searching over large arrays was required. The
extra static memory usage in the LANai was around



100K B while a process used up extra virtual memory
in the order of 20K B. It is important to evaluate the
impact of the implemented fault tolerance scheme on
the performance of the network. We present this anal-
ysis next.

5.1 Performancelmpact

The performance of a network system is usually
measured using three principal metrics:

e Bandwidth is typically equated to the sustained
data rate available for large messages.

e Latency is usually calculated as the time to trans-
mit small messages from source to destination.

e Host-CPU utilization measures the overhead
borne by the host-CPU in sending or receiving a
message.

The LogP model [5] specifies similar type of metrics
but for this analysis we will use the ones stated above.

GM provides a set of programs that can be used
to evaluate these metrics. Our experimental setup
consisted of two Pentium III machines each having
256MB of memory, a 33MHz PCI bus and running Red-
Hat Linux 7.2. The Myrinet host interface cards were
LANai9-based PCI64B cards and the Myrinet switch
was type M3M-SWS8. Figure 7 compares the band-
widths obtained with GM and FTGM for different mes-
sage lengths. The workload for these experiments in-
volved both the hosts sending and receiving messages
at the maximum rate possible (as in gm_allsize). For
each message length, a large number of messages (we
used 1000) were sent repeatedly and results averaged.
For small message sizes, the data-rate performance is
limited by the number of DMA transfers and packets
the interface can handle per unit time. Longer mes-
sages convey bytes in larger units, hence, can use up
the bandwidth provided by the links more efficiently.
The figure shows that the sustained bidirectional data
rate for GM as well as FTGM approaches an asymp-
totic value of ~ 92M B/ s for long messages. FTGM fol-
lows very close on the heels of GM and for all practical
purposes, imposes no appreciable performance degra-
dation with regards to bandwidth.

The reason for the jagged pattern in the middle of
the curve is because GM fragments large messages into
packets of at most 4K B at the sender and reassembles
them into messages at the receiver. This fragmenta-
tion and reassembly is performed in order to limit the
packet size in the network, so that a long message will
not block a channel for an extended period, but will
allow other packets to be interleaved on the channel.
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Figure 7. Bandwidth comparison of the origi-
nal GM and FTGM

Figure 8 compares the point-to-point half round trip
latency of messages of different lengths. The mea-
surement was performed as a repetitive “ping-pong”
exchange of messages between processes in the two
machines, with the one-way latency for each message
length plotted as half of the average round-trip time.

Here again, the performance of FTGM is not far
behind the original GM. The short-message latency, a
critical metric for many distributed-computing applica-
tions, is about 11.5us for GM and 13.0us for FTGM,
averaged over message lengths ranging from 1 byte to
100 bytes. These latencies are the sum of a host com-
ponent and a network interface component. While the
host component is a combination of the host-CPU exe-
cution time and the PCI latency, the network interface
component is a combination of the LANai execution
time and the packet interface latency. FTGM was de-
signed to minimize the amount of extra information
being DMAed from the host memory to the LANai
memory. Moreover, there is absolutely no change in the
packet header and no extra information is sent with the
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Figure 8. Latency comparison of the original
GM and FTGM

packet. Therefore, the effect on the PCI latency and
the packet interface latency in the LANai would be
minimal, if at all. The modification in the MCP that
affects the critical path the most is the delaying of send-
ing the ACK to after the DMA is complete. Since the
ACK needs to be delayed only when a receive token is
returned to the user, a multiple-packet message can be
made to take full advantage of the network bandwidth
by not waiting for the DMA to be complete, thus allow-
ing several packets of the same message to be in-flight
at the same time. For small messages, however, the ex-
tra delay comes mainly from the host-CPU utilization.
This factor is most predominant in protocols employ-
ing a host-level credit scheme for flow control [2], such
as FM. Minimizing the host-CPU utilization was one of
our principal design objectives. Information posted on
the Myricom website indicates that the measured over-
head on the host for sending a message is about 0.3us
and for receiving a message is 0.75us. In FTGM, the
send and receive token housekeeping contributes the
greatest to the increase in delay. It is around 0.25us

for the send and around 0.4us for the receive. The
extra overhead for the receive is because the receiver
has to update two hash tables for every receive: the
hash table containing the recv tokens and the hash ta-
ble containing ACK numbers for each stream. Table 2
summarizes the results presented in this section.

Table 2. Comparison of various performance
metrics between GM and FTGM

Performance Metric GM FTGM
Bandwidth 924MB/s | 92.0MB/s
Latency 11.5us 13.0us
Host util. (send) 0.30us 0.55us
Host util. (recv) 0.75us 1.15us
LANai util. 6.0us 6.8us

5.2 Recovery Time and Effectiveness

The complete recovery time is the sum of the fault
detection time and the times spent in the FTD and
the user process’ fault handler for restoring the state,
as shown in Figure 9. The fault detection time was
measured as the time from the fault injection to then
time when the FTD is woken up by the driver. It is
a function of the maximum time in between L_timer()
invocations and the interrupt latency. We shall ignore
the interrupt latency, because it is negligible (~ 13us)
compared to 800us for the watchdog timer interval.
The FTD recovery time consists of time required to
reload the MCP and restore routing and page hash
tables and posting the FAULT_DETECTED event in
each open port’s receive queue. Averaging over a num-
ber of experiments revealed a value of ~ 765000us for
the FTD recovery time, with ~ 500000us being spent
in reloading the MCP.
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Figure 9. The timeline of the fault recovery
process

The rest of the recovery time depends on the number
of open ports at the time of failure. The per-port recov-
ery time is primarily a function of the execution time



of the FAULT_DETECTED event handler. Our exper-
imental results show that this value is ~ 900, 000us. It
is arguable whether the time for handling the restored
send tokens by the LANai needs to be accounted for in
the recovery time. This would however be a function of
the number of send tokens that have been restored. Ta-
ble 3 gives a breakdown of the complete fault recovery
time.

Table 3. Components of the fault recovery
time

Component Value(us)
Fault Detection Time 800
FTD Recovery Time 765000
Per-process Recovery Time 900000

The experiments reported in Table 1 were repeated
using FTGM. While all the network interface hangs
were correctly detected, there was only five cases out
of the 286 hangs that FTGM was not able to prop-
erly recover from. We are currently investigating these
cases.

6 Conclusions

This paper describes a low-overhead network inter-
face failure recovery scheme for Myrinet. The crux of
the scheme is to keep a copy of just the right amount of
network interface state information in the host so that
the state of the network interface can be restored on
failure. Furthermore, we show how this can be achieved
by keeping the fault tolerance completely transparent
to the user. Implementation results are very promis-
ing. Fault detection can be achieved in less than a
millisecond, whereas the complete fault recovery typi-
cally takes less than 2 seconds. Such a quick recovery
can be obtained with just a 1.5us overhead in normal
operation. Depending on the application, this small
overhead could be well worth paying for, considering
the high availability that can be obtained.

The basic idea of such type of fault recovery is quite
generic and can be applied to almost all user-space
communication protocols [1]. Most of these high-speed
communication protocols use some kind of token sys-
tem for flow control. As we have seen, maintaining a
copy of the outstanding tokens will not incur a sub-
stantial overhead. Thus, all these protocols can stand
to gain from such a scheme, when it comes to fault
tolerance. Our fault detection and recovery scheme
also takes advantage of the autonomy between the host
processor and network processor. This is a feature
present in Myrinet and many modern microprocessor-

based network interfaces, such as Infiniband [9], Giga-
bit Ethernet [16, 14], QsNet [17] and ATM [7].
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