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Abstract

The interconnection network is a crucial element in
parallel and distributed systems. Synthesizing networks
that satisfy a set of desired properties, such as high re-
liability, low diameter and good scalability is a difficult
problem to which there has been no completely satisfac-
tory solution.

In this paper, we present a new approach to net-
work synthesis. We start by generating a large number
of random regular networks. These networks are then
passed through filters, which filter out networks that do
not satisfy specified network design requirements. By
applying multiple filters in tandem, it is possible to
synthesize networks which satisfy a multitude of prop-
erties. The filtered output thus constitutes a short-list
of “good” networks that the designer can choose from.
The use of random regular networks was motivated by
their surprisingly good performance with regard to al-
most all properties that characterize a good intercon-
nection network.

Ezxperimental results have shown that this approach
is practical and powerful. In this paper we focus on the
generation of networks which have low diameter, good
scalability and high fault tolerance. These generated
networks are shown to compare favorably with several
well-known networks.
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official policies or endorsements, either expressed or implied, of
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Laboratory, or the US Government.

1. Introduction

Interconnection networks (ICNs) are as much a de-
terminant of performance and dependability in a paral-
lel or distributed system as the processors themselves.
The network impacts the cost of the architecture and
the cost of communicating between processors, as well
as system reliability and the extent to which the system
can degrade gracefully under processor or link failures.

This paper describes a new approach to the syn-
thesis of interconnection networks for parallel and dis-
tributed systems. The distinguishing features of our
technique are that it can be tailored to the specific
performance and fault-tolerance measures of interest
to the designer, and that it can be used even by those
who are not experts in interconnection networks. It
is especially useful when seeking to synthesize a net-
work that performs well with respect to multiple per-
formance measures. For example, a designer may place
a high premium on both scalability and network re-
silience, while simultaneously needing to constrain the
degree of the network. It can also be used to study
tradeoffs among several performance or dependability
parameters.

A vast literature on interconnection networks ex-
ists. Networks such as the hypercube, shuffle-exchange,
Banyan, bus, chordal ring, tree and others, have been
extensively studied [8, 9]. However, much less has been
reported on the problem of synthesizing a network to
meet specific performance and reliability criteria.

In our approach, the designer specifies the perfor-
mance measures of interest. These may be common-
place measures such as bandwidth, diameter, connec-
tivity, or more exotic measures like diameter stability
in the face of failure, the extent to which the network
splinters as node and link failures accumulate, or scal-
ability. A large number of random regular networks of
the desired size are then generated and passed through
a bank of filters. Each filter is associated with a per-



formance requirement. The filters identify a subset of
networks which have the desired performance with re-
spect to the specified measures. This subset consti-
tutes a short-list of networks from which the designer
can choose.

The usefulness of this approach rests on its effi-
ciency. That is, the number of random networks one
has to generate before obtaining a useful short-list of
“good” networks. This problem does not readily yield
to theoretical analysis, and must be studied by simu-
lation experiments. We have found, through extensive
experimental work, that our technique is surprisingly
efficient.

The rest of the paper is organized as follows. In the
next section, we briefly review various desirable prop-
erties of ICNs. In Section 3, we describe our random
network generation algorithm and the filtering process.
Section 4 provides extensive experimental evidence to
the good performance of random regular networks. It
also shows the effectiveness of the filtering approach
through examples. Section 5 summarizes our findings
and discusses future work.

2. Preliminaries

A good interconnection network is characterized by
a number of desirable properties. Some of these are
listed below:

o Small internodal distances. One factor in the com-
munication delay is the node-pair distances. The
greater the average node-pair distance, the greater
the time a message will spend in the network, the
greater the energy consumed in delivering it, and
the greater the chances of network congestion.

o Small, fized degree. Each physical connection costs
money and a small degree corresponds to reduced
wiring and fewer I/O interfaces. Furthermore, if
the degree is constant over all nodes, then only one
basic node design may be necessary.

e Good fault tolerance. Many parallel or distributed
systems are used in applications requiring levels of
reliability that can only be achieved by making the
system fault-tolerant. There are many measures of
fault-tolerance: we list below a partial list of the
more useful network measures.

— Probability of network disconnection.

— Diameter stability, i.e., how the network di-

ameter is expected to increase as nodes or
links fail.

— Stability of the average node-pair distance as
nodes or links fail.

— How the network splinters after it gets dis-
connected: is it more likely to splinter into
one large component which is still useful, and
several small and useless components, or will
all the components be too small to be useful?

o Fasy construction and good scalability. It should
be possible to construct a network of any desired
size. Further, adding a few nodes to the network
should not cause drastic changes in such proper-
ties as diameter or average node-pair distance. A
scalable ICN should be able to accommodate small
increases in size rather than only large increases.

e Embeddability. Some algorithms are designed to
run well on certain topologies, i.e., those that map
well to the communication pattern of the appli-
cation. A good network should be able to embed
a wide range of topologies with low dilation, thus
ensuring that a large number of algorithms will
run efficiently on the selected ICN.

e FEasy routing algorithms. It is advantageous to
have a simple routing algorithm, for example, one
that requires only the knowledge of the destination
address. Routing algorithms can have a big impact
on congestion and power requirements. Networks
that facilitate the use of such simple algorithms
are preferable.

These measures will vary in importance from one ap-
plication to another. For example, space applications
may require massive levels of fault-tolerance and low
power consumption, while not placing a large premium
on scalability.

Interconnection networks can be represented as
graphs in which the vertices correspond to processors
and the edges to communication links. In this paper
we use the terms networks and graphs interchangeably.
We consider only undirected graphs and the size of a
network refers to the number of vertices in the graph.
In this paper, we mainly concentrate on networks of de-
gree 3 and 4, though our approach is not restricted to
these degrees. For comparing the performance of dif-
ferent measures among degree-3 networks, we use the
following topologies: shuffle exchange networks [16],
cube connected cycles(CCC) [14], chordal rings of de-
gree 3 [1], Moebius trivalent graphs [12] and multi tree
structures(MTS) of degree 3 [2]. In the degree-4 cato-
gory, we use meshes, torii, chordal rings of degree 4
[7] and the wrapped butterfly networks. In the next
section, we describe our approach to synthesizing net-
works which meet the designer’s requirements.



3. Approach

Our approach to network synthesis consists of a two-
step process: first, the generation of a large set of ran-
dom regular networks and second, the isolation of just
the right ones through a process of filtering.

3.1. Generating Random Regular Networks

We use the following definition of random regular
graphs:

Definition 3.1 A random regular connected graph of
size n. and degree d is a d-regular connected graph in
which node pairs connected by an edge are selected at
random.

Random regular graphs of n nodes and degree d are
generated as follows. We start with a set of n isolated
nodes. Edges are placed between node pairs selected
at random. This process continues until all the nodes
in the network satisfy the following two requirements:
(i) the degree of all the nodes is the same and equal
to the specified value, d and (ii) no pair of nodes is
joined by more than one edge, and no self-loops exist.
Finally, the generated network is tested for connect-
edness. Algorithm 1 contains the pseudocode used to
generate random regular networks.

Algorithm 1
generate_regular random_network (size,degree,seed)
1: A{Z{l,... ,n}
2: repeat
3:  Randomly pick two nodes, u and v, from set A
4: if ((u # v) and edge(u,v) not already present)
then
Add edge(u,v) to the adjacency matrix
update A by removing nodes whose degree has
been satisfied
7. elseif (size(4) =1) or
(nodes in A form a fully connected subgraph)

e o

then
8: discard and start all over again
9: end if

10: until size(A) =0

11: check for connectedness

12: if graph not connected then

13:  discard and start all over again
14: else

15:  return adjacency matrix

16: end if

A is the set of all nodes whose degree has not been
satisfied and is initialized on line 1 to the set of all n

labelled nodes. Lines 4-6 ensure that the two condi-
tions stated above are met and lines 7-8 ensure that the
algorithm does not loop infinitely. If, during construc-
tion, the nodes in A form a fully connected subgraph,
then no matter which two nodes are picked, the con-
necting edge will always be superfluous. No attempt
is made to backtrack from this situation, and so the
current adjacency matrix is discarded and a new one
generated.

The above algorithm generates a random regular
network each time it is called with a different seed
value. Note that under some conditions, such as those
on lines 7 and 12, the network that is being generated
needs to be discarded and the generation restarted.
To estimate the runtime required to generate a valid
graph, we generated a large number of random graphs
for various network sizes and calculated the average
runtime for each network size and for different degree
networks. Results shown in Figure 1 were obtained on
a 500MHz Pentium having 256MB of memory. It was
observed that networks of even 2048 nodes could be
generated in less than a second using this algorithm.
This shows that the generation algorithm can output
a random regular graph in reasonable time. It was
also observed that the check for graph connectedness
(line 12 of the algorithm) was almost always satisfied.
It is also important that the generated networks are
non-isomorphic to each other; otherwise the filtering
process will not make sense. To find out how many of
the generated networks are non-isomorphic, we checked
the isomorphism between all pairs of networks and ob-
served that more than 99% of the networks were non-
isomorphic to each other. All these results show that
the generation algorithm provides a cheap and versa-
tile method for producing the “raw” material for the
filtration process. To get a better idea of the number
of distinctive networks that can be generated with size
n and degree d, see [15].

3.2. TheFiltering Process

The raw material for the filtering process is the set of
random graphs generated. Filtering consists of identi-
fying those networks which have the properties desired
by the designer.

We use one filter for each requirement to be satisfied.
Typically each requirement is associated with a single
performance measure or a set of measures. A filter con-
sists of two parts: the evaluation part calculates the
value of the measure associated with the requirement,
and the checking part compares the value of the mea-
sure with a threshold specified by the requirement. For
example, if the requirement was a diameter no greater
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Figure 1. Average runtime of the generation al-
gorithm

than k, then the evaluation part computes the diameter
of the network and the checking part checks whether
this requirement has been met. Each filter takes as in-
put a set of random networks and outputs only those
that pass the checking part. The output of one filter
is used as input to the next. The filters are arranged
sequentially one after the other in decreasing priority
order of the measures they represent. The output at
the end of the entire filtering process depends on the
threshold values that have been set for each filter. If
the filtering process produces no output, the designer
will have to refine the threshold values. The threshold
of a higher-priority filter should not be relaxed before
that of every lower-priority filter has been relaxed to
the maximum allowed extent. The key feature of this
filtering approach is its versatility, as the set of selected
filters and their order is determined by the specific ap-
plication requirements.

The evaluation part is typically much more time-
consuming than the checking part. In order to speed
up the filtering process, the evaluation corresponding
to each of the filters can be carried out in parallel and
a single checking part that combines the checking parts
in all filters used to sift out networks that comply with
all the requirements. This approach is called parallel
filtering, compared to the sequential filtering that we
described earlier (Figure 2). Note that the time taken
in the case of parallel filtering is bounded by the maxi-
mum evaluation time among the filters, and evaluation
is carried out for all the input networks. In sequential
filtering, the threshold determines the number of net-
works that pass through at each stage. If a stringent
threshold is used, a smaller number of networks pass

E — Evaluation part
C —= Checking part

Figure 2. Sequential and Parallel Filtering

through and this greatly impacts the time spent in the
remaining filters. Thus, the time taken in the case of
sequential filtering is dependent on the threshold set in
each filter.

Some implementation details are worth mentioning.
One need not store the adjacency matrices of all the
input networks because they can be regenerated easily
and quickly using the seed value. So, only the seed
values used to generate the random networks need to
be stored. Also, thresholds can be specified in relative
terms rather than using an absolute threshold value
(for example, take the best 5% of the input networks),
although this requires sorting the input networks ac-
cording to the value obtained from the evaluation part.

4. Experimental Results

In this section, we demonstrate the efficiency of our
filtering approach by considering the synthesis of ICNs
with required diameter, scalability and fault-tolerance
characteristics.

4.1. The Diameter Filter

The diameter, A, which is the maximum of the
node-pair distances, provides an upper-bound on the
inter-task communication time, in terms of hops, and
can be a decisive factor in application runtime. The
problem of constructing a network of a given size and
degree with the smallest possible diameter has been
the focus of much research [4, 13]. While the diameter
of random graphs has also been studied, the published
results tend to be of an asymptotic nature, valid as
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the size of the graph approaches co. These asymptotic
results provide little guidance for graph sizes that are
of practical interest. In order to evaluate the diameter
of random regular networks, we generated random net-
works sized between 8 and 256 nodes and with degrees
ranging from 3 to 6 and calculated their diameters.
For each size and degree, 1000 random networks were
generated and the ones with the least diameter were
selected. Figure 3 shows how the diameter slowly in-
creases with size and how it reduces as the degree is
increased. These results provide a lower bound to the
threshold that can be set for the diameter filter. Fig-
ure 4 shows the comparison of the diameter of random
networks of degree 3 with other networks of the same
degree. The diameters of the networks plotted are the
ones with the least diameter as specified in their re-
spective references.
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From Figure 4 it is clear that random networks per-
form better than such common ICNs as the mesh and
the hypercube, but have greater diameter than some
well-crafted ICNs such as the MTS network for some
network sizes. However, graphs such as MTS are not as
flexible. The MTS network is defined only for certain
sizes given by m x (d — 1)!~! where m and ¢ are integer
parameters'. Among networks of degree 4 that we have
considered, random regular networks performed the
best. It is worthwhile to find out the number of graphs
that pass through when the threshold of the diame-
ter filter is set to different values. Figure 5 shows the
frequencies of networks of degree 3 that pass through
diameter filters whose thresholds have been set at the
minimum diameter (as shown in Figure 3).
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Figure 5. Frequency of minimum diameter ran-
dom networks of degree 3

Figure 4 is very interesting because it shows that
if we generate a sizeable number of random networks
and then select the one with the smallest diameter,
we will (with a high probability) get a network that
is diameter-competitive with most of the interconnec-
tion networks described in the literature. It should
be pointed out, however, that the size of the ran-
dom graphs of a given degree and diameter tend to
be greater than theoretical bounds, such as the Moore
bound[3] or the bound obtained from theoretical stud-
ies of random graphs[5, 6].

Further comparisons can be carried out with the en-
tries in the (d,A) table?. Table 1 shows some of the

IDiameters of incomplete MTS networks have not been ana-
lyzed as yet.

2The (d, A) table gives the state of the art with respect to a
largest known graphs with degree d and diameter A [10].
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results. The diameter of the random graphs was at
most larger by 1 than the corresponding best known
diameters. It is worth pointing out that these known
networks are constructed by different methods for dif-
ferent degrees and diameters whereas the random net-
works follow the same simple construction algorithm.

Diameter
Best Known | Random
2 2

Size of Network | Degree

10
15
20
70
364
932
740

| O = Q| WO = W
O Oy O Uy W N
~| | O O = W

Table 1. Comparison of diameter between best
known networks and the best of the random net-
works generated in our experiments

4.2. The Scalability Filter

Some applications and situations require networks
to be scalable. A network is said to have good scala-
bility if the size of the network can be increased with
minimum disruption and this does not cause a drastic
change in its properties. For reasons of cost, it is better
to have the option of small increments since this allows
the network to be upgraded to the required size within
a particular budget. The hypercube, for example, has
poor scalability, in that its size cannot be increased by
small increments while still maintaining its structural
properties. Random graphs, on the other hand, have
good scalability. They can be constructed for all sizes
and degrees (as long as nxd is even) and Figure 3 shows
that the diameter remains constant for a considerable
range of network sizes.

If regularity of the graph must be maintained even
after scaling, some edges must be removed and some
added to accomodate the new node. The minimum
number of edges that must be removed to scale an even
degree network by one node is d/2 whereas that re-
quired to scale an odd degree network by two nodes is
d — 1. Typically, one does not possess the flexibility of
adding new nodes anywhere in the network. It may be
required to attach the new node adjacent to a given set
of nodes. This is typically the case in a fault-tolerant
design when a spare processor must serve as a backup
for a given set of processors. We define a measure for
scalability in this context by the average increase in

diameter caused by connecting a new node to all possi-
ble designated sets of d nodes. The network is said to
have good scalability if its diameter does not increase
considerably on average.

Not all randomly generated graphs scale well. To
evaluate the performance of random graphs with re-
gard to scalability, we generated 100 random graphs of
size 64 and degree 4 and diameter 5. Note that 5 is
the minimum diameter obtained for graphs of size 64
and degree 4 as shown in Figure 3. For each network,
we then evaluated scalability by selecting sets of four
nodes at random and adding a new node adjacent to
the designated nodes. If the designated nodes are con-
nected by an edge, then this edge is removed, otherwise
edges incident on the designated nodes are selected at
random and removed to create connections to the new
nodes as shown in Figure 6.

Before Scaling

3

After Scaling

=

@ New Node

——— Edgeremoved

S Designated node e Edge added

Figure 6. Example of edges that can be removed
to accomodate a new node

The diameter is calculated for each set of four nodes
and the increase in diameter is averaged over a large
number of such runs. Figure 7 shows the cumulative
distribution of the increase in diameter for the input
graphs. It gives an idea of the threshold that can be
set for a scalability filter, e.g., if the best 10% of the
graphs are selected then we can expect that the average
increase in diameter will be no more than 0.05.

4.3. The Fault-Tolerance Filter

Reliability is an important criterion in the selection
of an interconnection network. Measures are required
to adequately capture network qualities such as grace-
ful degradation and robustness. Traditional measures,
such as connectivity, are worst-case measures and have
limited expressiveness. In this paper, we look at the
following more expressive measures: the diameter sta-
bility, A(py), the average node-pair distance stabil-
ity, D(py), the probability of disconnection, mq(py),
and the size of the maximum connected component,
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Xmaz(Py), all in the presence of link failures occur-
ing independently with probability ps. These measures
were introduced in [11] and some research has already
been done in characterizing various networks with re-
spect to these measures. We performed experiments to
evaluate the vulnerability of regular random networks
with respect to these four measures. We used random
networks of size 64 and degree 3 and 4 and compared
their performance with other networks of similar size
and degree. The network used was chosen at random
from the set of minimum diameter networks obtained
at the output of the diameter filter.

Figure 8 shows the comparison of diameter stability
among degree 3 and degree 4 networks. The random
regular networks of degree 4 outperform all the net-
works in its category whereas in the degree 3 category,
it is second-best. Though Figures 9 and 11 show av-
erage node-pair distance stability and probability of
disconnection for degree 3 networks only, the perfor-
mance of random networks in the degree 4 category
was observed to be the same as in the case of diameter
stability. All these results show that random networks
perform better than most of their counterparts with
respect to fault tolerance as well. Careful examination
of the results reveals that networks that are not reg-
ular are more vulnerable compared to those that are
regular, as can be seen in the case of shuffle exchange
networks and meshes.

The fault-tolerance filter that we use is a combi-

nation of four filters: one for each of the four mea-
sures. Thresholds are typically specified as a scalar
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Figure 8. Diameter vs. probability of link failure

value and since each of the fault tolerant measures is
given by a vector of values (corresponding to different
link(node) failure probabilities), some transformation
must be used to convert the vector of values to a sin-
gle value. If the designer knows the exact value of
the link failure probability, then the value of the mea-
sure corresponding to that failure probability can be
used to do the comparison. However, it may be dif-
ficult for the designer to decide on the exact value of
the failure probability. One transformation that can
be applied would be to use the area under the curve
obtained when plotting the values. This transforma-
tion assumes that each failure probability in the range
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of interest is equally likely. Since this may not be the
case in most situations, a more appropriate transfor-
mation would be to associate weights with each of the
failure probabilities and use a weighted sum of the val-
ues corresponding to different failure probabilities.
The output at the end of the set of filters depends on
the threshold values that have been set for each filter.
A stringent threshold value passes a smaller number of
networks through it. If the filter produces no output,
the designer would have to refine the threshold values
or increase the number of input graphs generated.
Experiments were performed to evaluate the ef-
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Figure 11. Maximum component size vs. proba-
bility of link failure

ficiency of the approach by passing random graphs
through a multitude of filters. Graphs of size 64 and
degree 4 were generated and first passed through a di-
ameter filter and then through a fault tolerance filter.
The threshold of the diameter filter was set at 7. The
networks obtained at the output of the diameter fil-
ter were tested for their fault tolerant characteristics
by using two filters, the A(py) filter and the D(py)
filter. The range of link failure probabilities of inter-
est to us in this example was [0.0,0.2]. Our initial set
consisted of 1000 randomly-generated networks. After
passing through the diameter filter, we were left with
33%(=330) of the networks. These networks were then
evaluated for the two fault tolerance measures and then
ranked according to their performance. The thresholds
of the filters were set such that only those input net-
works that lie among the best 5% pass through it. The
number of graphs obtained at the end of the filtering
process was a respectable 1.5%(=15). It is important
to note this “short-list” contains graphs that are better
than most graphs published in the literature with re-
gard to diameter and the two fault tolerance measures.

5. Conclusions and Future Work

Synthesizing networks that satisfy a certain set of
performance or fault-tolerance requirements is difficult.
In our approach, we generate a large number of ran-
dom regular networks and filter out those that do not
comply with the requirements. The choice of random
regular networks was motivated by their ease and flexi-
bility of construction and their surprisingly good prop-



erties. The filtering process consists of filters arranged
in tandem, one for each requirement to be satisfied.
Each filter removes networks that do not comply with
the requirement associated with it. The strength of
this approach lies in the versatility and extendability
of the filtering step, in that a different set of filters
can be used for a different set of requirements and new
filters can be added as and when newer measures are
developed. We demonstrated the effectiveness of this
approach by synthesizing fault-tolerant networks with
a small diameter.

Extensions to the current work are ongoing in sev-
eral directions. Other filters are currently being stud-
ied, among them are the filter for embeddability and
routability. Other network-generation algorithms are
being developed and assessed. A graphical tool to fa-
cilitate synthesis of interconnection networks through
our approach is also on the anvil.
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