RAPIDS 4.0: A Simulation/Emulation Tool for Dependability
Analysis

Vijay Lakamraju, Israel Koren and C.M. Krishna

Department of Electrical and Computer Engineering
Uniwversity of Massachusetts, Amherst MA 01003

E-mail: {vlakamra koren, krishna}@ecs.umass.edu

Keywords: emulation, monitoring, MPI, fault injec-
tion, workload generator, real-time benchmarks

Abstract

Dependability evaluation must span the entive design
process from specification through pre-deployment. A
true estimate of system dependability can only be ob-
tained if testing is carried out on the real hardware and
software. Unfortunately, & complete prototype is nog
available until the fag end of the design cycle. RAPIDS
4.0 is a fexible software environment that helps to vall-
date the performance and rellabblivy of distriboted real-
time systems, a8 more software and hardware become
available. Such a tool helps to contimoously check i€
the aystem dependability specifications are being met
along the degign path.

RAPIDS 4.0 provides an integratoed platform for
the monitoring and contral of applications running on
an evolving hardware under & simulated environment.
The pser can analyze the Impact of various system pa-
rameters within the seope of the available resoirces to
mndify fcorrect design dectslons. The tool is complete
with fault injectors, worklosd penerators and GUIs
containing detailed pictorial views of task executions
and fault recovery in real-time.

INTRODUICTION

Une of the most important steps in the develop-
ment cyele of any system 18 to ensure that the system
truly meets the system spocifications that were initially
laid out. Before the system is put into "action” in its
working environment, it is important to test the sys-
tem thoroughly for ite conformance fo those specifica-
tions. The testing of distributed systems and real-time
systems is in many ways different from the testing of
gimple uniproceszor syetems. In g distributed system,

"“This work was supported in part by CASA, the N5F En-
gineering Ressach Centir at the Unbwrsity of Massachusetis,
Arnbnrst, nnder award mamber 0313747,

one nesds to have multiple loei of obsermtion points,
In a real-tlme system, where mesting deadlines is the
most important design Factor, one needs to worey about
timing and concurrency. Add reliability and fault toler-
ance to that and we now have to pay special attention
b Fault injection, recovery and dependability assess-
Taank.

Analytical models may oot be able to provide o true
estimabe of gystem performance and dependability as
traditional techniques have become incressingly diffi-
cult to apply with the increasing complexity of com-
puter systems. Stroulation has its own drawbacks, not
the least of which is that the accuracy depends on the
granularity of simulation. Moreower, simuolation tech-
niguees rely on the accuracy of several key parameters
that may oot always be easy to obtain. (o the other
axteeme, testing the application while it i8 running on
its target platform in the target environment is the
most accurate way to measure system dependability.
But this option is probably the least viahle, &5 in most
cases, ong does not have access o the target environ-
et of the target hardware until the wery end of the
design oyele, Momoover, discovering that the system
does not meet tho specifications at this stage can have
severs implications, To avoid such a last minuke “sor-
prise,” & designer must continuously track the depend-
ability of the system alony its design path. The appllea-
tioa needs to be run on the evolving eystem in & prop-
erly simulated environment and monitored to ensure
that the system is in accordance with its dependability
peguirements. In this paper, we describe RAPIDE 4.0,
i tog] that provides a Hexible software environment. o
validate the performance and reliability of distributed
{real-time) systems by such a method.

RAPIDS 4.0 is the next in & series of tools devel-
oped az part of the RAFPIDS tool suite, at the i
versity of Massachusetts, Amherst, Its predecessor,
RAPIDS 3.0 [12], is & pure simulation tool that uses
an in-depth model for the simulated nodes and petwork

and simulabes the behavior of the system according to
this maodel, The user specifies the topology, workload
and nformation about fanlts and the system is sim-
ulated using events cbtained by running the models,
The tool has the Aexbility of being event-driven as well
a5 execution-driven, Mo actual applications are run
exeept in the case when it is execution-driven. Even
bn this case, considerable changes must be made to
the application to obtain timing values betwoen im-
portant avents of interest. Theae timing values provide
the event times that help to keep the simulation going.
RAPIDS 4.0 i different from RAPIDS 3.0 in that it is
run on the system alongside real applications and very
few changes, if at all, have to made to the applications
to provide for testing and evaluating the system and
application. RAPIDS 4.0 also provides a framework to
change some configuration parameters and algorithms
{within the scope of the resources available) in an at-
tempt to determine their optimal values, Such an inte-
grated platform is the first of its kind among those that
wir are aware of. Most of the tools sither concentrate
om performance [3] or dependability [4, 16] or run-time
monitoring [13].

In the following sections, we describe RAPIDG 4.0
in more detail, first starting with its design and then
its input and output interface. We then comment
on the intrusivencss of the tool. We conclude with a
disenssion an previous work.

THE DESIGN OF RAPIDS 4.0

Runping a real-time application on a farget plat-
form and having a tool to provide a detadled pictorial
view of the important events i the life-time of the ap-
plicstion can go a long way in further understanding
the interaction of hardware and software in the syetem,
To be effective, svetem testing and velidetion must be
conducted under properly simulated operational comndi-
tioms, such as component and system failures and other
exceptional conditions.

RAPIDS 4.0 provides an integrated platform for
the launch and detailed monitoring of real applications
running on the awailable hardware under a Smulated
environment in the presence of faults, Mot only is the
collected data vseful in exposing performance and re-
covery bodtlenecks, it could potentially be used to de-
toct and correct design errors. The anelysis can alzo
help in better understanding the working of the ap-
plization and making it more efficient, RAPIDS also
provides a framework 0 test combinations of warious
system parameters and algorithms and this would help
in implomenting more aggressive deslgns. The chal-
lemge i= to achieve all this functionality with minimal
intrusion into the system and applications so that the

| Bpplicatian

obsarvations are not distorted.

The tool is et up a8 shown in Figure 1. Apart from
the systemn under test which consists of the Applica-
tion Computing Nodes (ACNz), the Application I/
devices [AIDs) and the network that connects all of
them together, the Main Display /Control Node (MDXN)
is central Jocation for the collection of monitoring in-
formation from all the application nodes, It is typically
a node that is separate from the ACNs that run the
moal application{s). The MDN also serves as the main
eontrolling entity that accepts user information, carries
out the task or discharges the task to a local control-
ling module that is present at each of the ACNs. It
is the masouroe congumption and intrusion of this loeal
entity that can cause a great deal of interference with
the normal working of the application. Therefore, it is
important to deslgn this modale with great care, We
now deseribe each of the main components in some de-
tail.

| Cemputing
‘ModusASHE]

Epplicatian
- W
! “e..__ devices (NDE)

Figure 1. The RAPIDS setup

The MMain Componenta

Figure 2 shows the process model and the various
components involved o the design of RAPIDS 400 Ap-
plications running on a distributed system consist of a
number of subtasks that éypically communicats using
some middleware services, As an example, we chose
MPI [18], a message passing library designed for high
performance on both messively parallel machines and
workstation clusters. Detailed performance analysis re-
quires that every major event happening in the system
ba reporied to the Main Display Node. The amount of
owverhead and introsion into the systems i3 directly re-
lated to the amount of logging thet needs to be carried
out. It is important o strike a good balance between
thesa two aspects in order to provide sufficient monk-
toring information sod an scceptable level of intrusion.
As a first stop, wm chose to monitor various send and
recelve events at the application, Information about

these events not only provide a good indication of the
amount of communication between the nodes and the
application processos but also give a farly good idea
of the amount of time each application process spends
in computation. One of the design goals of RAPIDS
was to make it portable. While a mumber of other
tools usa low-level, sometimes O8-specifc, features to
captire send/roceive events, we choss to monltor those
events by modifying the middlewars layer. This de-
cision was made as a tradecdT between portability and
intrusiveness. Important MPT calls are wrapped by sys-
tem calls that send relevant information to the MDN, Tt
is important that the system calls used be light-weight
encitgh to nob greatly impact the performance of the
application. Cur light-welght MPT wrapper attempis
to minimize system overhead by using simple asyn-
chronous MPI calls {e.g., MPLIsend()) and also at-
tempds bo minimize network overhead by piggybacking
monttoring messages as much as possible, Evaluating
the overhead of the wrappes 18 an important issue and
is discussed in alater section. Another design goal was
to have applications run on the RAPIDS festhed with
mindmal changes, To mees this goal, the MPIL wrapper
was combined with the original MPI library to create
a new HRAPIDS-MPI library. The user now has to ei-
ther compibe his application with this nee library or
if, dymamic linking is allowed, simply ensure that the
application uses this library during runtime,

Mun Moplay Mo '

Figure 2. The RAPIDS process model

The Information Gathering Process (IGF) i respon-
gible for collecting monitoring messages from all MPT
subtasks corresponding to one application. Multiple
applications can run on the target system and so there
is one IGP per application. We have chosen to make
the IGP a MPI subtask, rather than a normal process,
to facilitate the use of MPT calls used in the MPT Wrap-
per. This also greatly enhances the portability of the
systems. One can view all the monitoring messages

pertaining to an application as being sent over & mes-
sage channel and different message channels exist for
different applications. Such a view can help the IGPs
pre-allocate buffers for mcoeipt of monitoring messages
and this can wnprove the performance of the moni-
toring system. The IGPs, after some initial process-
ing, pass the meszages to the Main Monitoring {and
Controt) Module (MMM) through some simple inter-
provess communication, The MMM 1 & collection cen-
tar for all the monitoring messages. It also provides
the graphical wser interface (GUI) through which the
user provides variouws Inpot information and views a de-
tailed pictorial view of the variows events happening in
real-time at each of the ACNs. Placing the IGPs and
the MMM in the MDN ia an attemnpt to further roduce
the intrusiveness of the tool.

The MMM is also a control center in that it pro-
vides the user with a multitude of options to experi-
ment with., It accepts input from the user through the
GUT and performs the task either by itself or with the
help of a Local Controlling Module [LOM) present in
each node. After the user provides the required input
through the GUI and starts the analysis, the MMM
gpawns 4 LCM on each node in the system and pro-
vides it with all the relevant information particular to
controlling it8 bost node. This includes information
regarding the various subtasks that must be started
oa the nede and information regarding the Fanlt-prone
covironment umder which the processes need o be ex-
ecuted.

The LCM is & small module that performs low-lavel
control functions such as task spawning, fault injection
and even task scheduling !'. Depending on how low
oiee wants o get, the LOM would need fo be tied
closaly with the operating system and portability
could become an issuwe. The LOM spawns the tasks
and synchronizes with the other LCMz and the MMM
for the signal to start the execotion of the applications.
Afier this, the application subtasks send monitoring
information through the message channol ss usual
whereas the LCM can send and meceive information
directly from the MMM through a bidirectional condrol
channel Information regarding fault injection and
recovery is sent on this channel, Sioce reliability
evaluation is an important aspect of the tool, we
describe the fault injection interface in some detail in
the next section.,

Fault Injection
After taking care of spawning the application tasks,
the LOM 15 malnly bnvelved in fault injection and re-

1%fodifying the acheduling algorithm is poasible in some real-
time O5 guch a8 Vx'Works and Lynx.

covery menitoring for the rest of the time. In the-
ary, the LCM could use any of the various fault injec-
tars that are available, such as Xeeption (2] Ferrari [B]
and FTAPE [19]. It is also possible to combine these
fault injectors to provide multiple fanlt models, multi-
ple fault triggers and support for multiple targets [16].

As the first step, we have integrated a Software
Implementod Fault Injector (SWIFI) which is based
on the ptrocef) system call [B, 21]. This SWIFI uses
the process tracing functionality provided by ptroce()
to stop a process and aceess its addross space. At this
point, the tracing process can corrupt any location
in the traced process’ address space to emulate a
fault, This capability can be used to inject fanlts
into the registers of the host processor. We enhanced
this rudimentary piracef) SWIFI to provide it the
functionality of assessing the sensitivity of specific
parts of the process’ address space to faults. Statie
information typically present in the executable? can
he used to determine the location of various entities
(such as functions, initialized and uninitialized global
variables) and this can be used fo carry out more
focused fault injection experiments. Fault injection
can also be carried out on dynamic regions of the
process mddress space (e, the heap and the stack)
using breakpointz, The fult injection need pob
necessarily be confined to the host systerm. Faults can
also be imjected inbo T devices, as long as sufficient
interface functions are provided by the device drivers.
One of our projects that has made use of this facilivy
is described in [11].

THE USER INTERFACE

Apart from monitoring an application running on
the target platform, RAPIDS alzo provides the user
with the capabiliiy of analyzing the impact of various
sysbemn parameters on performance as well az depend-
ability in an attempt to determine their optimal val-
ues, RAPIDS aims to make nearly all such changeabls
parameters that a system or an operating system pro-
vides, user-settable through proper GUIs, The user
input in RAPIDS comprises the following three cabe-
FoTies:

Configuration parametars: In addition to launching
the application on the target platform, the user can
override the configuration of the arget platform Lo test
tlee performance of the application under different. con-
Agurations within the scope of the resources available,
For example, in a bus-based system, the user can re-
gtrict the application to run on & subset of the nodes
attached to the bus. In a lerge distributed point-to-

I Tha Rinary File Dascripiar [EFEI] likrnsy "‘l can b nmed 1o
obtain this infarmatica.

point connected system, the user can choose a specific
sub-network in which the application must be run. The
user can alzs override the default task maoagement
software, Lo, RAPIDE provides the capability of as-
slgning the various tasks of the applicatlon to specific
nodes in the target platform based on the user's direc-
thve or a specific algorithm, Such & capability can help
in finding an appropriete system configuration for the
application under consideration.

Task parameters: Integrating applications into
RAPIDS is a simple task in that the application just
needs to run using the RAPIDS-MPT library. The GUI
allows the wser to specify various options before start-
ing the applications such as the number of subtasks and
the command line arguments, The wser-specified task
allocation algorithm provides the MMM with informa-
tion to decide which subtasks of which applications ave
startad on which nodes. The vool also provides the wser
with the option of specifying and generating synthetic
tisks. Synthelic tasks can be usad to simulate the am-
bient {or background) workload of the system or even
the tasks of the application, in cases when the whole
application iz not yel available. The user iz given full
control in the descoption of the synthetic tasks w0 as to
mimic an actual workload. The user can provide task
information in terms of a task trace that was generated
eqrlier or through a detailed user interface. Tf available,
the uzer iz also provided the option of overriding the
scheduling algorithm ab each node in the system. Tra-
ditionally, the dependability of a real-time syvetem has
bean equated to the effectiveness of the fanit tolerant
mechanisms embedded in the system. Recently, the
ability of the system to handle load surges [10] has beon
potnted oul as a belbler measure for real-time gvstem
dependability. RAPIDS provides the user with the ca-
pability of gimulating load surges and obtaining values
of the surge handling capabilities,

Foult Porameters: RAPIDS has a detalled wser in-
terface for specifying faults. The vser can specify the
location, the time and the type of fanlts that need to be
simulaced. The user can specify faults on & per-process
basis and indicate which address in the process” ad-
dress space needs to be affectad. IF symbol information
iz available in the executable, faule location can also be
specified using function names and variable names from
individual applications. Both temporary ramdom single
bit Hipe as well as permanent stuck-at-1 and stack-ag-0
faults can be specified. The times at which the fault{s)
should be injected can be specified either as a eandom
process of a5 a fixed rate. Apart from low-level fanlis
such as those affecting the CPU and memory, simula-
tion of various network-related faults such as moszage
corruption, message reordering and message delaying

are alag provided. Each faolt specified by the user oc-
cipdes an entey in a fault table and the MMM sonds
relevant, information to each process at the start of the
analyziz. By logging important events during the fauli
recovery process, vidues of important parameters such
as mollback overhead, bardvare and software reconfig-
uration penalty can be obtained.

RAPIDS provides a number of detailed graphical
interfaces for viewing the information collected by the
MMM, The information s displayed almost in real-
time through various windows to provide the nser with
a detailed pictorial view of important events during
the execution of the applications as they are running.
Among the many windows that are provided, three
windows deserve specific mention. The Task Sched-
ule Window displays Information regarding the run-
ning of tasks on each node. Events such as the start
of an instance of a task, the completion, the sand-
ing/hroadeasting of messages, the recelving of mes-
sages, presmptions, checkpointing ete. are aptly dis-
played on this window as shown in Figure 3. I is a
“aliding” window that displays the required informe-
tion in real-time. This vandow alss shows information
regarding fault injection and the time of recovery. Fig-
ure 3 shows the injection of a fanlt into the task run-
ning on node 3 and the recovery obtained through an
Application-Tevel Fault Tolerance [ALFT)-based tech-
nbgque [G]. The Task Allocation Window shown as an
inset in Figure 3 provides information about how the
tasks are currently allocated and can also be used to see
how the allocation changes during reconfiguration. The
Performance Windows show varlous statistics about
the working of the system and the applications such
az idle times, number of messages sent Sreceived on a
per-application basis, amount of communication on &
per-node basis etc, All the ewents are alzo logged so
that they can be played back after the run is complete.

The earlier RAPIDS 30 tool took as input
system-related parameters such as preempiion oost,
checkpoint overhead and reconfiguration penalty
from the user and so the accuracy of the simuiation
depends on the user's experience or knowledge of the
target platform. By ruoning the application on the
target platform or its evolving version and monitoring
important events as can be done in BAPIDS 4.0, more
precise values of these parameters can be obtained.
Visualizing the data obtained from monitoring a “live”
system can also assist in identifying performance and
recovery bottlanecks, The designer might then decide
to try out a different configuration or modify some
parameters/algorithms /mechanisms to ensure the
svstem meets the requirements of the application.

INTRUSIVENESS AND PORTABILITY

Reducing the impsct of the monitoring processes is
one of the most important design consideration. A
nmber of technigques have been used to factor this as-
poct inbo the design, The messages sent out by the
Wrapper are piggybacked to circumvent the overhesd
of sending separate messages, Such a scheme can some-
times impact the real-time display of information on
e graphical interfaces at the MDN, but this inconwe-
nbence could be ignored in moet cazses, when weighed o
with the decresse in intrusiveness, Message passing be-
tween the ACNs and the MDN can cause high network
traffic that may affect the average message latency of
the application, In arder to cireamvent Ehis problem, a
technique utilizing postponed message delivery s used.
Event. information can be sent to the MMM during the
quisscent state of the petwork, i.e., when the network
traffic i low and the impact of the messages gener-
ated by the monttoring tool on the transfer time of the
actual application messages will be minimal. It is alap
peezible to use multicasting at the network layer to fur-
ther reduce the overhead of the extra meszages, but this
can impact the portability of the system. Table shows
the overlead associated with the monitoring and fault
injection on the run-time of theee space applications.
RTHT[20] is an benchmark from the C31 Benchmark
Suite, whereas OTIS and NGST have bean taken from
the REE Application Suite{14]. The numbers reported
in tho table have been obtained by running the apph-
cations on & Myrinet network.

Application | Perc. Increase in | Perc. Increase in
Metwork Traffic | Execution Time
RTHT SE% 1.2%
OTIS 3R 0.8%
LNGET B.2% 1.0%

Table 1. Monitoring overhead of different ap-
plications

As with many such tools, portability is another
important feature, Our current design assumes that
the distributed application use MPI for their commu-
nication. Using a MPI wrapper, rather than another
method for sending the monitoring messages, allows
easy portability to other machines while allowing us
to reap the benefits of developments within the MPI
groap as more platforms are supported. Undoubtedly,
if the applications were written using some other
middleware layer, we need to extend RAPIDG o
involve that middleware, We are concurrently working
on supporting FT-MPI, with an intent to increass the
usability and applicabality of RAPIDS.

| Thme a

R = o £
FHedels Ul Mum of Somples Teska |

a 9

1

T.2a

20 T-14

=]

Figure 3. The Task Schedule window showing the running of OTIS, a soft real-time space application.

Also shown is the recovery from a faull in node 3,

PREVIOUS WOHEK

A pumber of tools for reliability analy=is have boen
reported in the recent past. Most of them concen-
trabe on fault injection and measuring fault tolerancs
[Fo @, 2,4, 16, 8] and a fow of them are used to valis
date performance [1, 15, 22, 13, 5]. RAPIDS 4.0 diffors
from them in that it provides s combined analysis of
both performance as well az dependability, Many of
the commercially available tools also forus on a spe-
cific component of the system such as the CIMU, bus,
memory ete., while others atilize specific features in
the operating system, and hence, are difficult to porg
to other systoms. For example, Xeeption [2], makes
usa of the advanced debugging and performance moni-
toring featuees of modern, complex processors such as
the PowerPC 604, RAPIDS 4.0 atéempts to utilize the
basie Tunctionality avallable on most systems and mit-
igate some of the above deficiencies. RAPTDS can be
envisaged as a platform for experimenting with vanous
“what-if" scenarios by allowing to change system pa-
ramaters dynamically, which is oot & common feature
available i miost tools.

RAPITS is available by request from the ARTS
Lab website [17). Its ongoing development is expected

to provide new releases in the near futurs.

SUMMARY AND FUTUURE WOREK

RAPIDS 4.0 is a Aexible, monitaring tool for dis-
tributed systems that can be uaed Lo validate the pes-
formance deliverables of the application while also giv-
ing the wser the capability of corvecting for inefficien-
cies by changing different parameters within the scope
of the resources available on the target platform. Par-
ther, it can be used to study the impact of modifica-
tions in the bardware and software configuration on the
performance of the system,

It is important that depondability evaluation span
the entire design process from specification through
pre-deployreent, and they must address validation ak
different leeols of abstraction, The intcgration of
RAPIDS 3.0 (the simulator) and BAPIDE 4.0 {the em-
wlator) will provide & tool that can be used to perform
analysis ab various stages in the entire design process.
Thiring the initial stages of design when the designer
has to work with just a vague idea of the system to
be build, she/he can use the simulator to try out vari-
oug options and get an idea of which configuration and
spt of plgorithma would be appropriate. As some hard-
ware starts becoming available, the designers can get

eome key parameter values using the emulator to refine
tleelr expariments on the stmulator. The sinmlator can
alzo be wsed to get a first-level idea of how well appli-
cations scale to larger avstemns. After possibly many
such eyeles, the emulator can be used to do s completo
pecformance and reliability analysis on the prototype
biafore it is deployod. The combination of the emuolator
and slmulator ks being dubbed RAPIDS 5.0.

References

[1] L. Shi et al. Optimésation in s hisrarchical distributed
performance monivoring system, In Proe. TEEE frter-
rational Conf. Algerithme and Archibectures for Par-
odlel Processimg, 1905,

[2] ¥ Carreiea, H, Madeira, and J.G.Silva Xeeption: A
Technigue far the Experimental eviduation of Depend-
ahility in Modern Computers. JEEE Trans, Softmare
Enginesring, Feb 1808,

[3] 5 Chamberlain. LIE BFD, the Binary File Descrip-
tor fibrary Free Software Foundation, 675 hlass Awe,
Cambeidge, MA, 1991.

[4] & Dawson, F. Jehanlan, apd T, Mitton. ORCHES-
THRA: A fault lnjecthon environment for disiribated
systems, Technical Report CSE-TR-318-06, Compster
EScience and Enginsering, University of Michigan, Nov,
1504,

[3] 3. Eneriss, M. Steinbyunn, and M, Zitterhart.
NETMOX-II: & monitoring toal for distributed and
multiprocessny systems, Performonee Eveluation
Nerth Hollond, 12, 3:191-202, 15401,

[6] J. Haipes, V. Lakamraju, [Koren, and C. Krishna,
Application-level fanlt tolerance as a complement to
system-level fault tolerance. Journal of Supervompuls
ing, (1635368, MMy 2040.

[7] 1. Aslag et al. Fault Iojection for Dependabilicy Vali-
dation: A Methodology and somne applications. TEEE
Trana. Softwars Engimeering, Feb 1990,

8] G. A Kanawsti, N. A Kanawati, and J. A Abra-
ham. FERRARI: A tool fur the validation of system
dependahility properties. In D K. Pradban, editor,
Proceedings of the 2nd Annusl Internotionsl Sympo-
sum on Fouli- Tolerand Compuding (FTCE WE), pages
336-344, Boston, MA, July 1992,

[3] W. Kao and R Iyer. DEFINE: A distributed fanl
injoction and monitoringenvironment. In Procedings
of the IEEE Workshop on Foult-Tolerant Parailsl and
Distributed Systemns, June 1994

[10] % Koren, I Koren, and C. Krishna, Surge handling
a5 a measure of real-time system depemdability. Proc,
First Merged Symposium IPPS/SPDP, EHPC Work.
akop, pages 1006-1116, Apell 1998,

[11] ¥. Lakamraju, 1. Korem, and O, Krishoa, Low Owver-
hiezd Fault Tolerant MNetworking in Myriones, In Proc.
International Conference on Dependable Systems and
Networks, J00G.

[12} M. Allalouf and V. Lalamraju et al. RAPIDS: A
samulator testhed for Distributed Real-time Systems
In Proc. Advanced Simudation and Technology Confer-
ence, 1904

[13] R. Rajkumar, F. Jahanian, and 5. Raju. Rup-time
manitoring of timing constTeints in distributed real-
ticne systems. Jowrnal of Real-Time Systemns, pages
163-175, O, 1804,

[14] Remote Exploration and Experimentatbon [(REE)
Project, hetp:/ fwww-ree jpl nasagov/,

[15] 5. Led et al. A softwnre instrumentation technique for
performance toning of message passing architectores .
In Proc, Winter Simulation Conference, 1997,

[16] D. Stott, B. Flowing, I, Burke, T, Kalbarcayk, and
R. Iyer. NFTAPE: A framework for asesdog de-
pendability in distributed systems with Lightweaght
fanle injectirs. In Proceedings of the JEEE Indema.
tional Compuier Performance ond Dependability Sym-
poatum, pages B1-100, Mar. 200,

[17] The Architecture and Real-time Systems Lab wabsite,
hetp) farts. eos. umass.edu /-

[18] The Message Passing loterfaces,
nnix mes. anl gov mpi.

[18] T. K. Tsal and K. K. Iyer. Measuring fanlt tolerance
with the FTAPE fault injection tool. Lecture Nefes i
Computer Science, 977:26-77, 1905,

[20] B, V. Voorse, . Jha, L. Pires, and M. Mubammad,
Implementation and results of hypothesis testing from
ihe O3] parallel benchmark sutbe, In Procesdings of
the 1ith Indemabonal Parallel Proccasing Sponpesium
(IFPET] Apr. 1907,

[21] V.Bieh. Fault injector usiog UNIX ptrace intecface. Jn-
ternal Report IMMOE, Universidal Evlangen- Numbsry,
Mior. 18993,

[22] T. Yen and W. Wolf. Performance estimation for real-
itme diztributed embedded sysvems. In Proc. Internn-

tiorad Conf. Computer Desggn, 1985,

bt f fweww-

m
L pm-“, ., = ln' —__._..l -__._.....____.____..
1- -" .1 “Il- lﬂ-lqll—“-
n n i N 'l N -ll [
_-ll 1 N lﬂ& ._Ht . -lm .-

L - ...T =< _.

= = 4-
I :
.- - a
T_-.“ —_ u i || - I_ u I.l_.._l - u

. |

i

ST | ..

_- - . i _ II_ ﬂ_ _

T e,
I-_ B _-_ I_ — _)

