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Abstract 

 
Characterization of in-field defect growth with time in digital image sensors is important for 

measuring the quality of sensors as they age.  While more defects were found in cameras exposed 
to high cosmic ray radiation environments, comparing the collective growth rate of different 
sensor types has shown that CCD imagers develop twice as many defects as APS imagers, 
indicating that CCD imagers may be more sensitive to radiation.  The defect growth of individual 
imagers can be estimated by analyzing historical image sets captured by individual cameras. This 
paper presents a defect tracing algorithm, which determines the presence or absence of defects 
by accumulating Bayesian statistics collected over a sequence of images. Recognizing the 
complexity of image scenes, camera settings, and local clustering of defects in color images (due 
to demosaicing), refinements of the algorithm have been explored and the resulting detection 
accuracy has increased significantly.  In-field test results from 3 imagers with a total of 26 
defects have shown that 96% of the defects’ dates were identified with less than 10 days 
difference compared to visual inspection.  In addition to our continuous study of in-field defects 
in high-end digital SLRs, this paper presents a preliminary study of 10 cellphone cameras.  Our 
test results address the comparison of defects types, distribution and growth found in low-end and 
high-end cameras with significantly different pixel sizes.   
 
 

1. Introduction 

Over the last decade, digital imagers have become increasingly popular in many products.  
Unfortunately, like all microelectronic devices, digital imagers are prone to develop defects over 
their lifetime.  Furthermore, unlike digital circuits, imager pixels are analog devices, so defects 
that would not affect digital devices will manifest themselves in these pixels.  Advancements in 
image processing techniques have significantly improved the quality of digital images; however, 
very little has been done to address in-field defects in digital imagers.  Moreover, ignoring the 
presence of defects during the processing of images causes faulty pixels to smear into 
neighboring pixels and significantly degrade the image quality.  Our previous study has shown 
that defects in digital imagers are permanent and increase in number continuously over time and 
consequently, such defects will manifest themselves in all captured images [1].  Although defects 
can be hidden by sending the camera back for factory calibration, this is in most cases very 
expensive and time consuming or simply impossible.  Thus, with the integration of image sensors 
in many portable devices, exploration of in-field defect correction techniques is needed. 

In our on-going study [1], we have characterized in-field defects by analyzing their spatial 
distribution, and tracing the growth of defects in a set of semi-professional cameras.  Our study 
has shown that defects are not likely related to material degradation.  In fact, the initial analysis of 
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results in another study [2], had suggested that the defect rate would be higher for sensors that 
have been through more transatlantic/pacific flights, which we have also seen in our tested 
cameras.  However, to verify the driving force of high defect rates during long high-altitude air 
flights, we must collect defect data from a wider range of cameras.  Our recent work [3] has 
focused on developing a set of software tools that allow us to collect in-field defect samples from 
a wider set of imagers.  In particular, we have proposed a defect-tracing algorithm that can 
identify the first appearance of defects through analysis of a sequence of images.  The 
development of this algorithm has not only allowed us to better observe the quality of an aging 
image sensor; it can potentially become an embedded solution to correct any identified defects as 
they develop.  In this paper, we extend this work by applying the algorithm to image data sets 
from our tested cameras as well as explore possible enhancement to improve the accuracy of the 
detection. To further extend our study of high-end DSLRs, we started experiments on cellphone 
cameras, which have smaller pixels and different characteristics compared to DSLRs.   

2. Defects Characteristics 

Expanding our on-going study [4] we are currently identifying in-field defects from 12 semi-
professional cameras that include sensor technologies from both Charge Couple Device (CCD) 
and Active Pixel Sensors (APS).  While our previous study had concluded that defects only 
impact single isolated pixels, in any pictures, a faulty pixel will appear as a cluster in color 
images due to their spreading during internal image processing steps such as noise reduction, 
color interpolation (demosaicing), and image compressing.  Defect clusters are more noticeable 
than a single faulty pixel; therefore, defects in image sensors are highly undesirable.  Thus, a 
detailed study of in-field defects can provide us with better understanding of the defect source 
mechanism. 

2.1 Defect Identification 

Our recent laboratory calibration result on 12 cameras in Table 1 again shows that hot pixels 
are the dominant type of defects in all tested cameras. In-field defects are identified by 
performing a dark-frame calibration where a set of images is captured in the absence of light with 
increasing exposure settings.  With the new imagers added to our collection of cameras and 
additional defects appearing in the other cameras, our defect number had increased from 98 [1] to 
136 allowing us to increase the statistical relevance of our defect analysis. 

Based on our laboratory calibration, we have identified two types of hot pixels: standard hot 
pixel and partial stuck hot pixel.  The dark-frame response of the hot pixels is shown in Figure 1.  
A standard hot pixel is characterized by an illumination independent component that increases 
with exposure time, as shown in curve (a).  On the other hand, a partially stuck hot pixel has an 
additional offset that can be observed even in the absence of light, as shown in curve (b).  The 
presence of a dark current will reduce the dynamic range of the pixel in addition to the offset.  
The phenomenon of these two types of hot pixels can be summarized by  
 bTITImTIIf nIntegratioDarknIntegratiophotonIntegratioDarkphotoPixelHot ++⋅=− )(),,( , (1) 
Iphoto is the incident illumination on the pixel, Tintergration is the exposure duration,  Idark is a unique 
dark current at each pixel site, and b is the additional offset found in partially stuck hot pixels. 
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Table 1. Summary of identified hot pixels from all tested cameras. 
 Number of defects found 

Camera Hot Total  No offset W/ offset Total 
A 0 11 11 11 
B 17 0 17 17 
C 6 5 11 11 
D 0 0 0 0 
E 26 0 26 26 
F 0 5 5 5 
G 0 2 2 2 
H 3 0 3 3 
I 2 17 19 19 
J 4 27 31 31 
K 9 1 10 10 
L 0 2 2 2 

Cumulative total     137 
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Figure 1. Dark Response of (a) standard hot pixel and (b) partially stuck hot pixel

2.2 Temporal and spatial growth of defects  

In our previous study [1] we have shown that defects develop continuously throughout the 
sensor lifetime and these in-field defects are irrevocable.  To better understand the defect source 
mechanism we have analyzed the spatial distribution of defects using the most recent collection 
of defects as shown in Figure 2a, see [1] for the analysis procedure.  When there is local 
clustering of defects we should have observed multiple local peaks around long and short 
distances.  However, with a broad distance distribution and an average distance of about 10mm, 
there is clearly no indication of defect clusters.  While the minimum distance of 17µm between 
faulty pixels, where pixels size is ~(6-7 µm), this result is again consistent with our claim that 
defects are caused by a random process and not by material degradation.  The most likely cause is 
cosmic ray induced defect damage which is a purely time random process [1]. 
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Figure 2. Defects growth for APS and CCD cameras. 
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In Figure 2b we compare the number of defects collected from the 5 APS and 7 CCD cameras, 
using the average number of defects collected at various ages of each sensor type.  As this plot 
indicates, the development of defects is a continuous process in both sensors; however, there is a 
significant difference in the defect growth rate between the two types of sensors.  The average 
defect growth rate of APS imagers is ~2.2 defects/year while for CCD imagers it is ~5.2 
defects/year; thus we are seeing twice more defects in CCD than in APS imagers at the same age, 
yet both detectors have approximately the same image area and pixel area.  We observed high 
defect numbers in cameras that have been through high altitude and long flights due to the ~100 
times higher radiation levels during those flights [2].  However, this is more noticeable in CCD 
imagers, where we observed as many as 20 defects within one year from a camera that has been 
on four international flights.  For this reason imagers with many air flights were not considered in 
this growth analysis so it not skewed by the external conditions.  Although there is no clear 
explanation to the different defect rate, our preliminary results suggest that CCD may be more 
sensitive to cosmic ray radiation.   

The temporal growth rate of defects in individual sensors can be obtained by analyzing the full 
historical image collection from these imagers.  Defects within pictures can often be identified by 
visual inspection; however, this manual technique is time consuming and due to privacy concerns 
we cannot gain access to a wider range of datasets.  In our most recent study [3] we had proposed 
a defect-tracing algorithm that can automatically detect the first appearance of a defect by 
analyzing a sequence of color images.  Simulation experiments have shown the effectiveness of 
this algorithm.  In this paper we extend this algorithm and use it to experimentally determine the 
time development of defects from our set of tested cameras.  We determine the accuracy of the 
detection algorithm based on comparison with the detect dates found from visual inspection.     
Once this algorithm is proven to operate with sufficient accuracy, we can provide end-users with 
a software tool that will collect defect growth data by analyzing their image dataset.   

3. Defect tracing algorithm 

Automatic defect tracing from color images enables a more quantitative analysis of how in-
field defects develop over the lifetime of digital imagers.  More importantly, with the ability to 
detect the appearance of defects, we can develop an in-field scheme for the correction of in-field 
defects.  As described in Section 2, hot pixels are the dominant defects found in all tested cameras, 
thus the main interest of our tracing algorithm is to estimate the first appearance date of these hot 
pixels by analyzing the image datasets from individual imagers.   

Most camera users capture images in RGB color mode, where each color is composed of red, 
green and blue (RGB) values.  One main challenge in detecting defects in color images is the 
irreversible post-processing algorithm applied to the captured images prior to the observed output.  
In any digital camera, the initial image captured is called a raw image where each pixel will only 
record one of the three color channels (red, green or blue) as shown in Figure 3.  To produce a 
color image, demosaicing, an internal color interpolation algorithm is used to interpolate the two 
missing color channels at each pixel site.  As one can expect, if a pixel is defective, interpolating 
with the inaccurate response of the pixel will spread the error to neighboring pixels; thus we will 
observe a cluster of defective pixels in color images as shown in Figure 4 [3].  While digital raw 
photos permit us to extract the pixels before this spread, most photos are not saved in that format.  

 

  
Figure 3. Raw image pattern. Figure 4. Demosaic image output with defect
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3.1 Pixel value estimation 

In order to estimate the first defective date for any faulty pixel, our algorithm needs to detect 
the presence or absence of the known hot pixels, obtained from simple calibration tests with 
digital raw images at the identified locations.  In our algorithm, each sensor is represented by an 
array of W × H pixels, and we denote the output of each pixel by yi,j where (i,j) is the location of 
the pixel.  To properly identify defects in images, we model the behavior of each pixel with 
Equation (1), where Idark is zero for a good pixel, and the locations and unique dark current values 
of each hot pixel are mapped out using a dark frame calibration.   

The expected value of a pixel, denoted by zi,j, can be estimated by interpolation with 
neighboring pixels.  Given a good interpolation scheme, the interpolation error ei,j = yi,j – zi,j,  of a 
good pixel is approximately zero; however, in the case of a hot pixel, the dark current and the 
additional offset will result in a larger interpolation error.  By collecting the image-wide 
interpolation error we can derive the interpolation error Probability Density Function (PDF), pE(e) 
the probability of a good pixel given its value yk and the interpolation zk, and the Cumulative 
Density Function (CDF), PE(e), which provide a statistical measure of the state of the defective 
pixel, are given in Equations (2) and (3) (see [3] for the detailed derivation of these equations).. 
 )()|( kkEk zypGoodyProb −=  (2) 
 [ ])255()(

1255
1)|( min

min

−−−Δ−−⋅
+Δ−

= zyPzyPHotyProb EE
 (3) 

Because most picture sets only have access to jpg pictures which contain the demosaic spread 
defects we need to compensated for that in our search.  The key to estimating the presence of a 
faulty pixel is related to the accuracy of the interpolation scheme from the neighboring pixels. 
With a simple 3×3 averaging, we would expect to have sufficient accuracy; however, as indicated 
by Figure 4, due to the application of the demosaicing process to color images, the nearest 
neighbors are the most distorted by the defects.  Because single defects appear as local clusters in 
color images, the expected output of a defective pixel would be more accurate if we employ a 
larger interpolation region that are further away, such as 5×5 and 7×7 and eliminate the nearest 
neighbor region (because those will be affected by the defect presence) with a ring averaging 
mask shown in Figure 5.  With the ring averaging, we can estimate pixel output and avoid the 
problem of the local defect cluster. 

Figure 5. Ring averaging coefficient mask.

3.2 Bayesian accumulation detection 

Pixel estimation can provide a measure of the likelihood of a pixel being good or defective at 
one single image.  However, the decision on the status of a pixel cannot rely solely on analysis of 
one image.  External factors such as the complexity of an image scene, the capturing mode such 
as ISO, and the exposure setting will affect the visibility of defects in different images.  To 
accumulate statistics over a sequence of images, we use Bayesian statistics as shown in Equations 
(4) and (5) which evaluate the likelihood of having a good/hot pixel at the k-th image. 
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).|(1)|( kk yGoodProbyHotProb −=  (5)
By accumulating statistics on the status of pixels using Equation (4), detection of a good pixel 

is indicated by Prob(Good|yk) ~1, and when Prob(Good|yk) is ~0, this will indicate that the pixel 
has become defective as shown in Figure 6.  However, when a large number of images is 
accumulated, saturation of the accumulated probability may become a problem. In addition, 
because most regular images are captured in short exposure range, hot pixels with low dark 
current magnitude are not easily observed, and the change in the accumulated probability will not 
be reflected. Thus, to better detect the instantaneous change of the pixel status, a sliding window 
approach is used as shown in Figure 7.  The sliding window approach will determine the status of 
the pixel by accumulating statistics from the n most recently analyzed images.  Previous 
simulation results [3] have shown that a window length of 5 or 7 tends to attenuate the detection 
date whereas with a length of 3, more emphasis is put on the recent images and older imagers are 
ignored.  Thus we will focus on using a window length of 3 only.   
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Figure 6. Probability accumulated over 
sequence of images Figure 7. Sliding window 

3.3 Local region analysis 

Analyzing pictures is a complicated procedure; external factors such as the complexity of 
image scenes, ISO settings, exposure setting, and dark current magnitude will all affect the 
performance of our detection procedure.  Local regions with edge or fine details tend to have 
more color variation, thus large estimation errors are unavoidable.  Images taken at high ISO 
setting are grainier; therefore, a region with similar colors can still result in large variations.  To 
improve the accuracy of the algorithm, these external factors must be taken into consideration.  
Because fine details are usually localized in a region; ignoring images with lots of details will 
potentially flush away other useful information.  Instead of discarding images, we applied a post-
procedure where we attempted to correct the detected defect date by incorporating some 
knowledge of local region around the defect.  The complexity of any local region can be 
measured by evaluating the mean and variance of each color channel separately.  Given these two 
measurements, we can simply set a threshold on these parameters and correct detection caused by 
inaccurate estimation of a pixel output.  In our experiments, we performed detection with and 
without local statistics and analyzed the trade-off with the additional correction procedure.   

4. Automated defect growth detection 

Using the developed software, we accessed the historical images of three of our test cameras.  
The three cameras are 2 to 5 years old, with resolution varying from 6M to 10M and a total of 26 
hot pixels.  The development dates of defects were detected both by the automatic defect-tracing 
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algorithm and by visual inspection.  To evaluate the performance of our detection algorithm, we 
calculate the detection error that is the difference between the algorithm-detected defect date and 
the observed defect date.  Due to the spreading of defects we have experimented with 3×3, 5×5 
and 7×7 ring averaging.  In addition, to better examine the improvement of the local analysis 
correction, we compared the detected dates with and without local analysis correction.  Figure 6 
summarizes our results by plotting the frequencies of the detection errors.   
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Figure 8. Detection error (a) without local correction, (b) with local correction.

As shown in Figure 8a, the detection error results without correction with a 3×3 averaging 
achieved the highest accuracy among the three interpolation schemes where 71% of the defects 
were identified within 10 days of the observed date.  But errors of up to 60 days were found.  
With 5×5 and 7×7 ring averaging we observed significantly more outliers with error >60 days.  
The majority of detection errors are caused by false identification of defects when the faulty pixel 
is located in a fine detailed color region.  Thus, to correct these errors, a localized analysis around 
the defective region can help determine if the detection is simply an interpolation error or the first 
appearance of a defect.  By recognizing details from the local region analysis, false detection can 
be corrected and the results in Figure 8b show a significant improvement in the accuracy of the 
detection.  In fact, the 5×5 ring averaging now achieves the highest accuracy with 96% of defects 
identified with less than 10 days error.  Although the accuracy with 3×3 averaging had increased 
to 88%; it is clear that this averaging scheme still has some large outliers of 50 – 60 days.  As 
discussed in Section 3, the spreading of defects caused by the demosaicing algorithm is most 
significant in the nearest neighbors, thus 3×3 averaging cannot provide a good approximation to 
the expected pixel value.  Defects can become undetectable when the neighboring pixels are 
highly distorted by the defects, thus these outliers simply indicate the limitation of the 3×3 
interpolation scheme.  On the other hand, with 7×7 ring averaging, 83% of defects were detected 
with error <10 days.  However, the large interpolation region required by this averaging scheme 
induces more estimation errors; thus this interpolation does not provide a very robust detection 
result.  In all cases it must be remembered that the detection error is highly dependent on the 
dates on which the images were taken.  Because most camera users do not capture images at a 
steady rate, inherently, part of the detection error can be caused by large gaps between two 
sequential image.  This error is simply inevitable where when the detection is difference by one 
image can be interpreted as anything from one day to 50 days as some picture data bases show.   

Knowing the defect development date of each defect, we can estimate the defect growth rate 
for all three tested cameras.  Figure 9 shows a comparison of the defect growth rates based on 
visual inspection and on the detection algorithm with the 5×5 interpolation scheme.  In particular, 
a linear fit function is used to estimate the defect growth rate for each test camera. 
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Figure 9. Temporal defect growth of (a) camera A, (b) camera B, (c) camera C.

The observed and detected defect growth rates (found by the detection algorithm) with 
different interpolation schemes are summarized in Table 2.  Again, by comparing the detect 
growth rate to that estimated from visual inspection, the results with 5×5 averaging achieve the 
best approximation of the growth rate where camera A, and Bare both APS imagers and camera C 
is a CCD imager.   

 
Table 2. Defect growth rate results from detection algorithm with local correction. 

 Observed defect growth rate 
(defects / year) 

Detected defect growth rate (defects / year) 
3x3 Averaging 5x5 Averaging 7x7 Averaging 

Camera A 2.04 1.99 2.03 2.08 
Camera B 1.34 1.32 1.34 1.34 
Camera C 3.94 4.04 4.04 3.74 

5. Defects characterization in cellphone cameras 

The popularity of integrated image sensors in devices such as cellphone has increased over the 
past few years.  To extend our analysis, we expanded our data collection to include a set of high-
end cellphone cameras.  In this study we collect in-field defects from a set of 10 mobile phone 
cameras of the same model.  Cellphone cameras do not have the advanced capability of capturing 
raw images, have no explicit control on exposure setting, and standard laboratory dark calibration 
cannot be performed on these cameras.  To estimate the number of defects in these cameras, we 
performed dark frame calibration by capturing dark images in color mode, and the results are 
summarized in Table 3. 

 
Table 3. Summary of identified defects cellphone cameras. 

 Hot pixels  
Camera No offset w/offset Total 

A 6 3 9 
B 11 2 13 
C 6 2 8 
D 4 2 6 
E 6 6 12 
F 12 2 14 
G 10 4 14 
H 6 4 10 
I 9 5 14 
J 7 10 17 

Cumulative total  117 
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With shrinkage in the pixel dimensions to 2.2 μm, defect clusters in these sensors are more 
likely to occur and the impact of hot pixels can be more significant.  Moreover these cameras 
only have 5.7x4.3 mm sensors, only 7% the size of the 24x15 mm DSLR sensors.  Because 
internal processing algorithms such as demosaicing and image compression will distort the 
defects in color images, we cannot at this point conclude if defects in these sensors are cluster-
free nor can we provide an estimate of the dark current magnitude.  However, a first 
approximation on the number of defects in each camera does indicate that with the smaller pixel 
size we are seeing more defective pixels per unit area than in regular cameras. As opposed to 
regular digital cameras, only simple procedures are taken to correct manufacture time defects; 
thus the defects identified in these cellphone cameras include both in-field and manufacture time 
defects, and will require a totally different analysis approach. 

6. Conclusion  

Defect developing is inevitable in any aging digital images. Our continuous analysis of spatial 
distribution and temporal growth of defects with an expanding number of defects (137 defects so 
far) has again shown no indication of material source related defects. Moreover, the higher 
number of defects observed in imagers that were exposed to high radiation environments 
indicates that cosmic ray radiation is the probable defect source.  First approximation on defect 
growth rates based on a collection of APS and CCD imagers showed that the average growth rate 
of APS imagers is ~2.2 defects/year while for CCD imagers it is ~5.2 defects/year.  While CCD 
developing defects at twice the rate of APS sensors, the suggestion is that CCD sensors may be 
more sensitive to cosmic ray radiation. With the development of an automated defect-tracing 
algorithm, we are able to detect the defect development date and estimate the defect growth rate 
of individual imagers by analyzing historical images from individual cameras, permitting this to 
eventually be expanded to many cameras.  The accuracy of the detection algorithm is limited by 
false detections caused by scene complexity; however, by incorporating knowledge of the local 
region around the defect, we are able to correct some false defect detections.  Our recent in-field 
tests on three imagers 2-5 years old with a total of 26 defects has shown that 96% of the defect 
dates were identified within 10 days of the visually identified dates.  To expand our in-field 
defect analysis, we have extended our study to 10 cellphone cameras with a much smaller pixel 
size.  Preliminary results showed that these cameras had ~117 defects prior to shipment by the 
manufacturer, because only simple techniques were used to map out manufacture time defects. 
Thus, defects identified in these cameras will include both manufacture-time and in-field defects 
and will require a new set of analysis tools.   
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