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ABSTRACT

The statistical models for estimating and predicting the manufacturing yields
of VLSI circuits are reviewed. It is shown how defect clustering is taken into account,
and how yield formulae for defect and fault tolerant VLSI circuits are developed.
Different types of formulae for the yield of defect tolerant VLSI circuits have appeared
in the literature. It is proven here for the first time that most of these approaches
are equivalent.

INTRODUCTION

The designation defect-tolerant (or fault-tolerant) is often used in connection
with integrated circuits that have some degree of tolerance to manufacturing flaws or
defects. Such circuits are capable of functioning correctly when they centain certain
types of faults. However, not all faults can be dealt with by the fault-tolerance
schemes. As a result these circuits do not have 100% fabrication yields and the
prediction of those yields is difficult. This difficulty is illustrated in at least three
doctoral dissertations dealing with this subject, namely those of Mangir?, Hedlund?,
and Harden®.

The difficulty in modeling the yield of fault-tolerant integrated circuit chips is
caused mainly by the clustering of manufacturing defects during chip fabrication.
Several schemes for deriving expressions for the yield of fault-tolerant circuits in the
presence of clustering have been proposed in different publications. We review these
schemes and show that most of them are equivalent and result in the exact same value
for the yield of such chips. We also present a simple way of handling the complexity
of deriving yield expressions when defects are clustered.



In the next section we briefly review the most commonly used distributions for
faults, namely, the Poisson distribution and the negative binomial distribution and
show the resulting expressions for yield. We then present a method for determining
the parameters of the negative binomial distribution and discuss the effect of the
size of clusters relative to the size of chips. Next, the previously proposed models
for the yield of fault tolerant chips are reviewed and the equivalence between them
is proved. We also present a general method for deriving a yield expression for
clustered faults from the simpler expression obtained when faults are assumed to
be evenly distributed, i.e., follow the Poisson distribution. These results for chips
with redundancy are then extended to partially good chips and multiple module-type
chips. FFinal conclusions are presented in the last section.

YIELD MODELS

The earliest yield model published in the archival literature was the one used
by Wallmark®* in 1960. He expressed the probability of transistor failure as a ratio
8/100, where § represents the number of failing transistors occurring in a batch of
100. For M transistors, the yield, denoted by ¥y, consequently becomes

Yar = (1 - §/100)M. (1)

Wallmark used this result in a binomial distribution for estimating the yield of inte-
grated circuits with redundant transistors. For obtaining exactly M good transistors
out of a total of N this took the form

_\u QU ﬁm\_ce:rzﬁlm\_osz. (2)

This was the first step towards a yield model for integrated circuits with fauli-
tolerance. Several years later Hofstein and Heiman® also tackled the problem of
manufacturing more circuits than were actually needed. Their chips contained field
effect transistors, and they claimed that the transistor failures were predominately
caused by pinholes in the oxide gates. Assuming a Poisson distribution for the number
of defects per gate, they obtained a yield model for M transistors with the formula

-MA:D Awu

where Ag is the gate area in each transistor and D an average defect density of
pinholes per unit area. This expression was then used in a binomial formula for
calculating the probability of having at least A good transistors on a chip with IV
transistors on it,

Y = W q”.ﬂv eiAGD(] _ g AuD)N=i, (4)

i=M
This was therefore, the first model for the vield of integrated circuits with fault-
tolerance. Subsequently, Poisson statistics were commonly used for modeling the
distribution of the number of faults per chip. According to this distribution the
probability of having exactly = faults in a chip is given by,

Prob {X =z} = - {5)



where X is a random variable denoting the number of faults and A is the average
number of faults expected per chip. A fault is defined as a specific chip failure that
can be caused by one or more manufacturing defects.

For chips with no redundancy the yield is therefore,
Y = Prob {X =0} = e~ (6)

The average number of faults per chip is often expressed as A = AD, the chip area
A times a fault density D. This, however, is a simplification. The relationship
between the average number of faults per chip and the chip area is more complicated;
it depends on the circuil complexity, the density of photolithographic patterns, the
number of photolithographic masks used in the process, etc. These however, are
beyond the scope of this review.

It has been known since the beginning of integrated-circuit manufacture that
the above yield formula is too pessimistic and leads to predicted chip yields that are
too low when extrapolated from the yield of smaller chips or single circuits. It later
becamne clear that the very low predicted yield was caused by the clustering of faults.
This phenomenon has been observed in practice, but was not taken into account in
equations (5) and (6).

Several modifications to the above yield formula have been proposed to account
for fault clustering. The most commonly used modification is obtained by assuming
the number of faults to be Poisson distributed as in (5) but to consider the parameter
X to be a random variable rather than a constant. The mere fact that A is a random
variable results in clustering of faults, no matter what type of distribution is assumed
for A.

The modified yield formula is then obtained by averaging yield formula (6} with
respect to A. Let F(A) be a cumulative distribution function of the average number
of faults per chip. Associated with the cumulative distribution function F(}) is a
probability density function f(A} given by

F(3)

) =— (7)

where f{A)d) is the probability of having an average number of faults per chip between

X and A+ dA. Averaging (6) with respect to this probability density function results
in a yield expression first used by Murphy®:

Y = \os e F(A) dA. (®)

The function f(}) in this expression is known as a compounder or mizing function. A
commonly used mixing function is the Gamma distribution 7-12 wjth two parameters
a and 3,

1

() = mp|:g|1?_ e MP. (9)

Evaluating the integral in equation (8) results in the well known iniegrated-circuit
yield formula

Y =(L+Aje)® (10)



where o is & clustering parameter and A = Je is the average number of faults per
chip. It can be shown that X is in effect the expected value of A when the probability
density function f{A) in {9} is used. This is therefore the grand average (average of
averages} of the number of faults per chip.

The clustering parameter « also has physical significance. In the limit when o —
o0, the yield in expression (10} becomes equal to yield formula (6). This represents
the case of random faults and complete absence of clustering. Smaller values of o
indicate increased clustering. Actual values for « typically range between 0.3 and 5.
Methods for determining this parameter are described in the next section.

Applying the same averaging (or compounding) procedure to the Poisson prob-
ability function for the number of faults in (5), results in the negative binomial dis-
tribution,

T+ x) (A a)®
I Ma) (14 X/ a)ot=’

The yield formula in {10) is a special case of {11) with = = 0.

(11)

Prob {X =15} =

To illustrate the effect of fault clustering consider a chip containing a varying
number of idenlical circuits. Let us start with a single circuit that has a hypothetical
yield of 0.999 and an average of 0.001 faults per circuit. If we use model (6}, the yield
of a chip with 600 of these circuits is equal to e 5921 which is approximately equal
to 55%. For a chip with 40,000 logic circuits, we expect a yield of ¢~40000x000L —

4,248 - 10713, or for all practical purposes 0%.

If clustering is taken into account, the yield formula for a chip with M identical
circuits is given by

Yar=(L+M-A/a)" (12}

where the average number of faults in a single circuit is denoted by X,. Assuming
again that this number is equal to 0.001, it is possible to estimate the yield for chips
with any number of circuits. Calculated yields for chips with a single circuit, chips
wilh 600 circuits, and chips with 40,000 circuits are tabulated in Table 1 for values
of ¢ = 0.5,1,2 and oco. These results show that even if M2}, is high, the presence
of a high degree of clustering leads to surprisingly high yields. This effect has been
observed in many manufacturing lines,

In most cases a gross yield factor Y must be included in the yield model. Gross
yicld losses usually are the result of systematic processing problems that affect whole

Table 1: Yield as a function of the number of circuits per chip
and the clustering parameter o, when A, = .001.

_ Yield in % | Yield in % | Yield in % |
e M=1 M=600 | M=40,000
0.5 99.9 67.4 11.1

1 99.9 62.5 24

2 99.9 59.2 0.2

00 99.9 35.0 0 !




wafers or parts of wafers. Such losses may, for example, be caused by misalignment,
over- or under-etching or out-of-spec semiconductor parameters such as beta transcon-
ductance or threshold voltage. Paz and Lawson'® have shown that fault clusters with
very high fault densities can also be modeled by Y.

Introduction of the gross yield into ihe yield formula leads to
Y =Yo(l+ Afa)™® {13)

This three parameter model has been used successfully for yield modeling since 1975.
Iis paramelers have physical significance and can be determined by a straightfor-
ward technique described in the next section. It must be pointed out, however, that
the simplicity of this model can be deceptive. Some of the hidden complexities are
discussed in subsequent sections.

SIZE OF CLUSTERS AND DETERMINATION OF PARAMETERS

Defect, clusters in integrated circuits can be roughly categorized into three
classes. The first includes clusters much larger than the chip size. Most papers
on integraled-circuit yield which take fault clustering into account have assumed,
sometimes unknowingly, that clusters are larger than the chip size. This is implied
by the assumplion that the value of the clustering parameter « is the same when the
whole chip is considered or when only part of the chip is considered. The success of
these yield models can be attributed to the fact that this is not a bad assumption.
According to Stapper!® most of the clustering is expected to be caused by wafer-
to-waler variations of fault densities. In that case, the cluster area is equal to the
wafer size, which is indeed larger than the area of individual chips. Another source
of clustering is Lhe radial variation in the average number of faults per chip. This
effect was originally described by Yanagawa!t~1%, confirmed by others'®!% and studied
more recently by Ferris-Prabhu ef al'7, Walker!® and Gandemer!'®. It leads to a lower
chip yield along the periphery of integrated-circuit wafers. This peripheral region can
therefore in ellect be considered a large-area cluster.

The radial variation of chip yield has led to the use of concentric wafer zones
for yield analysis 1131520 Tn such analyses, it is usually assumed that the faults per
chip within each zone are distributed according to Poisson’s distribution. Each zone
Nas its own average number of faults per chip A. The yield inside a zone can therefore
be estimated by using formula (6). The yield of chips in all zones from many walers
can be combined and resulis in a compound or mized Poisson yield model.

Another class of clusters deals with fault clusters that are smaller than the chip
area. It is sometimes believed that the faults in such small clusters should distribute
themselves according to Poisson’s distribution. This distribution, however, is too
constrained, because it has a variance that is equal to Lhe mean. Clusters, by their
very nature, tend to increase the variability in the number of faults per chip. As a
resili, clustering leads to distributions with variances that are larger than the mean.
Stalistics applicable to this type of clustering are described by Stapper®'.

The third class of fault clusters deals with clusters that vary in dimension. This
area has been investigated by Warner?®??, Hu®, Stapper®, and in an approximate
poini. defect model for waler-scale-integration by Ketchen®®. A simulation technique



for modeling this situation has, furthermore, been described by Foard Flack®" and
Stapper®®. These efforts, however, have not been definitive.

To understand how in practice one determines whether the large-area clustering
assumption is valid (for a given size of chip) we need first to review the method used
for determining the parameters of the yield model.

The values of ¥, A and & in formula (13) are usually determined with the
“window methed.” This method was first described by Seeds?*~3® and subsequently by
Okabe et af*!, Warner®>?, Paz et al'® and Hemmert'!. The objective is to determine
the yield as a function of chip multiples. This is done with wafer maps that show the
location of functioning and failing chips at final test. The maps are analyzed using
overlays with grids, or windows. These windows contain blocks of chips. Each block
usually contains two, four, six, or nine chips. For each chip multiple, the number of
windows containing only fault {ree chips can be counted. Dividing this number by
the total number of windows in the sample gives us the yield for that multiple.

The results of the window analysis must next be matched to a yield formula.
For the negative binomial model this has the form

Yar = Yo(l + MAja)™® (14)

where M is the chip multiple. Values {or the parameters ¥y, A and « are usually
determined by means of a nonlinear regression analysis. Here it is implicitly assumed
that the value of  is the same for all different sizes of windows, i.e., large-area clusters
are assumed.

Note that high values of « obtained by this method do not necessarily mean
that there is less clustering. Tt only implies that there is less large-area clustering.
Small area clusters can still exist, but this method is impervious to them. The smaller
clusters are essentially counted as single faults.

It is not difficult to use the window method. An example of a window method
analysis is tabulated in Table 2. The data in that table came from 24 wafers, each
one coutaining 89 memory chips. For each wafer a map was obtained to show the
location of fault free and faulty chips. One of these maps is shown in Figure 1. Also
shown on the map are locations taken up by test sites used to measure processing
parameters.

The first step in evaluating the wafer map data is the determination of the chip
yield. In this case 701 out of a total of 2136 chips were fault free. The yield was
therefore 32.82%. Nexl, a transparent overlay was made with a grid containing pairs
of chips. It was found that only 42 pairs could be placed on the grid of each wafer.
This resulted in a sample of 1008 pairs. Only 140 of these were found to be free
of faulty chips. The yield for these windows with blocks of two chips was therefore
13.89%.

The third step consisted of making an overlay grid that contained four chips in
a 2 x 2 arrangement. Seventeen such windows could be fitied unambiguously on a
wafer. To increase the sample size, and to include as much of the circumferential area
as possible, three additional odd-shaped windows containing four chips were formed
along the wafer edge. The total sample therefore contained 480 windows. For 18 of



TFig. 1: Wafer map showing the locations of fault-free (light) and
faulty (dark) chips. Test sites are marked with crosses.

Table 2: Illustrative use of the window method to determine model
paramelers. Here, ¥; = 1, A = 1.2934, and a = 3.8274.

" Chip | Sample | Number | Yield in % | Yield in %
Multiples Size Perfect Data Model

1 2136 701 32.82 32.82

2 1008 140 13.89 13.86

4 480 18 3.75 3.79

these windows it was found that all four chips were free of faults, thus resulting in a
vield of 3.75%.

Ii is possible to obtain an additional data point by analyzing blocks of three
blocks, however, have odd-shaped windows, which makes them awkward
to use. The three data points in Table 2 supply sufficient data for determining the
parameters of the yield model. The values for A, @ and ¥, were obtained by fitting
equation (14) to these dala points with a computer program that minimized the sum
of the squares of the diflerences between model and data. With three data points
and three parameters in equation (14), this was equivalent to solving three nonlinear
equations with three unknowns. For these data, furthermore, it was possible to set
Yo = 1. This led to the values X = 1.2934, and « 3.8274 for the other two
parameters. Putting these values into equation (14) led to the numbers shown in the
column labeled “Model Yield” in Table 2. The experimental yields are also labulated

chips. Such



and are in good agreement. Because of the non-linearity, even with three data points,
such agreement is not always guaranteed for this three parameter model.

The window method analysis is used regularly in the industry. A variation of
such an analysis was described by Hemmert!'. His data were obtained from wafer
maps of logic chips and read only memories (ROMs). He used a least, square fitting
technique to determine A and « in equation {14) while keeping ¥; at 10C% yield. His
results on seven manufacturing lots of walers had an average cluster parameter of 2.2
with a standard deviation of 0.22. The values of a were therefore tightly grouped,
indicating that they were stable during the fabrication of those lots.

An alternative use of equation (14} has been described in references %32, The
yield of different read only memory chips was analyzed as a function of the number
of bits in those chips. This number was represented by M in equation (14). The
values of ¥, X, and w in that case were also determined with a nonlinear least square
minimization technique. This analysis was performed on data from three different
manufacturing lines and resulted in values for & of 1.27, 0.86, and 0.75. The lowest
value, and therefore the highest degree of clustering, occurred on wafers fabricated in
the manufacturing line with the highest chip yields. The highest value of «, suggesting
less clustering, resulted from the wafers that were made in the line with the lowest

chip yields.

The yield analysis of these read-only memory chips also showed that the gross
yield Yy varied between 70.8% and 90.4%. Although these numbers include the yield
of the support circuits on these chips, this range of gross yields is typical for most
integrated circuits. The lowest value of ¥y occurred in the low yield line and the
highest value of ¥y in the high yield line.

It must be noted here that the values of X obtained by this methed tend to be
lower than the aciual average number of faults observed on chips. This difference
can be cansed by the eflect of clusters that are smaller than the chip. As mentioned
before, such clusters are counted as single faults by this technique.

To find the chip sizes for which the large-area clustering assumption is valid
particle distributions on actual wafers can be studied. This was done, for example,
in reference **, where walfer surfaces were subdivided into squares called quadrats.
Negative binomial distribution were found in this study to be in good agreement
with the frequency distribution of the number of particles in each quadrat for a wide
range of quadrat sizes. The values of the cluster parameter «, however, differed for
quadrats with different areas.

The data obtained with quadratl analysis can he analyzed using a maximum
likelihood estimation technique described by Foard Flack®. This approach makes it
possible to determine the variability in the estimaled values of . The resulis of such
an analysis are shown in Figure 2. The bars around the data point indicale the range
ol +a,, where g, is the standard deviation of each estimate. Note that tlie horizonial
scale is logarithmic and represents a range ol two orders of magnitude in area.

Ol interest in Figure 2 are the resuits for the three smallest quadrat areas. The
ranges of standard deviations overlap, thus suggesting that these points represent the
condition for large-area clustering. The increase in values of « for the other points
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Fig. 2: Experimental dependence of the clustering parameter o
on quadrat area.

on the curve indicate that the associated quadral areas are mxnmmnr:m the range for
which the large-area clusiering assumption is valid.

YIELD MODELS FOR CHIPI'S WITH REDUNDANCY

In many integrated circuit chips, identical blocks of circuits are often replicated.
In memory chips, these are blocks of memory cells which are also known as sub-arrays.
In processor arrays these basic circuit blocks are referred to as processing elements, or
PFEs. In other digital chips they are referred to as macros. The terminology depends
not only on the type of circuitry that is used, but also by whom it is used. The
designation medules is used in this paper. It is meant to be general and include all
these designations.

Chips containing a number of identical modules {of one type or more) can often
be used even If some of the modules do not function correctly. We obtain this way
partially good chips. Alternalively, we can add a few redundant modules to our design
and accept only those chips which have the necessary number of lault-free modules.
We will first, consider chips with a single type of identical modules and then exlend
our results to multiple inodule-type chips.



Let N be the number of identical circuit modules. Define the following proba-
bility

an,n = Prob {Exactly M out of the N modules are fault — free} (15)

This probability can be used to caleulate the yield of chips with redundancy and that
of partially good chips. For example, if R out of the N modules are spares meaning
that a chip with at least (N -- R) fault-free modules is acceptable, then the yield of
the chip is given by

Y = WU Qps 1 (16)

M=N-R

Two methods have been used to calculate the probability a, . In the first
method it is assumed that for any given subset of n modules we can compute the
probability that this subset is fault-free. The latter is the yield of this subset and is
dencted by

Yo =Prob {X,=0}; n=12,..,N (17)

where X, is a random variable denoting the number of faults in n modules. For
example, if a Poisson disiribution is assumed then,

Yn = ml:.y . ﬁwmu
while if the negative binomial distribution is assumed then,
Yo = (1 4+ nkja)™® (19)

where A (and similarly, 4} is the average number of faults per module. Note that
equation (19) is based on the large-area clustering assumption.

If the faults occurring in different modules are independent {as in the case where
faults follow the Poisson distribution) then y, = y™ where y = 1 is the yield of a
single module, i.e., the probability that the module is fault-free. We can use in this
case the binomial distribution to obtain the following expression for [

Bpgy = ﬁﬁqv M1 -y M (20)

Il however, the faults in different modules are dependent (as in the case where faults
follow the negative binomial distribution), then the Inclusion and Exclusion princi-
ple must be used to calculate the probability a,, . Defining the event - the i-th
module is fault-free, then a,, . is the probability of exactly M such events occurring
simultaneously, i.e.,

= () 2 C0 (V7 v (20

Notice that for the Poisson distribution equations (20) and (21) are equivalent.

In the second method for calculating a,,, we compute the probability that a
given number of faults occur in the complete chip (containing N modules} and then
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distribute these faults uniformly among the N modules. (Variants of this scheme
were used in references!~*2%% -0 Again, this is justified if large-area clustering is
assumed. Thus, the probability that exactly (N — M) modules will contain faults

8¢
_mu.{_c

Gun = 9. Qwﬁffﬁu - Prob {Xy =z} (22)

z=N-M
where Prob {Xy = z} is the probability that the chip has r faults and Qﬁ.v is the
probability that the z faults are distributed into exactly j out of N modules given
that there are = faults. Assuming that faults are distinguishable, the latter equals?®,

H. . z
(W) x N J— nn . .
o= —1 ) | fe > d 0<3 <N (23
@H_u WA w \nu.wui\nvz\.q ._2_. or r .~ 3 an 1= A v
where ?TWEIL = TU AHHU is the multinomial coefficient.

For z < 7 we have Qmﬂu =0andforz=35=0 Qmﬁ_ = 1 and consequently, we

can rewrite (22) as follows,

Aprw = M @mﬂ_v|3v - Prob {Xny =z} (24)
z=0

We show next that the two methods in (21) and (24) yield the same expression
for ay,» when the probability of having z faults follows the Poisson distribution, i.e.,
ml.?_\,:/ﬂyvn

= (25)

Prob {Xny =z} =

Substituting (23} and (25} in {24) results in,

Bprw = MU Prob {Xn =1z} - Qﬁr|2v
=0
0 le»TzC;u N-M . N N-_M-k]I?
T= W. 0" e omv -k N
A (—1)* Az L&v mzv NL;W (AN - M — &))"
=0 k M jord z!
NoM N—M\ [N
- ok NN =M=k}
WWA Y m k XEY ¢
_ (NN o vesa k A.ZIEV —kA
D A?.Y ‘ ,W. (=1 Kk /°
_ (NN a Layz\ilﬁ?.v.i L AN-M
|Fsvm (L=e)" = { )y (1-v)

The equivalence of the above two methods is not restricted to the simple case
of the Poisson distribution for faults but holds for other distributions as well, in par-
ticular for the negative binomial distribution as shown in what follows. Substituting
(23) in (24) we obtain,

A = p_ Prob {Xny =1z} - QEP\EV
z=0

11



= Mc Prob {Xy = HwHMMHm (-1)* AE M Ev bﬂv %ﬁ
H”MMH& (—1)* AZMEV ﬁ“vm Prob { Xy = z} %—u

S (M) (e (A

where G(s) is the generating function of the probability distribution Preb { Xn = z}.
For the negative binomial distribution we have

-

—~ 8)NX
Gis}=|1+ :|.&|2.| (26)
o
Substituting (26) into the above equation yields,
S (Y3 () e ]
Arrnw = f k M o
oM N-M\/N (M + &)X
- ~1)* L A 27
2o (0 G e @)

which is identical to (21) after substituting y,,4+ by its proper expression from (19).
Noie that the equivalence of the two schemes for the Poisson distribution can be
proved similarly using the generating function for the Poisson distribution which is
given by

G(s) = gNAe—1) (28)

The negaiive binomial distribution is obtained from the Poisson distribution hy
averaging over all values of A, using the Gamma distribution function. This com-
pounding procedure can be applied to any statistical measure. We can derive an
expression for the desired measure assuming the very convenient Poisson distribution
fwhose most useful property is the statistical independence between faults in differ-
ent modules), and then apply the compounding procedure to obtain the required
expression {or the negative binomial model.

To illustrate this procedure we show next that a,, y in (27) can be obtained by
compounding (20) when y = e~*. Equation {20} can be rewritten in the form of {21)
by expanding (1 — y)¥ M into the following binomial series

I _<|§H2|EI k 2Ig w
a9 = S () (20)

Substituting this series expansion into (20) results in,

Arw = A“v _HMHAAIC\“ AZ M.. ?Av yMtE (30)



calculated using

Yi= ) ey {40)

The expression for ¥ will consist of K, - H; terms. However, in many practical
chip architectures there is no such architectural independence and a [ault in a module
of lype 1 may affect the usefulness of type 2 modules, i.e.; a type 2 module may
become useless when a type 1 module is defective. In such a case not all R;-R; possible
terms should be included in the expression for Y. In well-structured architectures we
can easily identily those terms that should be included and we can therefore define
a “coverage {actor” as follows, ¢, A, = 1 if the chip is acceptable with M, and M,
fault-free modules of type 1 and 2, respectively. Otherwise, ¢,,, »r, = 0. Consequently,

Ny No

Y = M M Qpr )01 " Gagg, vy " Cary g (41)
M\=N~-R, M;=N;-R;
Chsy ar, S€TVES to select all the fizable combinations out of all combinations of fault-free
modules of type 1 and type 2.

In less structured architectures, the number of fault-free modules of either type
may be insufficient to determine whether the chip is fixable or not; we may also need
to know the exact position of the fauli-free modules. In such a case, ¢,,, 1, Will not be
a factor assuming only the values 0 and 1, but the fraction of fixable patterns out of
all patterns consisting of M; and M, fault-free moduiles of type 1 and 2, respectively.

The final expression for the yield of a chip with two types of identical modules
and support circuitry when the Poisson distribution is assumed, is as follows,

o 3 S TS ey (M (M MY (M) (M M

A= Atg= k=0 ko=0
Ny=ft;  Na-Rg

. WIHE—.T.#;»— mlﬂawnm‘#wvywnlyn:n . hh: 2 AANV

Next we have to apply the compounding procedure to calculate the yield when
clustering of faults is allowed. We should not however, perform three separate com-
pounding steps (for the two types of modules and {he support circuits) since the
cluslering of laults in one type of circuits is not independent of the clustering in the
other iwo. We must therefore, perform a single compounding step using the average
number of faults in the complete chip, i.e.,

‘r”y_ZHnT\/uzunTyﬁ.m- A&wu
To simplify the integration of the various summands in (42) which contain different
multiples of X, and A; we define,

AN AN

ay nv &.N = N\/ 2 and %w = JJMII
Note that & (and similarly, 6,) is a constant which depends mainly on the area ratio
of a type 1 module to the whele chip. The exponential terms in (42) now take the

Ack

Amu”

form,
mla_?:+k_:_lﬁ:u._.wmv?._l?ﬁn — ml:?a_.f.«__m_\2—+mzu+rnv&u\2u+mu_»
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Some practical modifications

The simple architecture analyzed in the preceding section is an idealization
because actual chips rarely consist entirely of identical circuit modules. In all chips
there are support circuits in addition to such modules. These support circuits are
shared by the replicated modules. The chips, however, become unusable il such
support circuits are damaged beyond use. In principle, this effeclt can be included
in the expression for a, . by multiplication with the yield of the support circuits.
Doing so, however, would assume that the clustering of the support circuit faults is
completely independent of the clustering of the module faults. In most practical cases
there is a dependence between the average number of faults in different circuits. This
eflect can be taken into account by including in formula {19) the average number of
laults that cause these support circuits to be defective. This results in

yn = 1+ (Aok + nA)/a]™® (37)

where Acx is the average number of fatal faults or chip-kill faults in the support
circuits. Chips with these faults cannot be used. Substituting expression (37) into
formula (31) makes it possible to take these types of faults into account when cal-
culating the yields of partially-good chips (or chips with redundancy) with support
circuitry.

Another effect that must be included in yield estimates is the gross yield. Unless
the chips are very large, this yield is independent of chip area. It is used as a yield
multiplier, which has been denoted by ¥, in the preceding sections. Introducing it
into yield formula (37} results in

Yo = Yoll + (Acx + nA) /o™ (38)

Introduction of this expression into equation (31) results in a formula that can
be used to estimate yields of pariially-good chips and chips with redundancy, with
supporl circuits and gross yield losses.

Multiple Module-type Chips

The discussion above was restricted to the case where redundancy is provided
to tolerate fauits in a single type of circuit modules. In this section we extend the
previous results to fault tolerant chips with multiple types of modules. We derive yield
expressions for chips with two different types of modules, say, Type 1 and Type 2.
The extension to a larger number of module types is straightforward and is therefore,
nol presented here.

Suppose that there are redundant modules of both types and that the modules
of each type can be reconfigured separately when necessary. Then, we can calculate
the yield of each module type separately (assuming that faults follow the Poisson
distributien), and multiply the two results to obtain the overall yield,

Y=Y Y, (39)

where Y; ( = 1,2} is the yield of the set of N; modules of type i. This yield can be
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By compounding (30} with the Gamma distribution in (9) we obtain,

az,zu AMV MMM.T:* Az M Ev \H.,s n\:fsy.x?v.a;

22%*213 Eiﬁ-p
va?il:; E
This very powerful compounding procedure was employed to derive yield expressions
for interconnection buses in VLSI chips?'!, for wafer scale cube-connected-cycles??,
and for partially good memory chips?®®,

The expression for ayy in {31) can be used to calculate the yield of chips
with redundancy, using equation {16), and partially good chips as will be shown
subsequently. Te calculate the yield of a chip with a single type of redundant modules
we can derive a somewhat simpler expression involving one summation instead of two,
Employing the previous notation, the required yield is

Y = Prob {There are at least (N — R) fault — free modules} (32)

Define the event - the #-th module is fault-free, then Y is the probability that at least
(N — R) such events occur simultaneously. According to the Inclusion and Exclusion
principle, ¥ can be wrilten as,

re 3 () (M)

n=N-R n

It should be noted that we may use either equation (18) or (19) for y, in (33) and
abtain a yield formula for evenly distributed faults or clustered faults, respectively.
Replacing the index in (33) by ¢ = N — n yields,

Zu N—1-—1 s (34)

<HMUT:?A2 N-R-1

i=0 —t

This is the yield formula {with a different notation, i.e., M = N — R) presented by
Harden and Strader*® and deduced from several special cases of N and R. The yield
expressions in (34) and (16) are equivalent.

We conclude this section with an example illustrating the effect of clustering on
the yield of chips with redundancy. Consider a chip on which ten identical circuit
modules must be functioning correctly if the chips are to be usable. Let the yield
of the ten circuit modules be equal to 10%. We can then investigate how the chip
yield is aflected when we have one to five redundant circuits. This is done in Table
3, where yields (in %) correspond to different values of the clustering parameter o.

The pure random fault model corresponds to a = co. In this case, according to
Table 3, the use of five redundant circuits increases the yield from 10% to 93.1%. If,
however, the clustering parameter is « = 0.5, the yield is expected to improve {rom
10% to 24.1%. This indicates that the yield prediction for purely random faults is
four times higher than the prediction for clustered faults. Miscalculations by a lactor
of four in the productivity of semiconductor manufacturing plants can be very costly.
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TFable 3: Yield (in %) with different amounts of redundancy for
varying degrees of large-area fault clustering.

o | R=0| R=1|R=2[R=3 | R=4 | R=5
05] 10 [ 146 17.8 [ 203 | 224 | 24.1
1| 10 | 183|252 31.1|36.1 | 40.6
2 | 10 | 224|343 44.8 | 53.7 | 61.1
co | 10 [ 306|538 ]| 730! 858 | 93.1

Inclusion of clustering in redundancy yield calculation is therefore of considerable
importance.

Partially Good Chips

Partially good chips are chips which are usable even if only some of their iden-
tical modules are fault-free. Consider for example, chips consisting of four identical
modules. These chips are known as perfect if all four modules are fault-free. The
fraction of chips falling in this category represents the perfect chip yield. The chips
with three operating modules and one defective module are referred to as being three-
quarter-good. The yield of these chips is known as the three-quarter-good yield and is
equal to as4. Similar designations apply to chips that are half-good and quarter-good
and their yields are a; 4 and aq 4, respectively. In general, the yield of a partially-good
chip with exactly M fault-free modules out of N, is given by 04¢n- The difference
between a partially-good chip and a chip with redundancy is that el fault-free mod-
ules in a partially-good chip are considered to be usable while only {N — R) fault-free
modules in a chip with redundancy are expected to be used. Thus, a three-quarter-
good chip is more valuable than a half-good chip. Consequently, instead of sumiing
up all ay,n’s to obtain the yield as is done for chips with redundancy, we multiply
each @, ~ by a weight equal to M/N to obtain what is called the equivalent yield,

N
M\mﬁ = M m Qpg.w Twmv
M=z N

where J is the minimum number of modules which have to be fault-free.
We show in what follows that if J =1 then Ygg =y, i.e., the equivalent yield
in this case is equal to the yield of the individual circuit module. This implies that

the use of partially good chips results in utilization of all the fault-free modules; none
have been wasted. We first prove it for the Poisson distribution using equation (20),

za 222 zzl
wnl n IA vaH| zén m v:-_ |z-a
E zMu_zaz.z zMnu_z EQAS ezm_ EL.«:S
Substitutingm =M — 1 and n = N — 1 yields,
"in
M»Euwmm vuatlSz-aua {36)
m=0 m

Applying the compounding procedure to the above equation proves our claim for the
negative binomial distribution as well.
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Substituting the above in (42) and compounding with respect to A results in,

vavo b s e (M) (MM () (MM

Ay = Ma= k=0  ka=0
Ny-Ry  Np—Rg

-

63) X
1 |T mﬁz— + %.M%—\Z_ Q“Wux_v #u.v&.u\zu i ww ) ﬂ.a:_._:.n Tm.‘mv

Finally, we define A} = A6;/N; , A2 = A&/Ny , Acx = Ad; and obtain,

v RS e () (M) () ()

M Ma= =0 k=0
-r,  N3-Rs

—a

R AT @N ke + Aok (45)

A simpler expression for the yield of a multiple module-type chip can be derived
if it is possible to determine for any single fault whether it can be tolerated or not.
In this case, instead of considering modules which may have any number of faults, we
examine individual faults. An example is a memory chip which can have the following
types of faults: singte cell Faults, adjacent cell laults, single word line faults, adjacent
word line faults, single bit line faults and adjacent. bit line faults®. A fault-tolerant
memory chip has three types of identical circuits for which some form of redundancy
is provided, namely, memory cells, word lines and bit lines. However, only two types
of redundanl circuits are added to the memory chip: spare word lines and bit lines.
These two types of redundant circuits are used to replace defective word lines, bit
lines and memory cells.

We first. derive a yield expression for a chip with two types of faults, type e and
type b, and then extend our result to memory chips with a larger number of fault
tvpes. Let A, and A, denote the average number of faults of type a and b, respectively.
T hen,

Y =Y; MU Prob {There are k, faults of type o and k, faults of type b} - Ay, 4,

L.

where h,, &, is the probability that the combination of k, and &; faults can be tolerated.
The above yield expression can be derived by first assuming independency between
the two types of faults (i.e., faults follow the Poisson distribution) and then applying
the compounding procedure to allow for fault clustering. We also take into account
the support circuitry and denole by Aqg the average number of faults in this part of
the chip. Consequently,

ks p=Aa \,w_. e

Y =Y, a : M L
0 *M ! k! © kbt
y?»w..
— H\O MU a b ml?:+y:+y?_=~ . m:n...»y Haﬁv
kK
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The compounding procedure has to be applied only once due to the dependence
between the clustering of the three types of faults. Therefore, we define as before

Aa A Ac
A=dat detdex, =70, mmnw,, and .@H%

Substituting these in (16) yields

Y=Y )

K \Jen

[3
PR m_r. .mu h

PN e b, (47)

Compounding now with respect to A results in,

Tk, + ks + ) mwv?t:. &_ﬂ.. &; Tty

kolky! H_THV :, + Muw..+w_.+n

a

w\ = W‘O MU - \sw...wa A&mv

Ko, ki,

Defining A, = A6, and X; = A§; and substituting in (48) we obtain

Tlka+ ks + ) (Lykathe ey
Rl (@) (11 Djtire

Py b, (49)

M\”M\OM

Ko 1y

We now extend the above result to memory chips with seven types of faults:
single cell faulis, adjacent cell faults along word lines, adjacent cell faults along bit
lines, single word line faults, adjacent word line faults, single bit line faults and
adjaceni. bit line faults. The corresponding fault averages are denoted by A.., Aqewr,
Aachts Aswily Aawi, At and Agp. Following the same procedure as outlined in equations
{46) through (49) we arrive at the following yield expression,

H\”M\o MU

1.k m g

Ti+i+k+l+mtnt+g+a)
tltkHimlnlg! I'a)

Ayitjtkrdmintg 3 o 3E 3P ogm 30 39
. (z) A e A et Aacht A et Aamt A sht Aabt Rins (50)
(1+ Pw,.+‘..+w+w+3+:+a+p 1,50
o

where the definitions of A.., As.ue, etc are similar to those above,

Finally, note that we must assume that the probability of multiple faults (ol any
of the seven Lypes) occurring in a single word line (or bit line} is negligible. Otherwise,
the suinmation in (50) will be infinite. In VLSI memory chips with thousands of
word lines and bit lines and a small number of expected faults, this assumption is
well justified,

Also, it must be noted here that the above approach is valid only if there is
a perfect correlation between the distribution of faults of different types. Such a
perfect correlation was assumed in the derivation of (45), (49) and (50). If there
is no correlation, independent negative binomial distributions, each with their own
cluslering parameter o, have to be used for each fault type. Separate compounding
steps for each type of faulls have to be performed, as was done in reference*'. Small
correlation between fatlure types requires the use of a multivariate model like the one
described by Stapper et al*®.
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CONCLUSIONS

The statistical models used to estimate the manufacturing yield of defect toler-
ant VL5I chips have been reviewed in this paper. We have shown how to take fault
clustering into account when deriving yield expressions for YLSI chips with redun-
dancy or partially-good chips, with one or more types of circuit modules. Also, the
method used to determine the parameters of the yield model was reviewed and the
assumed size of fauit clusters was discussed.
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