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Abstract

This paper discussesa new approach for accurately
evaluatingthe reliability of a complex, highly reliablesys-
tem for which neitheranalysisnor brute-force simulation
are feasible. We proposeto calculatethe reliability at fea-
sibleparametervalues,andthenuseRationalInterpolation
to evaluatethe desired reliability. We presenta detailed
case-studyto demonstratetheusefulnessof thismethod.

1. Introduction

In this paper, we outline a new approachfor evaluating
thereliability of complex, highly reliablesystems.Increas-
ingly, applicationshave arisenin which thespecifiedavail-
ability or reliability over a given periodof operationis of
theorderof

����� �������
or greater. Conventionalapproaches

to evaluatingthereliability of suchsystemshaveseverelim-
itations. Analytical techniquesbasedon Combinatoricsor
on Markov processestheoryare infeasiblein complicated
systemsowing to the explosive increasein the numberof
distinctstatesthathaveto beconsidered.Conventionalsim-
ulation techniquesoften take a prohibitively long time to
execute,dueto theverysmallfailureprobability.

Thereareseveralapproachesmentionedin theliterature
for thecalculationof probabilitiesof rareevents,mostno-
tably - ImportanceSampling.All of theseapproacheshave
theirdrawbacks.We focushereon oneof themorepromis-
ing approaches,RationalInterpolation( �	� ) [5].

The basisfor this techniqueis as follows. Simulations
of highly reliable systemstake a long time to execute
becausefailureshappenso rarely that gatheringsufficient
failure statisticsis extremely slow. By contrast,we can
quickly obtain simulation results of adequateaccuracy
when simulating under parametersthat causefailures to
occurmoreoften. The ideais to obtainstatisticsunderthe

assumptionthat the failure ratesof individual blocks are
high. Then,we constructa closed-formrationalinterpolant
to theobtainedpoints.A rationalinterpolanthastheform


�����������������  �����������!   " � � " �  �#�$���%� "'&  & (1)

The �	� in (1) is called an
�)(+*-,.� �/� ,  is a parameter

suchas the componentfailure rate or the system’s oper-
ating time, and the constants�!0 * " 0 aredeterminedby the
higher-failure-ratesimulationresults.Sincewithout lossof
generality, wecanselect

" � �21 , 3 ��( � , � 1 inputpoints
��) � �'* �4�5� *6
��)87�� areneededto calculatethecoefficientsfor
an
��(+*9,:� �	� . The points

�) � * �5�5� *-�7;� are selectedin the
regionwherefailureratesarehigh, 3 equationsof theform
(1) aresolved for � 0 * " 0 [4], andthenthe reliability canbe
predictedfor very low failure rates. Sometimes,basedon
the type of the function


�����
, a pre-transformationis per-

formedon

��� � �'* �4�5� *<
��) 7 � and(1) is solved for the trans-

formedvalues.Thepurposeof thepre-transformationis to
obtainafunctionalrelationshipthatcanbeapproximatedby
arationalapproximationat ahigherprecision.

The �	� methodwasintroducedto performanceanalysis
in [5, 9], in which a seriesof resultsof Stahlwereused[3].�	� hasbeensuccessfullyappliedto the analysisof some
discrete-eventsystems[5, 6, 9], thecomputationof cell loss
probability in ATM multiplexers[10], andsomeotherper-
formanceanalysisproblemsin computerandqueueingsys-
tems[7, 8].

This paperdemonstratestheuseof theRationalInterpo-
lation techniquefor calculatingtheaccuratereliability of a
highly-reliablesystem.We next outline themotivationbe-
hindourmodelandexplainhow wesuggestto tackleit. We
thenpresentsomeinitial numericalresultsof experiments
which we have performed,andoutlinefuturedirectionswe
intendto pursue.



2. Motivation

Therearemany waysof definingreliability [11]. Tra-
ditional reliability involvesa systemwhich canbe in one
of two unambiguousstates:up or down, andis composed
of subsystemswhich arethemselvesin oneof thesestates.
Examplesincludeseries-parallelsystems[1] or moregen-
eralinterconnectionsof modules[13].

More advancedreliability problemsariseif we have to
take into accountthepossibilityof thesystemoperatingin
degradedstates.In suchanevent,measuresasperformabil-
ity or capacityreliability canbeused,in which thesystem
performance/reliabilityis expressedasavectorof probabil-
ities.

In thestudydescribedhere,weconsideredtheevaluation
of the traditional static reliability. That is, the systemis
describedas a block diagramof modules,eachof which
canbe in oneof two states:up or down. Whena module
fails,arepairprocessbegins,attheendof whichthemodule
is “up” again. The systemasa whole is consideredto be
“up” if certaincombinationsof modulesareup, anddown
otherwise. We definethe reliability of the systemat time=

asthe probability that thesystemhasbeenup during the
wholetime interval > ?A@ =CB .

This paperis meantto be a “proof of concept”for the
ideaof usingRationalInterpolationfor theaccuratecalcu-
lation of high reliabilities which would not have beenfea-
sibleotherwise.To this end,we selecteda systemwhich is
amenableto ananalyticsolutionandnot just to simulation-
basedresults. The behavior of the systemselectedfor
demonstratingthe D	E methodis representedby thediagram
in Figure1. We assumethatthetime to failureandthetime
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Figure 1. A Non Series/Parallel System.

to repairof moduleF areexponentiallydistributed,with pa-
rametersG�H and IJH , respectively K)F+L�MN@-OP@$Q4Q5Q5@-RTS .

Very high reliabilities can be the result of low failure
rates,high repairratesor small valuesof the time

=
. Since

we needoneparameterthatdeterminesthebehavior of the
systemasawhole,weselectedastheparameterof theratio-
nal interpolantthesystemtime

=
(theotherparameterscan

bevariedaccordingly).Also, without lossof generality, we
assumethat

=
is integervalued:

= LU?A@$V�@6WA@�Q5Q4Q .
The systemis up if at least one of the combinationsONXTR , M/Y	XTR , or M[ZPR is up, anddownotherwise.The

systemreliability at time
=
, D\K = S , is definedas the proba-

bility that the systemhasbeenup during the whole time
interval > ?A@ =CB . Calculating D\K = S is not a trivial task. How-
ever, thesystemcanbedescribedasaMarkov chainwith 16
states,denotedby ? ,...,V�] . State V�] denotesthe initial state
in which all modulesareup andstate ? denotesthe “sys-
temis down” state.Settingstate? asanabsorbingstate,the
un-reliability of thesystemat time

=
is the transitionprob-

ability ^+_a`�b c�K = S , or equivalently, thestateprobability ^dc�K = S
given that ^�_9`�Ke?�SNL�V . The reliability DfK = S canbe calcu-
latedas D\K = SgL2Vihj^�_9`�b c�K = S
Ratherthan solving a large set of differential equations,
the transition probabilities for the Markov chain can be
calculatednumericallyusing the powerful uniformization
method[2], whichprovidesveryaccurateresults.Theavail-
ability of an analyticalsolution allows us to comparethe
predictionsof the D	E approachwith theexactreliability, as
well aswith simulationresults.

3. The k.l Approach

We next giveabrief descriptionof themajorstepsin the
rationalinterpolationapproachto reliability calculation.

1. Selectaparameterm for thereliability function D .

2. Calculatetheasymptoticvalueof D\K)m8S as monp? .
3. Obtain interpolation points DfK�mqHCS (for large mqH ’s)

througheitheranalyticcalculationor simulation.

4. Perform an appropriatepre-transformationto D\K�m�S
suggestedby its asymptoticbehavior.

5. ConstructD	E that interpolatesthe pointsobtainedin
Step3. Generatea sequenceof D	E s with increasing
ordersuntil aspecificD	E is selectedaccordingto some
criterion.

6. Transformbackthe D	E result to obtainthe reliability
valuesin therangeof interest.

As mentionedabove, we selectedas the main parame-
ter the systemtime

=
. Let us denoteby D\K = S the accurate

reliability function,by DsrtK = S the reliability asobtainedby
Monte-Carlosimulation,andby uD[v[b wxK = S the estimateob-
tainedwhenusingan D/E of degree K�yz@-{dS .

In many casesthereliability of asystemcanbeexpressed
asa sumof exponentialfunctions,andthus,a logarithmic
pre-transformation|e}%~8KeDfK = S9S will makethevalueseasierto
interpolateusinga rationalfunction.

The main difficulty in implementingthe algorithm de-
scribedabove is in step5. : How do we choosethe rightD	E amongthemany candidates?We suggestthefollowing
procedure.Selectthreesetsof pointson the � -axis:



���8�;���5�4�5�9�8� arethe input points- the pointsfor which
eithertheaccurate�\�)�9� or thesimulated�s���)�9� is cal-
culated( �s�����9� will includesomenoise)andwhich are
usedin (1) to producethecoefficients �!� and �'� . Note
thatfor theinputpoints � � ���5�5�4�-� � ( ���#���z�f��� ),��[�[� �x� � �C�g���\� � ��� or

��/�[� �x� � ���g�U�s��� � �C� , depending
on whetheran analytic function or simulationresults
areusedfor thereliability calculation.

��� � ���5�4�5�9��  arethe testpoints- additionalpointson the
time axis which assistus in choosingthe best �	¡ for
ourpurposes.We will calculatetheaccurate�\� � � � (or
simulated� � � � � � ) values,thoughpossiblyat a higher
costthancalculating�\� � � � . In addition,wewill calcu-
late(for a given �	¡ of degree �)� � �d� ) theextrapolated
values

�� �[� � � � � � using(1), andthenobtaintheaverage¢
-errorasgivenby

£¤ �[� � � ¢ �g�
¥   �5¦ �+§ ��[�[� �x� � ���©¨j�\� � �C� §ª (2)

�¬« � ���5�5�4�6« � arethe target points- the pointsfor which
weareinterestedin evaluatingthereliability. In anac-
tual application,calculating �\� « � � (or even �s��� « � � )
is infeasibleandonly the estimates

�� �[� � � « � � areob-
tainable. In this paper, both �\� « � � and

�� �[� � � « � � will
becalculated,to testthe validity of our approach.To
thisendwedefine,similarly to (2), theaverage -error
for a given �	¡ of degree �)� � �d� ,

£¤ �[� � ��[�g�
¥ ��5¦ �+§ �� �[� � � « � �©¨®�\� « � � §¯ (3)

Notethatin (2) and(3), �\�)�9� will in mostcasesbereplaced
by �s�t���9� sinceonly simulationresultswill beavailable.

The approachwe study for predictingthe reliability of
highly reliablesystemsis asfollows:

1. Selecttargetpoints,testpointsandinput pointson the
timeaxis.

2. Get a sequenceof rational interpolantsof varying�)� � �d� basedon theinput points.

3. For eachfunctionobtainedin step2., find theaverage
error

£¤ �[� � � ¢ � over thetestpoints.

4. Select the rational interpolant with the lowest£¤ �[� � � ¢ � and useit to predict the reliability for the
targetpoints.

4. Numerical Experiments

To demonstratetheeffectivenessof the �	¡ methodout-
linedabovefor reliability estimation,weperformedaseries

of numericalexperimentson thesystemdepictedin Figure
1.

Thefailure/repairratesselectedwere: °q�g�²± � ±�±�±A���C³´¨µ � , ¶J�·�¸± � ±�±;¹U� µ � � ���5�4�5�-º � . The variable � is the
systemtime, and �f���9� is the systemreliability at time ��)�o�»± � � �6¼��$�4�5� � . Clearly, �\�e±��½�¾� . Our assumptionis
that the direct calculationof �\���9� becomesmore difficult
the closerwe get to ± , and thus, the target points « � are
smallerthanthe testpoints � � , which, in turn, aresmaller
thantheinputpoints � � :
«;��¿�«�Àx¿.Á�Á�Á-¿�« � ¿�����¿\��Àx¿.Á�Á$Á9¿\�   ¿\�8�8¿f��ÀJ¿.Á�Á$Á9¿\���

To checkthevalidity of the �	¡ approach,we calculated
a �eÂ � Â����/¡ basedon thesimulatedreliabilitiesat the input
points �Ã�Ä�$Å ���5�4�5�6¼ Å anda logarithmictransformation.We
thenusedthe obtainedfunction to predict the reliabilities��[Æ � Æ����9� for �g�#± �$�4�5�5� Â;± .

Boththeexactandthepredictedreliabilitiesaredepicted
in Figure2 and it is clear that the differencebetweenthe
two is very small. Figure3 shows theexactvaluesof these
differencesin log-scale.Notethat thedifferencesareespe-
cially small for theinput points.They arenot equalto zero
becausethe curve wasbasedon simulationresultswhile it
wascomparedto theexactanalyticalresults.
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Figure 3. The diff erence between the exact
and the predicted reliabilities (log-scale)

In morecomplex systems,an analyticsolutionwill not
beavailableto usandwe will have to resortto simulation,
for which a goodrandomnumbergeneratoris a must. It
is well known that thereisn’t one randomnumbergener-
ator which is suitablefor all tasks. We tried several ran-
domnumbersgeneratorsandfinally selectedtheMersenne
Twister generator[14]. Figure4 shows the averagediffer-
enceover the points �/�Ç± ���5�5�4� Â;± whencomparingthe ex-
act reliability �\�)�9� to the simulatedreliability �s���)�9� as a
functionof thenumberof simulationsperformedusingthis
generator.



  
 

TARGET REGION

1   

0.994

0.995

0.996

0.997

0.998

0.999

1.000

1.001

0 5 10 15 20 25 30 35 40 45 50

R
el

ia
bi

lit
y

Time

5by5 RI Curve
Actual Curve

Figure 2. Comparing actual and È	É reliabilities.

To increasethe precisionof our numericalcalculations,
we usedthe multi-precisionsoftwaredevelopedby Bailey
et al. [15] andavailableat [16], andnoticeda significance
increasein accuracy comparedto earliercomputations.

In the next set of numericalexperiments,we choseas
targetpoints Ê;Ë%Ì�Í5Í5Í4Ì6Ê�ÎÐÏÒÑ�Ì<Ó�Ì6ÔAÌ9ÕqÌ6Ö .
Our first experimentwasmeantto assessthe sensitivity of
thebestÈ	É for thetargetpointsto theselectionof theinput
points. For this experiment,we didn’t useany testpoints
but varied the placementandnumberof the input points.
For eachstartingpoint between6 and20 we calculatedall
possibleÈ/É s between×aÑ�Ì�Ñ�Ø and ×aÑ%ÙAÌ$Ñ$Ù�Ø , basedon thean-
alytic reliability function. We thencalculatedtheestimates
for thetargetpoints Ñ�Ì�Í5Í5Í4Ì<Ö andtheaverageerror ÚÛÃÜ[Ý Þ ×�ß[Ø .
WethenlistedthoseÈ/É sfor which ÚÛÃÜ[Ý Þ ×�ß[Ø�àáÑ%Ù�â Ëaã . The
resultsof this experimentarereportedin Table1, andthey
confirm that selectinginput pointswhich arecloserto the
targetpointsyieldshigherprecisionanda largernumberof
possibleÈ	É swhich providethis precision.

We repeatedthis experimentwith thesimulatedreliabil-
ities, anddueto simulationnoisewe listed those È	É s for
which ÚÛÃÜ[Ý Þ ×Cß´Øäà�Ñ$ÙAâ�å . The resultsappearin Table 2,
andthey show thatfor simulateddatatheeffectof theinput
pointspositioningis lessprominent.

In thesecondexperiment,we fixedboththenumberand

the placementof the testpointsand the target points, but
varied the numberand the placementof the input points,
andconsequently, thedegreeof the È	É approximation.The
target points were again Ñ�Ì�Í5Í5Í4Ì<Ö and the test points wereæ Ì$Í4Í5Í4Ì$Ñ%Ó . Theinputpointswere Ñ$ÔAÌ$Ñ�ÕqÌ�Í5Í4Í5Ì6Ö�Ù with thestart-
ing point varying from Ñ%Ô to Ó;Ù , andthe degreeof the È	É
varyingfrom ×aÑ�Ì�Ñ�Ø to ×aÑ$Ù�Ì�Ñ%Ù�Ø . Thepurposeof this experi-
mentwasto seewhetherthereexistsa correspondencebe-
tween ÚÛÃÜ[Ý Þ ×�çfØ and ÚÛÃÜ[Ý Þ ×Cß´Ø for varyingcombinationsof
startingpointand ×�èzÌ-édØ . Suchacorrespondencewould in-
dicatethat selectingthe best È	É for the testpoints is very
likely to result in a good fit for the target points as well.
Again,thisexperimentwasperformedfor boththeaccurate
andthesimulatedinput points.

We first calculatedthe correlationcoefficient betweenÚÛÃÜ[Ý Þ ×�çfØ and ÚÛÃÜ[Ý Þ ×�ß[Ø for eachstartingpoint between13
and20, for both the exact andthe simulatedinput points.
In all casesthecorrelationwasabout0.99. This very high
correlationresultsfrom thefactthat ×)è®Ì9édØdÈ/É swhichpro-
ducedvery large errorsin the test pointsdid the samein
the target points. We, therefore,restrictedthe calculation
to È	É s which had ÚÛ Ü´Ý Þ ×�çNØ´à·Ñ$Ù�â8å , andtheresultingcor-
relationsfor thedifferentplacementswerearound0.95for
theexactinputpointsandslightly lower, around0.85for the
simulatedinputs.
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Figure 4. Comparing the sim ulated reliability to the analytic results.

Wethencompared,for eachstartingpoint,thesetof bestê/ë
s for bothsetsof input data.Theresultsarereportedin

Tables3 and4. Our conclusionis thatan
ê	ë

which shows
a goodfit to thetestpointsis very likely to have a goodfit
to thetargetpointsaswell.

In the third experiment,we wantedto find the effect of
the simulationtime on the accuracy of the reliability esti-
mates.This is importantin caseof a restrictedsimulation
budget,enablingus to determinehow many input points
should be usedand for how long should the simulation
last. We simulatedthesystemreliability at theinput pointsìfí»î$ï�ð�î$ñ�ð�ò5ò5ò

andusedthe resultsto get two
ê	ë

s: óCô ð<õ�ö
and óe÷ ð6ø�ö . For both

ê	ë
s we estimated ùê ó ì9ö at the target

points
î�ð�ò5ò4ò5ð6õ

andcalculatedtheaverageerrorcomparedto
the actualreliabilities at thesepoints. This wasdonefor a
sequenceof simulationtimes,andthe resultsaredepicted
in Figure5. Clearly, thelongerthesimulationtime,theless
noisyaretheresultsandthebetteris theinterpolation.How-
ever, it seemsthatwe arenot gettingmuchaddedaccuracy
by simulatinglongerthan250million cycles.

5. Discussion

In this paperwe have reporteda casestudy in the use
of RationalInterpolationsfor calculatingreliabilitieswhich
arevery closeto 1. We have demonstratedthe usefulness
of a techniquefor selectinganaccurate

ê/ë
. This approach

is designedto provide resultsin caseswhen a brute case
approachis not feasible.

We arecurrentlyexploring theuseof this techniquefor
theanalysisof morecomplicatedsystemsandfor the gen-
erationof preemptivemaintenancestrategies.
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