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Abstract-The incorporation of different forms of redundancy
has been recently proposed for various VLSI and WSI designs.
These include regular architectures, built by interconnecting a
large number of a few types of system elements on a single chip or
wafer. The motivation for introducing fault-tolerance (redun-
dancy) into these architectures is two-fold: yield enhancement
and performance (like computational availability) improvement.
Our objective in this paper is to develop analytical models that

evaluate how yield enhancement and performance improvement
may both be achieved by introducing redundancy into VLSI and
WSI designs. Such models also allow us to evaluate the cost-
effectiveness of a given fault-tolerance strategy and calculate the
amount of redundancy to be added.

Index Terms-Computational availability, fault tolerance,
redundancy, reliability, VLSI designs, wafer-scale integration,
yield.

I. INTRODUCTION

IMPORTANT innovations are likely to occur in two
VLSI-based areas, namely, wafer-scale integrated

architectures, and single VLSI chip/multielement architec-
tures. The former has the potential for a major breakthrough
with its ability to realize a complete multiprocessing system on
a single wafer. This will eliminate the expensive steps required
to dice the wafer into individual chips and bond their pads to
external pins. In addition, internal connections between chips
on the same wafer are more reliable and have a smaller
propagation delay than external connections. The latter does
make it possible to build a high-speed processor on a single
chip, designed by interconnecting a large number of simple
processing elements, memory modules and the like. These
architectures already have captured the imaginaion of several
computer manufacturers and researchers alike.
Much recent research has focused on these new architec-

tural innovations, especially those created by interconnecting a
large number of elements such as processors, memories,
switches, communication links etc, all on a single chip or
wafer. Concerns about fault tolerance in such VLSI-based
systems stem from the two key factors of performance and
yield enhancements.
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Low yield (expected percentage of good chips out of a
wafer) is a problem of increasing significance as circuit
density grows. One solution suggests improvement of the
manufacturing and testing processes to minimize manufactur-
ing faults. However, this approach is not only very costly, but
also quite difficult (or even impossible) to implement, with the
increasing number of components that can be placed on one
chip. But incorporating redundancy for fault tolerance does
provide a very practical solution to the low yield problem.
This has been demonstrated in practice for high density
memory chips (e.g., [1]) and should be extended to other types
of VLSI circuits. In general, yield may be enhanced because
the circuit can be accepted, in spite of some manufacturing
defects, by means of restructuring, as opposed to having to
discard the faulty chip.

Achieving reliable operation also becomes increasingly
difficult with the growing number of interconnected elements
and hence, the increased likelihood that faults can occur. Here
too, redundant elements which are ready to replace faulty ones
when the system is in operation, can increase the reliability
and other performance measures like computational availabil-
ity.

In summary, the justification for introducing fault tolerance
(redundancy) into the architecture of VLSI-based systems is
two-fold. One is to deal with manufacturing flaws and increase
the yield. The other is to deal with operational faults and
enhance the performance availability.
Our objective in this paper is to formulate analytical models

that will enable us to analyze the effectiveness of a given fault-
tolerance technique in increasing yield and improving per-
formance, or find the tradeoff between the two. These models
will also allow us to compare various fault tolerance tech-
niques, examine different system topologies and determine the
optimal amount of redundancy to be added.

In the next section, the aspects that have to be considered
when evaluating a fault tolerance strategy are detailed. In
Section III, expressions for the actual and apparent yield of
VLSI chip with added redundancy are derived. In Section IV
we present models that allow us to compute various mneasures
of combined performance and reliability. Then, an example of
a VLSI-based system with redundancy is analyzed in Section
V and final conclusions are presented in Section VI.

II. FAULT-TOLERANCE IN VLSI AND WSI

A variety of techniques for introducing fault tolerance into
VLSI and WSI architectures with regular topologies have been
recently proposed, [2], [3], [6], [7], [10], [15], [17], [18].
Because fault tolerance is an involved subject, completely
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different schemes might be cost-effective in different situa-
tions and for different objective functions.

Several aspects have to be considered when evaluating a
fault-tolerance strategy for multielement systems. The first is
the type of failures to be dealt with. There are two distinct
types of failures with which fault-tolerance strategies can be
designed to deal. These are production defects and operational
faults. A relatively large number of defects is expected when
manufacturing a silicon wafer in the current technology.
Normally, all chips with production flaws are discarded
leading to a low yield.

Operational faults have in comparison a considerably lower
probability of occurrence, the difference of which may be in
orders of magnitude. Improvements in solid-state technology
and maturity of the fabrication processes have reduced the
failure rate of a single component within a VLSI chip.
However, the exponential increase in the component-count per
VLSI chip has more than offset the increase in reliability of a
single componient. Thus, operational faults cannot be ignored
although they have -a substantially lower probability of
occurrence compared to production defects. Consequently, a
fault-tolerance strategy that enables the system to continue
processing, even in the presence of operational faults, can be
beneficial.
The two types of failures, manufacturing defects and

operational faults, also differ in the costs associated with them.
Defects are tested for before the IC's are assembled into a
system and therefore, they contribute only to the production
costs of the IC's. In contrast, faults occur after the system has
been assembled and is already operational. Hence, their
impact is on the system's operation and their damage might be
substantial, especially in systems used for critical real-time
applications. Clearly, a method which is cost-effective for
handling defects is not necessarily cost-effective for handling
operational faults, and vice versa.

For both types of failures in VLSI, a repair operation is
impossible and the best one can do is to somehow avoid the use
of the faulty part by restructuring the system links so as to
isolate it. This restructuring capability can be either static or
dynamic. When the manufacturing process is completed, the
chips within the wafer are tested to determine the defective
ones. A static scheme using for example fusible links or laser-
formed links, can be then employed to configure out the
defective elements and interconnect most of the good ones to
form an operational system. Dynamic restructuring is required
during the normal system operation, when faulty parts have to
be restructured out of the system without human intervention.
Such a dynamic strategy might be appropriate to handle
defects as well. Comnparing the two alternatives, static
schemes tend to use less hardware but consume operator time,
while dynamic schemes which are controlled internally by the
system usually require extra circuitry.
Another aspect that has to be considered when evaluating

the effectiveness of a given fault-tolerance technique, is the
required hardware investment. The hardware added can be in
the form of redundant switching elements, [21, [18], [15] and!
or redundant processors, communication links, or other
system elements [3], [10], [6]. When carrying out such an

analysis we have to take into account the relative hardware
complexity (silicon area) of all system elements, and their
susceptibility to failures (manufacturing defects or operational
faults).

Processing elements (PE's) are traditionally considered the
most important system resource; hence, achieving 100 percent
utilization of them is often attempted. For example, in [2],
[15], and [18] switching elements are added between proces-
sors to assist in achieving this goal. In [3] and [10] connecting
tracks are added on the wafer to be used in bypassing the
defective PE's when connecting the fault-free ones. However,
the silicon area that needs to be devoted to switching elements
(e.g., switches capable of interconnecting 4 to 8 separate
parallel busses [18]) or to additional communication links
cannot be ignored. Consequently, such schemes might be
beneficial only for PE's which are substantially larger than the
switches and the additional links (e.g., [13]). Also, the
addition of switching elements and especially the longer
interconnection between active processors result in longer
delays affecting the throughput of the system. To overcome
this performance penalty, it has been suggested in [9] to add
registers for bypassing faulty processors. The effect of this is
to introduce extra stages in the pipeline, thus increasing the
latency of the pipeline without -reducing its throughput.

In the above mentioned schemes, one of the underlying
assumptions is that the extra circuitry (e.g., switching ele-
ments, communication links or registers) are failure free and
only processors can fail. However, larger silicon areas
devoted to those elements increase their susceptibility to
defects or faults; as a result, the above-mentioned assumption
might not be valid any more.

In general, there are several alternative ways for introduc-
ing redundancy into the system. Redundancy can be intro-
duced into the architecture at the basic element level and/or at
the system level. In the case of system level redundancy, spare
elements are added to the original design and they will be used
to replace any faulty system element. In the case of element
level redundancy, each element has some internal redundancy
allowing it to remain operational even in the presence of
certain internal faults (with possibly a lower computational
capacity). Note that both element level and system level
redundancies can be incorporated into the same system.

Several forms of redundancy can be used to handle
manufacturing defects to increase the yield. The defective
elements are configured out and the good ones are intercon-
nected to form an operational system. Once this procedure is
completed, the system goes into operation and it has to handle
from this point on only operational faults. At this point the
fault-tolerance capacity of the system is used to improve its
performance availability. First, the remaining redundant
elements (if any) can be used as spares and then, the system is
gracefully degraded. We conclude therefore, that the same
redundancy can be used for yield enhancement and for
performance improvement as well.

III. THE YIELD OF FAULT-TOLERANT CHIPS

To evaluate the effectiveness of redundancy for yield
enhancement we need an expression for the yield of a fault-
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tolerant VLSI chip. Such expressions have been presented in
[11] and [7]. A more general expression for the yield was
proposed in [8]. In what follows we modify the latter to
include some simplified yield models (as used in [3] and [10])
and to take into account the effect of incomplete testing on the
yield.
The yield of any VLSI chip depends on the types of defects

which may occur during the manufacturing process and their
distribution. The majority of fabrication defects can be
classified as random spot defects [20] caused by minute
particles deposited on the wafer. The area of the system
elements that we will be considering here and for which we
will have spare ones (e.g., processors, memories, busses etc),
is substantially larger than the expected area of a spot defect.
Consequently, we assumie in what follows that each spot defect
affects only a single element.

For the statistics of the fabrication defects we can adopt one
of the models suggested in the literature like Poisson,
binomial, general negative binomial statistics and others.
Under proper assumptions each one of these statistics can be
used and the "correct" one is the one that fits the data best
[20]. One model which has been shown to agree with
experimental results, is the generalized negative binomial
distribution [19]. Its attractiveness stenms from the fact that it
does not assume that all defects are evenly distributed
throughout the wafer but rather allows defects to cluster. We
adopt here this distribution although all our subsequent results
remain valid if some other distribution is selected.
The negative binomial distribution has two parameters; d is

the average defect density1 and a is the defect clustering
parameter. A low value of a can be used to model severe
clustering of defects on a wafer, while for a oo we obtain
the Poisson distribution. These two parameters depend on the
number and complexity of manufacturing steps performed.
Consequently, different system elements might have different
values for these two parameters. Let di and oai be the two
parameters for type i system elements, then the probability of
having xi defects in the system elements of type i on a chip is

Pr lXi=x}l=r (x, + ai)Pr{X=x1}=x1!Pr(a1)
(Aid, xi

(1+
ai

(3.1)

where Ai is the total silicon area devoted to type i elements
within the chip.
The parameters d and at of the yield equation are estimated

either by monitoring many wafers or from a few carefully
placed test chips on each wafer. Another technique for
estimating the parameters of the yield equation has been
recently proposed by Seth and Agrawal [16] based on the
commulative coverage of test patterns applied to the chips
after manufacturing.

For nonredundant chips, the yield is the probability of

having zero defects in all its elernents

Y=i Pr
(

Aid>J1+i (3.2)

where n is the total number of different types of elements in
the chip.

Note that in (3.2) we implicitly assume that all mhanufactur-
ing defects result in logical faults which in turn cause
erroneous behavior of the chip. Certain defects may however
produce no faults at all. For example, a defect in the outer area
of the chip which is usutally occupied by bonding pads, may be
harmless to the electrical performance of the circuit. To
consider logical faults instead of fabrication defects, we will as
a first approximation, multiply the defect density d by the
probability that at least one fault is caused by a defect. If for
example, we adopt the assumption made in [16] that the
number of logical faults corresponding to a single defect
follows a Poisson distribution with mean c, we should then
multiply d by (1 - e -C). For convenience, we will in what
follows still refer to manufacturing defects (rather than logical
faults) with average density d which equals the original defect
density multiplied by the probability that a defect results in a
logical fault.

The Yield of a Chip with Added Redundancy
Suppose now that redundancy is added to a chip at the

system level so that s, defective elements of type i ca-n be
tolerated, (i.e., substituted by good spares), and denote by N1
the total number of elements (including the spares) of type i in
a chip. Then, the chip is acceptable with any number of
manufacturing defects in type i elements as long as all of them
are restricted to at Most si elements. The yield, which is now
the probability of a chip being acceptable, is given by

n

Y= Pr {There are defects in at most
,11

si elements of type i} (3.3)
If we denote

a = Pr {The defects in type i elements are all

distributed in exactly j out of the Ni elements}

then
n Si

Y=I2IE a50.
i=1 j=O

(3.4)

We may now obtain an explicit expression for the probabil-
ity a(i) in two different ways. One is to follow [8] and define

Q = Pr {x defects are distributed into exactly
I out of N elements/There are x defects}

which equals

QXJ) z( 1) (k
k=0

The average number of defects per Chip X (e.g., [8]) is d*A where A is
the chip's area.

N N
j-k, N-jJ

(I-k)x

for x.j and 0<jcN (3.5)
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where (kN-kN is the multinomial coefficient.
For x < i we have Q = 0 and for j = 0

(N)_ I if x= 0
Q xo - jo otherwise.

This expression was derived assuming that the defects are
distinguishable, i.e., Boltzmann statistics are followed [20]. If
we select Bose-Einstein statistics, the defects are indistin-
guishable and the resulting expression is

Q )_((JN)
(x+N- 1

for,x>j and O<jcN. (3.6)

Using the probability Q(N) we obtain the following equation
for aji)

00

a(i)= Q J) * Pr {There are xx manufacturing
x-j

defects in type i elements in the chip}. (3.7)

The last term in (3.7) is Pr {Xi = xx} and we may substitute
it by (3.1)) or a similar expression for any other defect
distribution.

In this first approach to the derivation of a(') we have
considered the entire chip as the basic unit of silicon in which
defects occur, and then we have distributed these defects
uniformly among the individual elements. In the second
approach to derive an expression for a(i), we consider the
single element as the basic silicon unit, 'out of which larger
area chips are constructed. Let Yi denote the yield (probability
of zero defects) of a single element of type i, then the
appropriate expression for a(i) in this case is

a5()= Y>N-J (l - Yy)' (3.8)

The assumption here is that each element of type i may be
defective with an independent probability (1 - Y,). This
approach has been adopted, for example, in [3] and [10].
When setting the parameters for the yield of a single

element Yi, we may require that the expected value and
variance of the number of defects in the total chip area will be
the same as in the first approach. The expected value and
variance for the generalized negative binomial distribution are
Ad and Ad(l + Ad/a), respectively. Therefore, both Aid
and a, should be divided by Ni. Consequently

(Aid -caiINi
Yi= 1 + (3.9)

Before comparing these two alternatives for calculating the
probability a(i) (given by (3.7) and (3.8)), we return to the
general equation for the yield, i.e., (3.4). This equation can be
multiplied by a "bypass coverage probability" [11], which is
the conditional probability that an element can be bypassed

(isolated) given that it is faulty. By adding this probability one
may consider less than perfect procedures for locating faulty
elements and reconfiguring them out of the system.
To tolerate si defective elements of type i, at least si

redundant ones are needed. However, the exact amount of
required redundancy depends upon the specific static or
dynamic reconfiguration scheme used. This in turn, deter-
mines the increase in chip area which must be taken into
account when calculating the yield, since a larger number of
defects is expected now.

Let zys denote the increase in the area Ai (due to the addition
of redundancy), needed to tolerate these si faulty elements of
type i. Let -yf denote the increase in total chip area that is
required to tolerate all s = (sl, s2, *., sn) faulty elements.
The factor oy is called the redundancy factor [7] and it
depends on the system topology and the reconfiguration
strategy. It assumes its lowest possible value when only si
redundant elements are included in the total of Ni elements of
type i(i = 1, 2, ..., n), hence

n

Ai
Ni - i=1

'ysi,z.
i-s

and ye-"n2

i=l N.

(3.10)

The larger chip area results in an increased expected
number of defects. We should therefore, multiply the average
number of defects A,di in (3.1) by yi. If we insist on having
the same expected value and variance of the number of defects
in the total silicon area (independently of how it is partitioned
into chips or elements) then, as was shown above, the
clustering parameter ai should also be multiplied by ys,.

In addition, the increase in chip area reduces the number of
chips that will fit into the same wafer. Hence, instead of
calculating the yield which is the probability that a single chip
is acceptable, one has to calculate the expected number of
acceptable chips out of a given wafer. This expression, which
we call wafer-equivalent yield, is obtained from (3.4) after
dividing it by yy.
By comparing the wafer-equivalent yield of the fault-

tolerant chip and the yield of the simplex one (with no fault-
tolerance features), we can determine whether it is beneficial
when yield is considered, to have built-in fault tolerance and
how many redundant elements should we add. This compari-
son can be done for various system topologies and different
reconfiguration algorithms.
An analysis along these lines has been done in [11] and in

[7]. In both it has been observed that the improvement in yield
saturates above some amount of redundancy. This indicates
that there is an optimal amount of redundancy that should be
added.

Still, the exact value of this optimal amount of redundancy
does depend upon the expression we adopt for the wafer-
equivalent yield of a fault-tolerant chip. To illustrate this, we
compare in the following example the optimal amounts of
redundancy when using the above two alternative schemes for
calculating a') (defined by (3.7) and (3.8), respectively).
Example: Consider a chip with only a single type of
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element that can have defects. Assume further that at least 15
such elements are required and the redundancy factor is
therefore, y, = 1 + (sI 15). The optimal percentage of
redundancy (i.e., s/15) for the two schemes was computed for
different values of the clustering parameter.
As was expected, for high values of a (i.e., no clustering),

both schemes call for exactly the same amount of redundancy.
Here, the generalized negative bionomial distribution ap-
proaches the Poisson distribution for which the two schemes
are equivalent. This was observed for a 2 10 and Ad = 5
defects per silicon unit area. For low values of a(ca < 0.01),
adding redundancy is not recommended by any of the two
schemes; the defects are severly clustered resulting in a high
yield of the simplex chip.

For values of a in (0.01, 10), the second scheme calls, in
most cases, for a lower optimal amount of redundancy.
Moreover, this scheme might be too optimistic since it
achieves a higher wafer-equivalent yield (compared to that
achieved by the first scheme) for a smaller amount of
redundancy. For example, for a = 0.6 the yield of the
simplex chip is for both schemes 26.2 percent. The optimal
amount of redundancy according to the first scheme is 33
percent achieving a maximum wafer-equivalent yield of 47.4
percent. The optimal amount of redundancy according to the
second scheme is only 20 percent but the maximum wafer-
equivalent yield is 78.2 percent. Still, only experimental data
obtained by monitoring wafers can show which scheme is
"correct."

The Effect of Imperfect Production Testing
For both schemes, a chip with redundancy is considered

acceptable as long as the number of defective elements of one
type does not exceed the number of spares for this type. This
assumes that the applied production testing procedure is
perfect and we accept only chips which satisfy the above
requirements. However, testing is never perfect and conse-
quently, chips having more than the allowed number of
defective elements will be declared good resulting in a higher
"apparent" yield [22] [16] defined by

Yapparent = Y+ Ybg

where Ybg is the yield ofbad (defective) chips that are tested as
good. This yield depends on the probability that the testing
procedure when applied to an element fails, given that the
element is defective. We denote this probability, which is
usually called fault coverage probability, by fc. The expres-
sion for Ybg(fc) for the case of a single type of elements that
have defects is

N

Ybg(fc) E aj *Pr {at most s out of j
j=s+ 1

defective elements were detected}

N s *\

= , a *~ ( r) (fc)'(l -fc)ij-r. (3.11)
j=s+±I r=O

To generalize the above to the case of n different types of

elements, it is simpler to derive a general expression for the
apparent yield. Assuming, for simplicity, that the fault
coverage is the same for all types of elements, we obtain

n S.

Yapparent = i [ a ()
il j=O

+ i a(')~ Q() (fc)r(l-fC)j r1 (3.12)
j=sj+ 1 r=O

IV. RELIABILITY AND PERFORMANCE OF FAULT-TOLERANT CHIPS

In the previous section we have derived expressions for the
actual and apparent yield of a fault-tolerant VLSI chip. In this
section we develop models for operational fault-tolerant chips
in order to derive expressions for their reliability and
performance availability.
Once the manufacturing process has been completed, chips

having si or less defects in type i elemetits (i = 1, 2, * *, n)
are accepted and then reconfigured to avoid the use of the
defective elements. If the number of defective elements of any
type i is less than s,, the chip has some "residual" redundancy
which can then be used for performance enhancement, i.e.,
handle operational faults which occur during the life time of
the system. Even chips in which no redundant elements are left
when leaving the manufacturing site (i.e., there were origi-
nally E =n si defects in the chip), can still benefit from the
fault-tolerance capability, if graceful degradation is allowed.
To evaluate the effectiveness of the "residual" redundancy

and the fault-tolerance capacity of the chip, we have to select
some performance measures and we need a model that will
allow us to calculate these measures. A natural choice for this
purpose is a Markov model.
The proposed Markov model includes a single system

failure state (F). At all other states of the model, the system is
operational in the presence of some faulty elements. Consider
now such a general state and let fi and ui denote the number of
faulty elements and active (used) ones of type i at this state,
respectively. Note that ui is defined as the number of active
elements and not just fault-free ones. We have therefore, the
inequality

(4.1)

where Ni is the original number of elements of this type. The
exact value of ui depends (among other factors) on the
restructuring strategy employed. For static restructuring we
may have ui = Ni - fi, while for dynamic schemes the
inequality is more likely to hold.
The value of ui may also depend on the exact locations of

these faulty elements (and faulty elements of other types as
well.) However, taking this into account will turn the model
intractable. Hence, we define the states of the Markov model
by the fi's and not the ui's. Thus, (fi, f2, * * *) will denote a
general state in our approximate mode. (This single state

N-would have to be replaced by fl7I-P1 (i) separate states if the
exact position of all faulty elements is taken into account.)
The fi faulty elements may include several (up to si)

elements that were found to be defective when the manufactur-
ing was completed and other that became faulty only later on.
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If the number fi becomes too high, we may reach a point at
which our system can not do useful computation any longer.
Let mi denote the maximum allowed number of elements that
could become faulty if si ones were already defective at t = 0.
Therefore,

fi.si+ mi<Ni. (4.2)

This inequality means that if less than si elements were
defective at t = 0, the system will endure the failure of more
than mi elements at t > 0.
An example of the suggested Markov model for a chip with

two types of elements that can fail, is depicted in Fig. 1. In this
model (fi, f2) is a state at which the system is operational in
the presence of fi and f2 faulty elements of type 1 and 2,
respectively. A transition from state (f1, f2) to the system
failure state (F) takes place when an additional element
becomes faulty and the 'system fails to recover from its effect.
The corresponding transition rate is denoted by af2. Simi-
lary, f4il2 f2 'is the transition rate from state (ft, f2) to state

(fl + 1, f2)
These transition rates depend on the failure rates of the

system elements and on the probability of a successful
recovery (by reconfiguration) of the system following an
element failure. Let Xi denote the failure rate of operational
elements of type i (adopting the common assumption that the
time to failure is exponentially distributed), and let pi denote
the probability of a successful recovery, i.e.,

pi= Pr {The system recovers (reconfigures) successfully/

A fault in type i element has occurred}

The expression for the transition rate from (fi, f2) to (fi + 1,
f2) depends on the restructuring strategy employed. For
example, if upon a failure all the remaining fault-free elements
of both types are used (active) then

fl +X2X= (N1-f1) * X1 * p1.

If however, the number of active elements of type 1 satisfies
ul < N1 - fi, then the appropriate expression is

oefl+f2-U2=1 * X1 *P1+(N1-f1-ul) * X1.
This is based on the assumption that upon a failure of a

nonactive element, the system will recover successfully with
probability 1. The above expression is not always well-defined
since in the general case (for complex system topologies and
restructuring schemes), uI may be a function offi and f2, and
may depend on the exact positions of these faulty elements as
well. Therefore, the value for ul to be used in the above
expression for the transition rate, must be obtained according
to some empirical rule. Several such rules can be envisioned,
for example, the average over all possible positions of the
faulty elements, or the worst case one, or the most probable
one.

There are cases in which ui depends only on the value offi(i
= 1, 2, * , n). In these cases, not only the above expression
for the transition rate is accurate but the entire model can be

*
0* 'Sm

.
Sm

fIf
vI.

sm j

F

Fig. 1. A Markov model for a VLSI chip with defects and operational faults.

simplified by partitioning the Markov chain into n independent
chains. Each will then be solved separately and the final results
will be combined to obtain the required performance mea-
sures. This case is demonstrated in the next section.

State (0, 0) of the Markov model in Fig. 1 is the initial state
of the'system if no defects occurred while the chip was
manufactured. If there were k, and k2 defective elements of
type 1 and 2, respectively, (0 c kI c si, i = 1, 2) then (kl, k2)
will be the initial state. The probability of this event is

akl * a(2 (0<ki si, i= 1, 2) (4.3)

since the probabilities of defects in different types of elements
are independent [20]. We have, therefore, (sl + 1) * (s2 + 1)
possible initial states if only chips having at most s, and s2
defective elements of type 1 and 2, respectively, are accepted.
If we sum the probabilities of all these initial states we obtain

Si S2 St S2

a(l) a(2)= ak * [E a
,2]

kl=O k2=L kl=0 k2=O

(4.4)

which equal the yield Y as defined in (3.4).
However, since the chip screening procedure is imperfect,

chips with larger numbers of defective elements may be
accepted. Consequently, all the states in the Markov model are
possible initial states. If for example, k, > s1 and k2 < S2, the
probability of (kl, k2) being an initial state is then

(4.5)

The expressions for the probabilities of the other two kinds
of initial states may be derived similarly. Summing the
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probability of each state being an initial state results in the
apparent yield as given by (3.12).
A state like (sl + ml, f2) in Fig. I is a terminal state with

respect to failures in type 1 elements, i.e., a state from which,
upon an additional failure of a type 1 element, the only
transition possible is to the system failure state (F). Recall that
ml is the largest number of faulty elements of type 1 that the
system can tolerate if no redundant elements were left when
the system went into operation. Similarly, all states (fi, s2 +
M2) are terminal states with respect to failures in type 2
elements.
We define now the state probabilities of our model

P (kik2(t) =Pr (The system is in state (fi, f2) at time t/

The system was initially in state (kl, k2)}

forf1 .Ak1 andf2 . k2) with P(klk12)(0) 1 and

Ptkl4k2)(0) = 0 forf1 > Ac orf2 > k2-

The Markov model in Fig. 1 is described then by the
following differential equations.

dP (k1,k2) (t)k 1, k2 _ _ =pcr1,2kl1k2I.t)
dt Ck,2 lk t (4.6)

=J2 - k1'k2gfl
dt af f2P f,f2 (t

+tft _ f2PflIS 2 (t) + flf2 1fl f2 ) (4.7)

where

afl 'f2=cYf2+
I

Yfif2h+ + a%,f2 (4.8)

We denote by V4 any vertex (state) at level b in Fig. 1, i.e.,
any state (i, j) satisfying i + j = b. Thus, the sequence (kA,
k2), Vkj+k2+1, * * vi+ 1, (i, j) corresponds to a path in Fig.
1 from the initial state (kA, k2) to the state (i, j).
Using this notation, the solution of (4.6) and (4.7) under the

condition

ai,4j*ax,y for all (x, y)*(i, j)

which is usually satisfied, is

P klk2)(t)

Yd akl,k2+1 vkl+k22+1 t'fl+f21
A path (kl,k2), * (fl if2)

and

fl +f2 e-av-b t

X fl +f2
b=kl +k2 II (aVC- avb)

C=k1 +k2
c*b

kl,k2)(t) = ecklI,k2t (4.10)

where Vkl + k2 and vfl +f2 in (4.9) specify the states (kl, k2) and

(fA, f2), respectively.

(4.9)

The summation in (4.9) is over all paths (total of
(f1l i Sf2[k2 ) paths, each consisting of (f/ + f2) - (kA + k2)
+ 1 nodes) in the Markov model (Figure 1) from state (kA, k2)
to (fi, f2)-

For such a Markov model we can calculate several
performance measures like Reliability, Performability, Com-
putational availability, and Area utilization [7]. Let Rk1,k2(t)
denote the reliability of a system (i.e., the probability that it
operates correctly in the time interval [o, t]), which had kA and
k2 defective elements of type 1 and 2, respectively, at t = 0.
This reliability can be calculated from the above Markov
model as follows

SRk1Sk(t)=l+ml 52+m2

Rkl,k2(t)= f =flff2k2 (t).
fl=kl f2=k2

(4.11)

We may then define and compute

s1+m1 s2+m2

E E Pr (kl, k2) is the initial state} *Rkj ,k2(t)
R (t) =kj=O k2=Os1+m1 s2+m2

Pr {(kl, k2) is the initial state}
kj=O k2=0

(4.12)

as the average reliability of a system having si(i = 1, 2) or less
defects when manufactured.
The probability of (kA, Ak2) being an initial state is obtained

either from (4.3) or from (4.5) or a similar appropriate
equation. The denominator in (4.12) (which is a normalization
factor so that the probabilities sum to 1) is the apparent yield
(3.12). If the fault coverage fc is nearly 1, then equation
(4.12) reduces to

I Si 52

R(t)=1 E al2 * a52 * Rkl,k2(t)
kl=O k2=0

(4.13)

The average reliability is in general a function of the amount
of added redundancy. When searching for the optimal amount
of redundancy to be incorporated into the chip, we should not
ignore the cost associated with redundancy, i.e., a larger chip
area resulting in a smaller number of chips fabricated out of a
given size wafer. We may therefore, attempt to optimize the
expected number of chips, in a given wafer, that are operating
correctly in the time interval [0, t]. This equals the reliability
of a single chip times the expected number of chips per wafer.
The number of chips decreases as redundancy is introduced,
by the factor of 'yg. Consequently, we may search for the
values of s1 and s2 that optimize the following cost function,
which we call wafer-level reliability

WR (t)=
*Ys

(4.14)

This will allow us to determine whether it is beneficial when
reliability is considered, to introduce redundancy into the
architecture of the system and how many redundant elements
of each type we should include.
Example: The wafer-level reliability as a function of the
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Fig. 2. The wafer-equivalent yield and wafer-level reliability of a fault-

tolerant chip.

added redundancy has been calculated for the following
example. A chip has one type of elements that can have defects
or operational faults. Fifteen such elements are required but
the chip can be used if at least 12 are operational (i.e., m =
3). The model parameters chosen are a - 0.743, Ad = 1.93
[16] and p = 0.9. The wafer-equivalent yield of this chip is
maximized when four redundant elements are added to the
simplex chip. The improvement in wafer-level reliability also
saturates above some amount of redundancy. The optimal
amount of redundancy that maximizes the wafer-level reliabil-
ity depends on the mission time of the system. Fig. 2 depicts
the wafer-level reliability and wafer-equivalent yield as
functions of the number of spare elements with the mission
time as parameter. For a low value of t (time is measured in 1/
X units), the optimal amount of redundancy is sp. = 0. For t
= 0.25/X, sop = 3, and for t = 0.35/X, s,p. = 6. The
tradeoff between yield enhancement and reliability improve-
ment depends therefore, on the mission time. Graphs like the
one shown in Fig. 2, can be used to determine the final amount
of redundancy to be added when both yield and reliability are
considered.

Reliability is considered in many cases an insufficient
measure for the performance of a system and hence, other
measures have been proposed and used. Many such perform-
ance measures can be computed using the same Markov
model. For example, the computational availability A (1k2)(t)
which is the expected available computational capacity defined
by

s1+ml s2+m2

A (klfk2)(t) = D fk1, k2= (2t)
fl=kl f2=k2

(4.15)

where CfIf2 is the computational capacity of the system in
state (f1, f2) [7], expressed for example in instructions per time
unit. The computational capacity depends on the number of

active elements of both types in State (f1, f2). An expression
for the computational capacity of an example system is
developed in the next section.

Here too, when searching for the optimal amount of
redundancy, we should employ a cost function which con-
siders the additional silicon area needed when fault tolerance is
introduced into the chip. Such a cost function, called area
utilization in [7], is

A (klk2)(t)
Uk ,k2(t) = (4.16)

Other performance measures, like mean time to failure, can
also be calculated. For example, let Tkl,k2 denote the mean
time to failure of a system which was initially in state (k1, k2),
then

Tkl,k2= Rkl,k2(t) dt. (4.17)

The average mean time to failure can be defined similarly to
(4.12).

A Model for a System with Element-Level Redundancy
The Markov mnodel depicted in Fig. 1 describes a system

which has redundancy only at the system level. Here, a single
defect or fault in an element requires the switching out
(isolation) of the failing element and the replacement of it with
a spare one (if one exists). We may add redundancy at the
element level which will allow us to use an element even if it
has one defect or failure. We assume that the second failure is
fatal meaning that an element having two failures will have to
be switched out. An example might be a multiprocessor in
which each node consists of a dual processor. If one of the two
processors fails, we may still use this node (with possibly a
lower computational capacity) as long as the second processor
is operating correctly.
A Markov model suitable for such a system with a single

type of elements (e.g., processors) that can fail is shown in
Fig. 3. Here, (f, f) is a state at which the system is operational
in the presence off faulty nodes and f partially faulty nodes
(i.e., nodes having a single faulty processor). As before, s +
m is the maximum number of defective and faulty nodes that
the system can tolerate. Consequently, the state (s + m, N -

s - m) is a terminal state. The initial state of the Markov
model is determined by the number and distribution of the
manufacturing defects. If s is the maximum number of
defective nodes (partially or completely) that we are willing to
tolerate and still accept the VLSI chip, then all the states (j, J);
j = 0,1, *,s; = 0,1,* - j arepossible initial
states. Let aj,; be the probability of (j, I) being the initial
state, then this is the probability of having 2j + i defects out
of which exactly 2j appear in pairs, hence

(N)(N-i)2;

aj1= a2
i j+J^J

where a2 +I ,is given by (3.7) with N being replaced by 2N.

(4.18)
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dflf )(t _
tj

(k,k)
dt oef+fa7 (t)

+ a f- lf+ -_lf1, (t fgf_ IPsM- (t) (4.21)

where

CZ
f+i,f-1 + a/ff+1 + F

ajf,y=ajj + f,f + f,j.

VA
f-

f,f

Fig. 3. A Markov model for a VLSI chip with element-level and system-
level redundancy.

The yield of the chip is

s N-j

=Y- Y, aj -^.y=i y=0
Ij=o fr=o

(4.19)

(4.22)

We denote by VU any state (J, f) satisfying 2f + f = b. For
example, v5 iS any one of the states (2, 1) and (1, 3) in Fig. 3.
Thus, the sequence (k, k), V2k+ k+ I, V2k+k2, V2f+f- 1, (f,

f) corresponds to a path in Fig. 3 from the initial state (k, k) to
the state (f, f).

Using this notation, the solution of (4.20) and (4.21) under
the condition

af,f* aXX for all (x, x)*(f f

which is usually satisfied, is

p(k k) tPf,f )(t)

ot12k + k+ I CZ V2k +^+ 2 . .. otf,f= 7k,k 2k+k:+1 U2f+f- I
A path (k,k), ,(f,f)

2f+f e vbt

E 2f+f

b=2)k+k rIH (°avc dvb-)
c=2k+k
c*b

(4.23)

and

An expression for the apparent yield, similar to (3.13), can
also be derived.

If we insist on having at least N - s perfectly operating
nodes, then s is the total number of completely or partially
faulty nodes that we allow, and the yield is given in this case
by

s s-j
Y= Z a10-.

j=O J=0

The state probabilities for the Markov model shown in Fig.
3 are defined as follows:

-(t)Pr (The system is in state (f, f) at time t/
The system was initially in state (k, k)}

k-0, 1, , s; k=0, 1, , N-s;

and (f, f) . (k k) lexicographically.

with P(kt) (0) = 1 and p7,k) (0) = 0 for (f, > (k, k)
lexicographically.
The above state probabilities satisfy the following differen-

tial equations:

dPkWk=-°kPkk(t) (4.20)

(4.24)

where V2k+k and V2f +f in (4.23) specify the states (k, k) and
C!, f), respectively.
The summation in (4.23) is over all paths (total of

(2f -25.+{- 1) paths, each consisting of (2f + ) - (2k + 1)
+ 1 nodes) in the Markov model (Fig. 3) from state (k, k) to
the state V,f f).

Using the state probabilities given by (4.23), one can derive
expressions for various performance measures and determine
the optimal amount of redundancy, as was done for the
previous Markov model.

V. A MULTIPLE Bus MULTIPROCESSOR SYSTEM

As an example for a VLSI chip consisting of several types of
system elements with some redundant ones of each type,
consider a multiple bus multiprocessor systeni designed on a
large area chip (or even a wafer). Let P, M, and B denote the
number of homogeneous processors, memory modules and
interconnecting busses, respectively, that are operational
(fault-free). Such a system is depicted in Fig. 4 where each
global bus can connect any processor to any memory module.
Following the notation used in [12] and [21], we refer to this
multiprocessor as a P * M * B system.

There are several ways to characterize the behavior of a P *
M * B system. Our purpose in this section is only to illustrate
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bus I

bus 2

bus B

processor processor processor
2 0 0 0 p

Fig. 4. A P * M * B multiple bus multiprocessor.

the application of the model presented in the previous section.
We adopt therefore, a relatively simple characterization of the
system which is based on two parameters. One is the time
between two consecutive memory references and the second is
the connection time between processor and memory in a single
memory access. Both parameters are random variables and are
assumed to be exponentially distributed with mean 1/6
(processing time) and 1/,u (connection time).
We wish to find an expression for the computational

capacity of a P*M*B system denoted by CP,M,B. An expres-
sion that will allow us to determine the optimal number of
spare processors, spare memory modules and spare intercon-
nection busses to be designed in the VLSI chip so that yield
and/or performance are maximized.
We may define the computational capacity of the P *M *1B

system as the expected number of active processors, i.e.,
processors which are executing their task and not idle while
waiting to access a common memory module. This perform-
ance index is known as processing power. Other performance
indexes like the average cycle time and the instruction
execution rate can be simply derived from the processing
power index [12].
To calculate the processing power index we may construct a

queuing network model. The computational complexity of this
model increases very rapidly with system size. Fortunately, as
has been shown in [12] and [21], approximate models with
reasonably small errors in the final results, can be employed.
These are derived by lumping "equivalent" states of the
model to obtain a Markov chain of substantially smaller size.
An example of such a model is shown in Fig. 5. In it, at state

(P - i) there are P - i processors which are executing their
tasks while the remaining i processors are idle being serviced
or waiting to be serviced by a memory module.

At a rate of i3(i) * I, one of the i idle processors will
complete its service increasing the number of active ones to P
- i + 1. ,B(i) is the average number of processors, out of the i
idle ones, that are serviced at a given time instant. Similarly, at
a rate of (P - i)6, an active processor will generate a memory
request and join the idle processors, reducing the number of
active ones by 1.
To derive an expression for ,3(i), we assume (as in [12] and

[21]) that processors request service from the different
memory modules with equal probabilities. Hence, the proba-
bility that all i requests of the idle processors will be directed

/3 (P)p /(P-i)P D(i)p

6 26 (P- )1 (P-i+)6 P5
Fig. 5. A birth and death model for a P * M * B multiple bus

multiprocessor.

to exactly j out of the M memory modules is Ql.) which is
defined in (3.5). This probability has to be multiplied by min
(j, B) since only B requests can be serviced ifj is greater than
the number of busses B. Finally we obtain

min (iMM)
:) Q (m min (j, B) i=l, 2, * P. (5.1)

j=1

The Markov chain in Fig. 5 is a birth and death one, whose
solution is easily obtained. Let 4(i) denote the steady-state
probability of state i, then

i- I

1-i /3(P-k)
,I#A i k=

t6 i!
eb(i)

p HA)II (P-k)

(5.2)

m-1

m= It( ]j) m(P-k)

The processing power .measure is given by

(5.3)
p

CP,M,B = 1; i(bi) e

i=l

Expression (5.3) can now by substituted into (4.15) to
calculate the computational availability which is defined now
as the expected available processing power. Equation (4.16)
may then be used to compute the area utilization of the
multiprocessor VLSI system.
To calculate the computational availability we also need the

state probabilities of a Markov model similar to the one shown
in Fig. 1, with three types of elements, namely processors,
memory modules, and busses. Fortunately, in the multiple bus
multiprocessor system, the number of active elements of any
type depends only on the number of faulty elements of this
type and is independent of faulty elements of the other two
types. Consequently, the Markov model (like the one in Fig.
1) may be partitioned into three independent ones, each solved
separately.
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Fig. 6. The area utilization of the P *M * B multiprocessor as a function of

the number of spare elements of different types.

The state probability which is needed for the calculation of
the computational availability (and the system reliability as

well), is equal to the product of the state probabilities obtained
separately from the three simpler Markov models for the
processors, memory modules, and busses.

This calculation was done for a multiple bus multiprocessor
system with the following parameters:

1) Eight processors with a = 0.3, Ad = 1.5, p = 0.9, and
X = X0 (time will be measured in 1/X0 units). In addition, m =

2, and 6/I= 0.91.

2) Eight memory modules with e = 0.2, Ad = 1.2, p =

0.92, X Xo, and m = 1.
3) Four buses with a = 0.12, Ad = 0.9, p = 0.95, X =

0.75XO, and m = 1.
For these system parameters three sets of values for the

number of spare processors, spare memory modules and spare
busses were obtained. For maximum wafer-equivalent yield 4,
3, and 2 spare processors, memories, and busses, respec-

tively, are required. In this calculation we have assumed that
fc = 1 and therefore, the apparent yield equals the actual one.

For mnaximum wafer-level reliability (1, 3, 1) spares (proces-
sors, memories and busses, respectively) are required for a

mission time of t = 0.2 * 1/Xo. For the same mission time, the
maximum area utilization (wafer-level processing power

availability), is achieved for (2, 3, 1) spares (processors,
memories, and busses, respectively).
A useful application for this model might be the analysis of

the relative importance of spares for the three types of system
elements. To perform this kind of analysis we can, for
example, set the number of spare memory modules and spare
busses at some fixed values (e.g., their optimal values for a

desired mission time) and then, observe the dependency of the
area utilization on the number of spare processors. Such an

analysis has been done for the above system parameters, and
the results are illustrated in Fig. 6.

In this figure, the area utilization is shown as a function of
the number of spares (spare processors or spare memories or

spare busses). The notation (-, 3, 1) means that the numbers

of spare memories and busses were fixed at 3 and 1,
respectively, and the different values for the number of spare
processors appear on the horizontal axis.
One conclusion that might be drawn from this figure is that

the area utilization measure is more sensitive to the number of
spare memory modules, than it is to the other two types of
elements.

Another interesting phenomenon was observed while per-
forming this analysis. The optimal number of spares of any
type in Fig. 1, is independent of the numbers of spares of the
other two types of elements. For example, the curves (2, -,
1) and (0, -, 0) have their maximum at exactly the same value
of 3 spare memories. The same phenomenon was observed for
a mission time of t = 0.3 l/Xo. Here, the optimal values of
spare numbers are: (4, 3, 2) for maximum wafer-equivalent
yield (as before), (3, 5, 2) for maximum wafer-level reliabil-
ity, and (4,5 2) for maximum area utilization. However, for a
longer mission time (e.g., t > 0.4 MO0) where the optimal
values of the spare numbers are higher, the above indepen-
dence is not preserved.

VI. CONCLUSIONS

VLSI and WSI architectures that use redundancy for yield
and performance improvement have been considered. The
available redundancy on the chip or wafer is primarily limited
by the size of the chip or wafer; hence, it is imperative to find a
method by which one can optimally share the available
redundancy between yield enhancement and performance
improvement.
We have developed in this paper analytical models for the

evaluation of performance and yield improvement through
redundancy. The models proposed can be used to study the
effect of sharing element level and system level redundancy,
between these two somewhat competing requirements.
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