
Yield and Performance Enhancement
Through Redundancy in VLSl and WSI
Multiprocessor Systems

New challenges have been brought to fault-tolerant computing
and processor architecture research because of developments in IC
technology. One emerging area is development of architectures,
built by interconnecting a large number of processing elements on
a single chip or wafer. Two important areas, related to such VLSl
processor arrays, are the focus of this paper; they are fault-toler-
ance and yield improvement techniques.

Fault tolerance in these VLSl processor arrays is of real practical
significance; it provides for much-needed reliability improvement.
Therefore, we first describe the underlying concepts of fault toler-
ance at work in these multiprocessor systems. These precepts are
useful to then present certain techniques that will incorporate fault
tolerance integrally into the design. In the second part of the paper
we discuss models that evaluate how yield enhancement and
reliability improvement may be achieved by certain fault-tolerant
techniques.

I . INTRODUCTION

The evolution of fifth-generation computers [44] makes it
clear that traditional sequential computer architecture will
soon see a striking departure, overtaken by newer architec-
tures which use multiple processors as the state of the art.
This particular thrust is enhanced by developments in IC
technology [30], creating a widening gap between the tech-
nological advances and the architectural capabilities that
can exploit these fully.

As a result, much recent research has focused on these
new architectural innovations, especially those created by
interconnecting multiple processing elements (PES). One
important class of such architectures is VLSl systems that
interconnect a very large number of simple processing cells,
all on a single chip or wafer. Concerns about fault tolerance
in VLSI-based systems stem from the two key factors of
reliability and yield enhancements. Low yield i s a problem
of increasing significance as circuit density grows. One

Manuscript received September 28,1984; revised August 20, 1985.
This work was supported in part by AFOSR under Contract 84-0052.

I. Koren is with the Departments of Electrical Engineering and
Computer Science, Technion-Israel institute of Technology, Haifa
32000, Israel.

D. K . Pradhan is with the Department of Electrical and Computer
Engineering, University of Massachusetts, Amherst, M A 01003, USA.

solution suggests improvement of the manufacturing and
testing processes, to minimize manufacturing faults. How-
ever, this approach is not only very costly, but also quite
difficult to implement, with the increasing number of com-
ponents that can be placed on one chip. However, incorpo-
rating redundancy for fault tolerance does provide a very
practical solution to the low yield problem. This has been
demonstrated in practice for high-density memory chips
and should be extended to other types of VLSl circuits. In
general, yield may be enhanced because the circuit can be
accepted, in spite of some manufacturing defects, by means
of restructuring, as opposed to having to discard the faulty
chip. Achieving reliable operation also becomes increas-
ingly difficult with the growing number of interconnected
elements and hence, the increased likelihood that faults
can occur.

In the design of such fault-tolerant systems, a major
architectural consideration becomes the system intercon-
nection. Consequently, one goal of this work is the study of
sound fault-tolerant network architectures that can be well
utilized in a wide range of VLSI-based systems. Also, of
importance are the related problems of testing, diagnosis,
and reconfiguration.

VLSl technology has many promising applications, includ-
ing the design of special-purpose processors [7], for use as
an interconnected array of processing cells on a single chip,
as well as the design of supercomputers that use wafer-scale
technology. These two factors, in conjunction, possess the
potential for major innovations in computer architecture.

One principal aspect of such architectures is how fault
tolerance can well be incorporated into such systems. In-
cluded here i s the problem of the placement of redundant
cells so as to achieve the elements of fault tolerance, yield
enhancement, testability, and reconfigurability.

1 1 . FAULT TOLERANCE IN VLSl AND WSI

Two VLSl-based areas in which important innovations are
likely to occur are in the wafer-scale integrated architec-
tures, and in the single-chip/multiprocessing element ar-

0018-9219/86/0500-0699901.00 01986 IEEE

PROCEEDINGS OF T H E IEEE, VOL. 74, NO 5. M A Y 1986 699

chitectures. The former has the potential for a major
breakthrough with its ability to realize a complete multi-
processing system on a single wafer. This will eliminate the
expensive steps required to dice the wafer into individual
chips and bond their pads to external pins. In addition,
internal connections between chips on the same wafer are
more reliable and have a .smaller propagation delay than
external connections. The latter does make it possible to
build a high-speed processor on a single chip, designed by
interconnecting a large number of simple PES. These archi-
tectures already have captured the imagination of several
computer manufacturers and researchers alike.

As mentioned earlier, the motivation for incorporating
fault tolerance (redundancy) is twofold: yield enhancement
and reliability improvement. Both are achieved by restruc-
turing the links so as to isolate the faulty element(s). Vari-
ous link technologies are available now which allow such
restructurability. Included among these are the laser-formed
links, MOS links (tristate logic and transistors), fusible links,
and so on.

Restructuring capability is either static or dynamic in
type. Which type is selected depends on whether restruc-
turing should be performed only once after manufacturing,
or an unlimited number of times, as may be required
throughout the operational life.

The issue of fault tolerance in VLSl and WSI processing
arrays has been the subject of recent studies, e.g., [8], [IO],
[18], [20], [26], [38], [a] , [41]. In these publications, various
schemes have been proposed that introduce fault tolerance
into the architecture of processor arrays. Because fault toler-
ance is an involved subject, completely different schemes
might be cost-effective in different situations and for differ-
ent objective functions.

When evaluating a fault-tolerance strategy for multi-
processor systems we have to consider the following
aspects:

a) types of failures to be handled and their probabilities

b) the costs associated with failure occurrences;
c) the applicable recovery methods;
d) the amount of additional hardware needed;
e) the system objective functions.

Fault-tolerance strategies can be designed to deal with
two distinct types of failures; namely, production defects
and operational faults. In the current technology, a rela-
tively large number of defects is expected when manufac-
turing a silicon wafer. Normally, all chips with production
flaws are discarded leading to a low yield (expected per-
centage of good chips out of a wafer).

Operational faults (or just ”faults”) have, in comparison,
a considerably lower probability of occurrence, the dif-
ference of which may be in orders of magnitude. Improve-
ments in the solid-state technology and maturity of the
fabrication processes have reduced the failure rate of a
single component within a VLSI chip. However, the ex-
ponential increase in the component count per VLSl chip
has more than offset the increase in reliability of a single
component. Thus operational faults cannot be ignored al-
though they have a substantially lower probability of occur-
rence compared to production defects. Consequently, a
fault-tolerance strategy that enables the system to continue

of occurrence;

processing, even in the presence of operational faults, can
be beneficial.

The two types of failures, manufacturing defects and
operational faults, also differ in the costs associated with
them. Defects are tested for before the ICs are assembled
into a system and, therefore, they contribute only to the
production costs of the ICs. In contrast, faults occur after
the system has been assembled and is already operational.
Hence, their impact is on the system’s operation and their
damage might be substantial, especially in systems used for
critical real-time applications. Clearly, a method which is
cost-effective for handling defects is not necessarily cost-
effective for handling operational faults, and vice versa.

For both types of failures in VLSI, a repair operation is
impossible and the best one can do is to somehow avoid
the use of the faulty part by restructuring the system. This
implies that in the wafer (in the case of defects) or in the
assembled system (in the case of faults) there are other
operational parts which are either identical to the faulty
one or that can fulfill the same tasks.

Restructuring can be static or dynamic. Static restructur-
ing schemes are suitable only to avoid the use of parts with
production flaws. Dynamic restructuring is required during
the normal system operation, when faulty parts have to be
restructured out of the system without human intervention.
Such a dynamic strategy might be appropriate to handle
defects as well. Static schemes tend to use comparatively
less hardware but consume operator time, while dynamic
schemes are controlled internally by the system and usually
require extra circuitry.

Another aspect that has to be considered when evaluat-
ing the effectiveness of a given fault-tolerance technique is
the required hardware investment. The hardware added can
be in the form of switching elements, (e.g., [8], [38], and
[41]) or redundancy in processors or communication links
(e.g., [IO], [26]). When carrying out such an analysis we have
to take into account the following two parameters:

1) the relative hardware complexity of processors, com-
munication links, and switching elements (if they
exist);

2) the susceptibility to failures (manufacturing defects
or operational faults) of all the above-mentioned
elements.

Processing elements are traditionally considered the most
important system resource; hence, achieving 100-percent
utilization of them is many times attempted. For example,
in [SI, [38], and [41], switching elements are added between
processors to assist in achieving this goal. In [IO] and [26],
connecting tracks are added on the wafer to be used in
bypassing the defective PES when connecting the fault-free
ones. However, the silicon area that needs to be devoted to
switching elements (e.g., switches capable of interconnect-
ing 4 to 8 separate parallel busses [41]) or to additional
communication links cannot be ignored. Consequently, such
schemes might be beneficial only for PES which are sub-
stantially larger than the switches and the additional links
(e.g., [32]). Also, the addition of switching elements and
especially the longer interconnections between active
processors result in longer delays affecting the throughput
of the system. To overcome this performance penalty, it has
been suggested in [25] to add registers for bypassing faulty

700 PROCEEDINGS OF THE IEEE, VOL. 74, NO. 5. M A Y 1986

processors. The effect of this is to introduce extra stages in
the pipeline thus increasing the latency of the pipeline
without reducing its throughput.

In the above mentioned schemes, one of the underlying
assumptions is that the extra circuitry (e.g., switching ele-
ments, communication links, or registers) are failure-free
and only processors can fail. However, larger silicon areas
devoted to those elements increase their susceptibility to
defects or faults; as a result, the above-mentioned assump-
tion might not be valid any more.

In VLSI, the silicon area devoted to a system element
might be more important than its hardware complexity.
Consequently, 100-percent utilization of PES is not neces-
sarily the major objective, especially if this requires adding
switches and/or communication links, which consume
silicon real estate. In the new technology, processors will
be the expendable components, as gates were in SSI or
small logic networks in LSI.

This may justify different fault-tolerance schemes which
do not attempt to achieve 100-percent utilization of the
fault-free processors when the array is restructured to avoid
the use of faulty ones [18]. Such schemes, which give up the
use of some fault-free PES upon restructuring, can be attrac-
tive for operational faults (which are few in number). Here,
the lack of additional hardware (switches or links) allows a
larger number of PES to fit into the same chip area, thereby
offsetting the penalty of giving up the use of fault-free PES
when restructuring.

The reported research in this area of fault-tolerant archi-
tectures, although a significant beginning, is limited in the
following aspects:

a) Most of the proposed architectures have been devel-
oped on an ad hoc basis. No well-established criterion or
framework yet exists for the formulation of these architec-
tures.

b) As indicated above, redundancy can be used for both
yield enhancement and reliability improvement. Recently,
development of models to evaluate how can a given re-
dundancy be shared to achieve the best combined improve-
ment of yield and performance has begun [21] but more
extensive work is still needed. Such models could also be
used to compare and evaluate different architectures.

c) The testability and reconfigurability issues have seen
very limited treatment. Algorithms for testing, diagnosis,
and reconfiguration need to be developed.

Ill. A TAXONOMY F O R MULTIPROCESSOR ARCHITECTURES

Broadly, there are two types of interconnection architec-
tures that are of interest to VLSl processor array implemen-
tation. The first type is the nearest neighbor interconnec-
tion which includes various mesh interconnections, as
illustrated in Fig. 1. The second type we refer to here as
algebraic graph networks which includes networks such as
binary n-cube, cube-connected cycles, shuffle-exchange
graph, shift-and-replace graph networks, and group graph
networks. Examples of the latter are illustrated in Fig. 2. Like
the mesh connection networks, these admit efficient execu-
tion of certain algorithms. Also algebraic structure of some
of these networks can be exploited so as to realize asymp-
totically optimum VLSl layouts.

In order to represent uniformly different types of such

(c)
Fig. 1. Mesh connected arrays.

1M 101

Shuffle-exchange Sraph

mi 01 1

Shift-and-replace Grsph

Cube Connected Cycles

Fig. 2. Algebraic graph networks.

Cube Netuork

K O R E N A N D PRADHAN: REDUNDANCY IN VL51 AND WSI MULTIPROCESSOR SYSTEMS 701

architectures, using different types of processing nodes
(processors with internal switches and processors with ex-
ternal switches) and different types of switches (switches
used for routing and switches used for fault detection and
reconfiguration), we present the following taxonomy. Cen-
erally, there are two types of system nodes: nodes capable
of only computation and nodes capable of both computing
and switching for routing. In addition, there are two types
of switches, the conventional switches, capable of only
establishing connections, and fault-detecting switches,
those that perform the function of both fault detection and
reconfiguration. Different types of architectures are delin-
eated in Fig. 3. The advantage, generally, in using external
switches is that the computational space can be distinct
from the communication space which, therefore, provides
greater flexibility for emulation of a variety of communica-
tion geometries. The disadvantage of external switches,
though, is that they require additional hardware support
and occupy extra VLSl area.

Different types of architectures are illustrated in Fig. 3.
First, Fig. 3(a) illustrates an architecture where the PES
perform internally all the switching necessary to establish
connections. Fig. 3(b) represents an architecture where all
the connections are established by using external switches,
Such differences are best illustrated by using the follow-
ing 5-tuple representation of networks. Let N = (f , s,
Ep, E,, EP.,) denote the network, where P represents the
set of PES, S denotes the set of switches, Ep denotes the set
of direct processor-processor links, E, denotes the set of
direct switch-switch links, and EP., denotes the set of
processor-switch links. Different architectures can be con-
veniently categorized into the following four types, as
shown below, where + represents the null set:

Type 1 :

(P , s = +, F p , E, = Ep-, = +).

This denotes the type of architecture shown in Fig. 3(a).
Here, the array contains only processing nodes with switches
built in as an integral part of the processor. The mesh
connections considered in [I81 is an example of such an
architecture.

Type 2:

(P ’ S , Fp = +, E, , EP. ,) .

This denotes the type of architecture shown in Fig. 3(b)
where all of the configuration and communication func-
tions are performed by switches that are external to the
processor. The C H I P architecture proposed by Snyder (411 is
an example of this type.

Type 3:

(f , s, F P , E, = +! EP.,).

Fig. 3(c) delineates such an architecture. Here, in addition
to the external switches, each processor has an internal
switch which sets up the connections between processors.
The external switches are used to provide the function of
fault detection through disagreement detection and subse-
quent switching out of the faulty processor, thus discon-
necting it from the network.

Type 4:

(P , s, E P , E , , E p - ,) .

(4
Fig. 3. (a) Type 1 architecture using internal switches. (b)
Type 2 architecture using external switches. (c) Type 3 archi-
tecture. (d) Type 4 architecture.

702 P R O C E E D I N G S O F T H E IEEE, VOL. 74, N O . 5 , M A Y 1986

This denotes a type of architecture where all of the
different types of links are used. An example of such an
architecture is illustrated in Fig. 3(d). Here, a linear array of
PES is provided with external switch connections which can
be configured in four ways, as shown in Fig. qa). The

Faulty
P E

(c)

Fig. 4. (a) Different switch configurations. (b) Linear array
and binary tree configurations. (c) Bypassing the faulty PE.

switches in such an architecture have a dual purpose. First,
they can be used to provide multiple logical configurations
such as binary tree in addition to the linear array; thus an
application that requires both linear array and binary tree
can use this architecture, as shown in Fig. qb). Secondly,
the switches can be used to bypass the faulty elements, as
shown in Fig. qc) .

As we can see, these different categorizations encompass
all of the different possible architectures that can be con-
ceived. Therefore, the above taxonomy provides a conve-
nient framework for both the analysis of different architec-
tures and the conceptualization of new architectures.

There are two basic ways one can introduce fault toler-
ance into these arrays, the first approach would be to
provide redundancy at each node so that the node can be
reconfigured internally in the event of a fault. For example,
consider a 9-node mesh connection shown in Fig. 5. If we
assume that the interconnects are highly reliable, one way
to design this array so that it will be fault-tolerant is to use
two self-checking processors at each node, as shown in
Fig. 6. The function of the external switch is to determine,
in the event of a fault, which one of the two checkers is
indicating errors and then to switch out the appropriate
module.

However, i f the interconnects cannot be assumed to be
reliable, one has then to provide redundancy by designing
an array larger than the maximum size required for the
applications. For example, consider the 4 X 4 array shown
in Fig. 7 which is designed to support various applications
including the binary tree configuration shown in Fig. &a).

Fig. 5. A 9-node h-h-cb mesh connection.

Fig. 6. Fault-tolerant node.

Fig. 7. A 4 X 4 mesh connection.

The mapping of the binary tree onto the array is depicted in
Fig. 8(b). In this figure, the mapped nodes of the binary tree
are shown, along with the inactive components, which are
shown by dashed lines. Consider now that the active node
6 becomes faulty. It can be easily seen that the network can
no longer admit the binary tree configuration, shown in
Fig. &a). However, should it be possible to execute the
same application on a reduced binary tree (perhaps with a
degraded performance) such as the one shown in Fig. 9, the
application can still be supported by the faulty array, as
demonstrated below.

There are two different ways this can be achieved. First,
the original 4 X 4 array can be restructured into a smaller
3 X 3 array, as shown in Fig. 10. This would require giving
up the use of some processing nodes by turning them into
connecting elements (CEs) [18]. Then, any application that
can be executed on a 3 x 3 array can be executed on this
new (logical) 3 X 3 array. The second approach would be to

KOREN AND PRADHAN. REDUNDANCY IN VLSl A N D WSI MULTIPROCESSOR SYSTEMS 703

n

I i I I
I

L-J L--l
(b)

Fig. 8. (a) A binary tree configuration. (b) Mapping of the
binary tree onto the mesh.

Fig. 9. Reduced binary tree.

map directly the application configuration onto the faulty
physical array. However, the latter approach can be compu-
tationally complex [9]. Thus depending on whether or not
such reduction is possible, the network may or may not be
fault-tolerant, with respect to this application.

Several important concepts emerge from the above dis-
cussion. First, a node or link can assume several distinct
states. The following shows various possible states of the

CE

CE CE

Fig. 10. Reduced 3 X 3 array.

node:

Yode S t a t e ,w</L, /----A Faul t - f ree

Part ly Faul ty

Conmletely

/-\
Active Inactive

Processing Transmission

Here, the processing state of the node refers to that state
in which the node is assigned to perform some useful
computational task.

O n the other hand, a node in the transmission state is
assigned to perform only switching, so as to establish a
path. Thus a node in this state does not perform any
computations, except those which may be required for
routing, etc. For a link though, this distinction does not
apply. Accordingly, there are fewer states for a link, as
shown below:

Suitch/Link State

#------\
Faulty

/\
-- Faul t - f ree

Active Inactive

The various possible state transitions are shown by the
following directed graph. Here, f , P, T, A , and I denote the
faulty, processing, transmission, active, and inactive states,
respectively. The arc labels, f and ca, Tepresent the transi-
tions caused by fault, and change of application, respec-
tively.

704 PROCEEDINGS OF THE IEEE, VOL. 74, NO. 5. MAY 1986

Secondly, the various reconfiguration processes can be
conceptualized through an abstraction of layers, formulated
below:

Let the physical layer represent the topology which de-
scribes the interconnection structure, along with the status
of the nodes and links in the physical array. A node/link in
the physical layer can be either in the fault-free or faulty
state.

Let a n application layer represent that topology which is
required to support a given application. Thus in this layer,
all of the nodes are processing nodes; the links, active links.

Let the logical layer represent the topology which real-
izes a given-application layer on a given physical layer. Thus
a node in this layer is either in the processing state or in the
transmission state. All of the links in the logical layer are in
the active state.

For a given configuration, the above layers are related
topologically, as shown in Fig. 11. The nodes in the applica-

1 Physical layer

Logical layer

.Application layer

Fig. 11. Topological relationships

tion layer are a subset of the nodes in the corresponding
logical layer and these are, in turn, a subset of the nodes in
the physical layer.

The following defines a set of fundamental problems of
practical importance:

Problem 7: Given an application layer (a set of applica-
tion layers) and the physical array that admits these applica-
tion(s), what i s the minimum size (number of nodes, silicon
area) of the physical layer that can admit the application(s)
when t or fewer components fail?

Problem 2: Given the geometrical structure(s) of an
application layer (set of application layers), how can a
physical array be designed so that it can provide “efficient”
fault-tolerant realization of the application(s)? The term
efficient may be defined in terms of factors such as size of
physical array, length of communication delay between
adjacent application nodes, ease of testing and diagnosis,
reconfigurability, etc.

The above problems need to be studied in the context of
more general and flexible use of redundancy. For example,
judicious use of node-level redundancy may offset the
need for massive redundancy at the system level. Also,
broader use of switches as implied by Type 3 and Type 4
architectures may yield new system architectures-architec-
tures that provide more efficient utilization of redundancy.

The above discussion is also applicable to the second

type of networks, the algebraic networks. For example,
consider the shift-and-replace graph networks proposed
recently in [39] as a candidate for VLSl processor networks.
Such an 8-node network is shown in Fig. 12(a). This net-
work is capable of emulating various useful logical struc-
tures such as the linear array, binary tree, shuffle, and the
shuffle-exchange communication structures, as shown in
Fig. 12(b). More importantly, this algebraic network can
emulate structures such as the linear array and binary tree,
in spite of a fault. For example, consider the link connecting
nodes 1 and 2 becoming faulty. In this case, the networks
can still be restructured both as a linear array and as a
binary tree, as shown in Fig. 13. Similarly, the network is
also capable of emulating these structures in spite of any
single-node failures.

It may also be noted that networks such as the binary
n-cube and the cube-connected cycles provide some inter-
esting fault-tolerant reconfiguration capabilities. For exam-
ple, consider a 4-cube of 16 nodes, shown in Fig. 14(a). In
the event of a fault, one can degrade this to a 3-cube of 8
nodes, as illustrated in Fig. 14(a). However, this would
require giving up the use of seven good nodes. Alterna-
tively, one can partition the 4-cube into 4 subnetworks of
2-cubes. Assuming that the problem can be divided into
subproblems that can be executed on 2-cubes, one can use
3 of these, as shown in Fig. 14(b). This would necessitate
giving up the use of only 3 good nodes. It is obvious that
the fault tolerance of algebraic networks can be studied in
the context of VLSl processor arrays.

Iv. TESTING AND RECONFIGURATION STRATEGIES

Central to the success of any fault-tolerance scheme is
the formulation of effective testing and reconfiguration
strategies. Basically, there are two different approaches to
diagnosis and recovery: centralized and distributed. In a
centralized procedure, one may assume an external unit
which is responsible for initiating testing and reconfigura-
tion. In a distributed procedure, the PES themselves are
responsible for performing periodic testing and reconfigura-
tion.

The advantage of a centralized scheme is that no ad-
ditional hardware and software support has to be provided
within each PE to allow testing and reconfiguration. On the
other hand, useful computation for the entire array has to
be interrupted so that testing can be performed. Addition-
ally, the complexity of the circuit and the limited access
from the external unit may not allow a centralized proce-
dure to be used. The advantage of distributed testing, on
the other hand, is that since each processor can perform
testing in an asynchronous mode, the testing can be inter-
leaved with computation, thus not necessarily requiring a
complete interruption of all useful computation. Moreover,
the distributed testing has the potential for better fault
coverage because of the proximity of the testing unit and
the unit under test.

From the above discussion, it is apparent that a distrib-
uted procedure must strive to make the testing and recon-
figuration task local to each node. This way, the testing and
reconfiguration can be made transparent to most of the

K O R E N A N D P R A D H A N : R E D U N D A N C Y I N VLSl A N D WSI MULTIPROCESSOR SYSTEMS 705

1
lWll (01 I I

3

(1 1 0 1
6

Linear a r m network

0-
M)1

l o 0

4 I11O
110

Perfm-shuffle newfork

01 I

Shufflb.xcham). network

(b)
Fig. 12. (a) Shift-and-Replace graph. (b) Emulating logical structures on a Shift-and-
Replace graph.

0 0 1 01 1

L m u r array wtth link fault

Fig. 13. Emulations in the presence of a faulty link.

network. However, performing these tasks locally requires
extra hardware and software support at each node and a
distributed procedure must try to minimize it. On the other
hand, a centralized procedure must attempt to minimize
the number of tests that will be required when no faults are
present. interruption of useful computation will be this way
minimized.

In the following, we present an example for a distributed
testing procedure in which every PE tests all its immediate
neighbors. In this way, faulty PES and faulty connections
between PES are detected by the adjacent PES. The proce-
dure first partitions all the PES into m disjoint testing

1 1 1

t

Binary t r e e w n h lmk fault

groups, T,, T,; . ., Tm-,. After this partitioning, there are m
phases of testing, where at phase i (0 Q i Q rn - I), the
members of T, test all their neighbors.

The partition is such that 1) every PE i s surrounded by PES
of other groups, and 2) no PE has two neighbors belonging
to the same group. These two properties guarantee that for
every i , no two members of 7; will test each other, or try
simultaneously to test a third PE. It can easily be shown that
five (seven) groups are both necessary and sufficient for a
partition with the above properties in the case of a square
array [I81 (hexagonal array [12]). The testing group numbers
assigned to each PE in a square array and an hexagonal array

706 PROCEEDINGS OF THE IEEE, VOL. 74, NO. 5 , M A Y 1986

il

--Ti--- I I
I I

(b)

Fig. 14. (a) A binary +cube partitioned into two 3-cubes
with faulty node 9. (b) Partitioned binary 4-cube into four
2-cubes with faulty node 9.

may be calculated from its array indices (p , 9) by (p +
29) mod 5 and (p + 29) mod 7, respectively.

When all the m phases of the testing procedure have
been completed, each and every PE knows the status
(faulty/not-faulty) of all its immediate neighbors and the
corresponding connecting links. There is no difference if
the actual fault is in the neighboring PE proper, or in the
link leading to it.

Moreover, the status of a faulty PE or link will be known
only to i ts neighboring PES. This locally stored information
is sufficient for a distributed reconfiguration algorithm (e.g.,
[18]) that will follow the testing procedure. Thus it may be
seen that the above distributed testing procedure does not
require any passing of test results, as required in other,
more general, distributed diagnosis algorithms (e.g., [22]),
by taking advantage of the regularity of the VLSl array.

It may be noted that the above algorithm will also work
with simple comparison testing. In this type of testing,
there are no tests to be applied from one processor to the

other. Simply, what is required is that two neighboring
processors, i and j , exchange the results of certain prede-
termined identical computation. In the event that there is a
mismatch, processor i can assume j is faulty and processor j
can assume i i s faulty.

In summary, a key feature of the above distributed testing
procedure is that the testing and subsequent reconfigura-
tion are transparent to all the nodes in the network except
for those that are adjacent to the faulty node. The main
disadvantage of distributed procedures is, however, the
extra hardware and software support that each PE must
provide for testing and reconfiguration. This may be dif-
ficult to accomplish in processing arrays consisting of very
small and simple PES.

As discussed earlier, centralized testing may have to inter-
rupt all the computations in the array. Since it is assumed
that the testing is done periodically, it is desirable that the
number of tests and the testing time should be minimized
when there are no faults. The testing time should be pro-
portionate to the number of faults; thus a fault-free array
would require a minimum number of tests with the number
of tests increasing with the number of faults. In [31], a
possible diagnosis strategy was suggested that makes the
testing very simple in the absence of any fault; the testing
becomes progressively more time-consuming with the
number of faults. Since most of the time no faults are
present, the performance penalty due to interruption for
testing can be minimal. This is illustrated further below.

In Fig. 15 possible testing graphs for a 5 * 5 end-around
mesh (the boundary nodes are also adjacent) are shown.
The darkened boxes represent nodes already diagnosed as
being faulty. The edges with arrows indicate those com-
munication edges included in the testing graph. The arrows
point from the tester to the tested unit. Algorithm SELF2
[22] would require a graph with 75 directed edges to di-
agnose up to three faults. The strategy presented in [31]
never employs more than 25 periodic tests.

Fig. I5(a) indicates a possible initial testing graph. Since
the end-around mesh is node-symmetric, the first fault may
always be viewed as occurring in the center node; and the
same testing graph may then be used after the first fault is

K O R E N AND PRADHAN: REDUNDANCY IN VLSl A N D WSI MULTIPROCESSOR SYSTEMS 707

diagnosed. There must exist two adjacent fault-free rows
(also columns) after no more than two faults have occurred.
This ensures the graph may be viewed with the faults
restricted to the interior, i.e., with the border intact.

Fig. 15(b)-(f) illustrates five possible cases for the fault
locations. In each instance, the interior is shown to include
a Hamiltonian path. As proved in [31], at least one fault
among the nodes in the loop along the border may be
diagnosed. If all are fault-free, then the first faulty node
along the path through the interior may be diagnosed.

Let [a , /?I denote the closed interval from a to 8. Let the
nodes in the mesh be represented by pairs (a , b) where
a, b E [1,5] with a indicating the row and b indicating the
column. Let the first fault, without loss of generality, be at
node (3,3). By symmetry, we need only to consider the
second fault occurring at 1) (2,4), 2) (2,3), 3) (1,5), 4)
(1,4), or 5) (1,3). These possibilities 1)-5) correspond to
the illustrations in Fig. 15(b)-(f), respectively. Consequently,
Fig. 15 gives testing.graphs for all unique fault patterns in
this case. Precise necessary and sufficient conditions for
such a dynamic testing of general systems are given in [31].

v . ANALYTICAL MODELS F O R EVALUATION OF YIELD

A N D PERFORMANCE

The introduction of fault tolerance into the architecture
of VLSI-based multiprocessor systems has two objectives.
One is yield enhancement, the other is improvement of
performance. To achieve these two goals, redundancy has
to be introduced either at the basic element level or/and at
the system level. In the latter case, redundant elements can
be added to the original design and they will be used to
replace defective ones after the manufacturing process has
been completed. Such a replacement is done by reconfig-
uring the system using either a static scheme or a dynamic
one. Once this procedure is completed the system goes
into operation and it has to handle, from this point on, only
operational faults. This can be done using a dynamic recon-
figuration scheme which might be different from the one
used for defects. At this point, the fault-tolerance capacity
of the system is used to improve its performance. First, the
remaining redundant elements (if any) can be used as
spares and then, the system is gracefully degraded. We
conclude, therefore, that the same redundancy can be used
for both yield enhancement and performance improve-
ment.

We present in this section an analytical model that en-
ables us to consider both manufacturing defects and oper-
ational faults. This model allows us to analyze the effective-
ness of a given fault-tolerance technique in increasing yield
and improving performance, or find the tradeoff between
the two. It also enables us to compare various fault-toler-
ance techniques, examine different system topologies, and
determine the optimal amount of redundancy to be added.

To formulate such a model, an expression for the yield of
a fault-tolerant multiprocessor chip is needed. Such expres-
sions have been presented in [20] and [28]. A more general
expression for the yield was proposed in [21] and is pre-
sented in what follows.

The yield of any VLSl chip depends on the types of

defects, which may occur during the manufacturing pro-
cess, and their distribution. The majority of fabrication
defects can be classified as random spot defects [43] caused
by minute particles deposited on the wafer. Hence, each of
them may affect only a single element (like a processor,
bus, etc.) in a multiprocessor chip.

For the statistics of the fabrication defects we can adopt
one of the models suggested in the literature such as
Poisson, general negative binomial, binomial statistics, and
others. Under proper assumptions each of these statistics
can be used and the "correct" one is the one that fits the
data best [43]. One model which has been shown to agree
with experimental results, is the generalized negative bi-
nomial distribution [42]. Its attractiveness stems from the
fact that it does not assume that all defects are evenly
distributed throughout the wafer but rather allows defects
to cluster. The probability of having x defects on a chip for
this distribution is

where x is the average number of defects per chip and a i s
the defect clustering parameter. A low value of a can be
used to model severe clustering of defects on a wafer,
while for a 4 00 we obtain the Poisson distribution. This
two-parameter distribution has a mean of x and a variance
of x(1 + x / a) . The mean and variance of data obtained
from many wafer samples are used to estimate these two
parameters.

For nonredundant chips, the yield is the probability of
having zero defects

Suppose now that redundancy is added to a chip so that
s defective elements can be tolerated (i.e., replaced by
good spares), and denote by N the total number of ele-
ments (e.g., processors). Then, the chip is acceptable with
any number of manufacturing defects as long as all of them
are restricted to at most s elements. The yield, which is
now the probability of a chip being acceptable, is given by

Y = Pr {there are x defects in at most s elements}.
m

x = o

(3)

If we denote

oxy,) = Pr { x defects are distributed into exactly i out

of N elements/there are x defects}

then

Y = oxy) * Pr {there are x manufacturing
m s

x - 0 i -0

defects in the chip}. (4)

The last term in the above equation is Pr { X = x } and we

708 PROCEEDINGS OF THE IEEE. VOL. 74. NO. 5, MAY 1%

may substitute it by (1) or by a similar expression for any
other defect distribution (e.g., Bose-Einstein statistics [28]).

The probability OXN) is given by

where (k , , - y, - ;) is the multinomial coefficient.
In the previous discussion we have assumed that only

one type of elements can have defects. If two types of
elements (e.g., processors and communication busses) can
have defects, then the probability of having x, defects in
type 1 elements and x, defects in type 2 elements is

P r { X , = x , , X 2 = x 2 } = P r { X , = x 7 } * P r { X 2 = x , } (6)

since the probabilities of defects in different types of ele-
ments are independent [43].

Suppose now that s, defective elements of type 1 and s,
defective elements of type 2, out of N, and N, elements,
respectively, can be tolerated. Then, the yield is given by

*Pr { X, = x,, X, = x , } . (7)

s, and s2 are not necessarily independent; for example, if
less than s, elements of type 1 are defective we may be
able to tolerate more than s2 defective elements of type 2.
Equation (7) will have in this case to be changed accord-
ingly.

Equation (7) as well as (4) can be multiplied by a “bypass
coverage probability” [28]. This is the conditional probabil-
ity that an element can be bypassed given that it is faulty.
By adding this probability one may consider less than per-
fect procedures for locating faulty elements and reconfigur-
ing them out of the system.

In the following we adopt the commonly used assump-
tion that only one type of elements can fail (usually, the
more complex one, e.g., the processors). The general case
in which all system elements can have defects in them, can
be analyzed based on expressions similar to (7).

To tolerate s defective elements, at least s redundant
ones are needed. However, the exact amount of required
redundancy depends upon the specific static or dynamic
reconfiguration scheme used. This, in turn, determines the
increase in chip area which must be taken into account
when calculating the yield, since a larger number of defects
is expected now.

Let ys denote the increase in chip area (due to the
addition of redundancy) needed to tolerate these s faulty
elements. The factor ys is called the redundancy factor [20]
and it depends on the system topology and the reconfigura-
tion strategy. To take into account the increased number of
expected defects, we have to substitute x (the average
number of defects per chip) by y,x in (1).

In addition, any increase in chip area will reduce the
number of chips that will fit into the same wafer. Hence,
instead of calculating the yield which is the probability that
a single chip i s acceptable, one has to calculate the expected
number of acceptable chips out of a given wafer. This

expression, called equivalent yield in [20], is obtained from
(4) after dividing it by y,. By comparing the equivalent yield
of the fault-tolerant chip and the yield of the simplex one,
we can determine whether it is beneficial, when yield is
considered, to have built-in fault tolerance and how many
redundant elements should be added. This comparison can
be done for various topologies of multiprocessors and dif-
ferent reconfiguration algorithms.

An analysis along these lines has been done in [28] and
[20]. In both, it has been observed that the improvement in
yield saturates above some amount of redundancy. This
indicates that there is an optimal amount of redundancy
that should be added.

Chips having s or less defects will be accepted and then
reconfigured to avoid the use of the defective elements. If
the number of defects is less than s, the chip has some
“residual” redundancy which can then be used for perfor-
mance enhancement, i.e., handle operational faults which
occur during the lifetime of the system. Even chips in which
no redundant elements are left when leaving the manufac-
turing site (i.e., there were originally s defects in the chip),
can still benefit from the fault-tolerance capability.

To evaluate the effectiveness of the “residual” re-
dundancy and the fault-tolerance capacity of the chip we
have to select some performance measures and we need a
model that will allow us to calculate these measures. A
natural choice for this purpose is a Markov model like the
one employed in [20] and [6].

Suppose first that the same reconfiguration scheme is
used to avoid both manufacturing defects and operational
faults. This assumption implies that a dynamic scheme is
employed since no static scheme can be used while the
system is in operation. The suggested Markov model for
this case is depicted in Fig. 16, where (F) i s the system
failure state and (j) i s a state at which the system is
operational in the presence of j faulty elements. A transi-

h

Fig. 16. A Markov model for a multiprocessor with defects
and operational faults.

tion from state (j) to state (F) takes place when an ad-
ditional node becomes faulty and the system fails to re-
cover from its effect. The corresponding transition rate is
denoted by a:. Similarly, a$+’ is the transition rate from
state (j) to state (j + 1). These transition rates depend upon
the failure rates of the system’s elements and the coverage
probability [20].

State (0) in Fig. 16 is the initial state of the system if no
defects occurred while the chip has been manufactured. If
there were i defective elements (0 < i < s) then (i) would

KOREN AND PRADHAN REDUNDANCY IN VLSl AND WSI .MULTIPROCESSOR SYSTEMS

be the initial state. Let a, denote the probability of this
event [21]

m
a , = O (, N j * p r { ~ = x) . (8)

x - 0

Using a, we can calculate the yield as
5

Y = a ; . (9)
i -0

State (s + rn) in Fig. 16 is a terminal state [20] (i.e., a state
from which the only transition possible is to the system
failure state (F)), where m is the largest number of faulty
elements that the system can tolerate if no redundant
elements were left when the system went into operation.

Let

?(t) = Pr {the system is in state (j) at time t /

the system was initially in state (i) }

w h e r e i = O , l ; ~ ~ , s ; j = i , i + 1 , ~ ~ ~ , s + m , w i t h f (O) = 1
and q'(0) = 0 for j > i.

The Markov model in Fig. 16 is described then by the
following differential equations:

de;(r)
dt

-- - -.,si(t)

where j = i + l , i + 2 ; . . , s + m and

a. = + ai+l.
/ / I

The solution of (IO) and (11) under the condition

ai + a,, for all (k) + (j)

which is satisfied in most practical cases, is

and

f (t) = e-"l'.

For the Markov model shown in Fig. 16 we can calculate
several performance measures such as reliability, perform-
ability, computational availability, and area utilization [20].
Let R,(t) (0 < i < s) denote the reliability of a system (i.e.,
the probability that it operates correctly in the time interval
[0, t]) which had i defects during the manufacturing pro-
cess. This reliability can be calculated from the above
Markov model as follows:

s+ rn

R,(t) = ?;(t) . (1 4)
j - i

We may then define and compute

1 '
R(t) = - a,R,(t) (15)

as the average reliability of a system having s or less defects
when manufactured. This average reliability can then be
compared to R,(t) which is the reliability of a system with
no redundancy left from the manufacturing step. If we set

y i -0

s = 0 then R,(t) is the reliability of the system i f only
perfect chips (with no defects) are accepted.

Similarly, we can define and calculate the computational
availability A:(t) (the expected available computational
capacity) and area utilization measure U,(t). The latter takes
into account the additional area needed when fault toler-
ance is introduced into the system, and is defined in the
following way:

.U,(t) =
computational availability A;(t)

chip area increase ys

The expression for the above introduced computational
availability measure is

s+ rn

A:(t) = ciq(t) (1 6)
j - i

where ci is the computational capacity of the system in
state (j) [20], expressed, for example, in instructions per
time unit. The computational capacity depends mainly on
the number of processors available for computation in state
(j) . This number is at most N - j processors (where N is
the number of processors in the fault-free system), and is
determined by the reconfiguration strategy. In addition, ci
depends on the current system structure and application
since not all processors are utilized in every possible struc-
ture or application.

Other performance measures, like mean time to failure,
can also be calculated. For example, let T, denote the mean
time to failure of a system which was initially in state i ,
then

m

= 1 R , (t) dt. (1 7)
0

The average mean time to failure can be defined similarly
to (15).

This model can be extended in two directions in order to
make it more general and more practical. One is to include
two or more types of system elements that can fail (during
manufacturing or later on) like communication busses,
switches, etc. The second one is to allow the use of one
reconfiguration scheme to handle defects and a different
one to handle operational faults. Manufacturing defects can
be effectively handled using static schemes like "laser pro-
gramming" or electrically fusible links, while operational
faults are best handled by some dynamic reconfiguration
scheme. A static scheme for defects requires less silicon
area on one hand but consumes operator time on the other.
A more general Markov model with two different recon-
figuration schemes will enable us to analyze the effective-
ness of various such schemes.

Using the method presented in [20] one can derive
closed-form expressions for the state probabilities and com-
pute the yield and various performance measures for differ-
ent architectures.

VI. CONCLUSIONS

Fault-tolerant architectures that use redundancy for yield
and performance improvement have been considered. We
have presented a unified framework through which existing
architectures incorporating fault tolerance can be analyzed
and new ones suggested.

71 0 PROCEEDINGS OF THE IEEE, VOL. 74, NO. 5, M A Y 1986

Several problems related to testing and reconfiguration of
these arrays have been described. Both the distributed and
centralized modes of testing have been considered.

The last part of the paper is devoted to the presentation
of analytical models for the evaluation of reliability and
yield improvement through redundancy. The available re-
dundancy on the chip or wafer is primarily limited by the
size of the chip or wafer, hence, it is imperative to find a
method by which one can optimally share the available
redundancy between yield enhancement and performance
improvement. The models discussed can be used to study
the effect of sharing available redundancy between these
two somewhat competing requirements.

REFERENCES A N D BIBLIOGRAPHY

D. P. Agrawal, “Testing and fault-tolerance of multistage
interconnection network,” Computer, vol. 15, pp. 41-53, Apr.
1982.
R . C. Aubusson and I. Catt, “Wafer-scale integration-A
fault-tolerant procedure,” /€E€ 1. Solid-State Circuits, vol.
SC-13, pp. 339-344, June 1978.
M. D. Beaudry, “Performance-related reliability measures for
computing systems,’’ /€E€ Trans. Comput., vol. C-27, pp.
540-547, June 1978.
W. C. Carter et a/., “Cost effectiveness of self-checking com-
puter design,” in Proc. 7th symp. on Fault-Tolerant Comput-
ing, pp. 117-123, June 1977.
R. P. Cenker et a/., “A fault-tolerant 64K dynamic random-
access memory,” /€€€ Trans. Electron Devices, vol. ED-26, pp.
853-860, June 1979.
J. A. Fortes and C. S. Raghavendra, “Dynamically reconfigur-
able fault-tolerant array processor,” in Proc. 74th Annu. Symp.
on fault- Tolerant Computing, pp. 386-392, June 1984.
M. J . Foster and H. T. Kung, “The design of special-purpose
VLSl chips,” Computer, vol. 13, pp. 26-40, Jan. 1980.
D. S. Fussel and P. J. Varman, “Fault-tolerant wafer-scale
architectures for VLSI,” in Proc. 9th Annu. Symp. on Com-
puter architecture, May 1982.
P. J. Varman and D. S. Fussel, “Realizing fault-tolerant binary
trees in VLSI,” typescript, Univ. of Texas at Austin, 1983.
J. W. Creene and A. El Carnal, “Configuration of VLSl arrays
in the presence of defects,” 1. ACM, vol. 31, no. 4, pp.

D. Gordon, I . Koren, and C. M. Silberman, ”Embedding tree
structures in VLSl hexagonal arrays,” I€€€ Trans. Comput., vol.
C-33, pp. 104-107, Jan. 1984.
D. Cordon, I. Koren, and C. M. Silberman, ”Fault-tolerance in
VLSl hexagonal arrays,” typescript, Dept. Elec. Eng., Technion,
Haifa, Israel.
J. P. Hayes, “A graph model for fault-tolerant computing
system,“ I € € € Trans. Comput., vol. C-25, pp. 875-884, Sept.
1974.
L. S. Haynes, R. L. Lau, D. P. Siewiorek, and D. W. Mizell, “A
survey of highly parallel computing,” Computer, vol. 15, pp.
9-24, Jan. 1982.
K. Hedlund and L. Snyder, ”Wafer scale integration of config-
urable, highly parallel (chip) processor,” in Proc. 1982 lnt.
Conf. on Parallel Processing, pp, 262-265, Aug. 1982.
E. Horowitz and A. Zorat, ”The binary tree as an interconnec-
tion network: Applications to multiprocessor systems and
VLSI,” /E€€ Trans. Comput., vol. C-30, pp. 247-253, Apr. 1981.
K. H. J. Huang and J. A. Abraham, “Low cost schemes for
fault-tolerance in matrix operations with array processors,” in
Proc. 12th Symp. on Fault-Tolerant Computing, June 1982.
I. Koren, “A reconfigurable and fault-tolerant VLSl multi-
processor array,“ in Proc. 8th Annu. Symp. on Computer
Architecture, pp. 425-441, May 1981.
I . Koren and G. M. Silberman, “A direct mapping of al-
gorithms onto VLSl processor arrays based on the data flow
approach,” in Proc. 7983 Int. Conf. on Parallel Processing, pp.

694-71 7, OCt. 1984.

335-337, Aug. 1983.
I . Koren and M. A. Breuer, “On area and yield considerations
for fault-tolerant VLSl processor arrays,” / E € € Trans. Comput.,
vol. C-33, pp. 21-27, Jan. 1984
I. Koren and D. K. Pradhan, “Introducing redundancy into
VLSl designs for yield and performance enhancement,“ in
Proc. 15th Annu. Symp. on Fault-Tolerant Computing, pp.
330-335, June 1985.
I . C. Kuhl and S. M. Reddy, ”Distributed fault-tolerance for
large multiprocessor systems,’’ in Proc. 7th Symp. on Com-
puter Architecture, pp. 23-30, May 1980.
H. T. Kung, “The structure of parallel algorithms,” in Ad-
vances in Computers, vol. 19, M. C. Yovits, Ed. New York:
Academic Press, 1980, pp. 65-112.
-, ”Why systolic arrays,” Computer, vol. 15, pp. 37-46,
Ian. 1982.
H. T. Kung and M. S. Lam, “Fault-tolerance and two-level
pipelining in VLSl systolic arrays,” in Proc. 19% Conf. on
Advanced Research in VLSl (MIT, Cambridge, MA, Jan. 1984),

F. T. Leighton and C. E. Leiserson, “Wafer-scale integration of
systolic arrays,” /€€E Trans. Comput., vol. C-34, pp. 448-461,
May 1985.
A. D. Malony, “Regular interconnection networks,” Tech.
Rep. CSD-82-0825, Dept. Comput. Sci., UCLA, 1982.
T. E. Mangir and A. Aviiienis, “Fault-tolerant design for VLSI:
Effects of interconnect requirements on yield improvements
of VLSl designs,” / € E € Trans. Comput., vol. C-31, pp. 609-615,

F. B. Manning, ”An approach to highly integrated computer-
maintained cellular arrays,” /€€€ Trans. Cornput., vol. C-26,
pp. 536-551, June 1977.
C. Mead and L. Conway, lntroduction to VLSl Systems.
Reading, MA: Addison-Wesley, 1980.
F. J. Meyer and D. K. Pradhan, “Dynamic testing strategy for
distributed systems,’’ in Proc. 75th Annu. Symp. on Fault-
Tolerant Computing, pp. 84-93, June 1985.
H. Mizrahi and I. Koren, “Evaluating the cost-effectiveness of
switches in processor array architectures,” in Proc. 1985 lnt.
Conf. on Parallel Processing, Aug. 1985.
D. I. Moldovan, “On the design of algorithms for VLSl sys-
tolic arrays,” Proc. / E € € , vol. 71, no. 1, pp. 113-120, Jan. 1983.
D. K. Pradhan and J. J , Stiffler, “Error-correcting codes and
self-checking circuits,” Computer, vol. 13, pp. 47-54, Mar.
1980.
D. K . Pradhan and S. M. Reddy, “A fault-tolerant distributed
processor communication architecture,” / € E € Trans. Comput.,
vol. C-31, pp. 863-870, Sept. 1982.
D. K. Pradhan, ”Fault-tolerant architectures for multi-
processors and VLSl systems,” in Proc. 13th Symp. on Faulf-
Tolerant Computing, June 83.
A. L. Rosenberg, ”On designing fault-tolerant arrays of
processors,” Tech. Rep. CS-1982-14, Duke Univ., Durham,
NC, 1982.
-, “The Diogenes approach to testable fault-tolerant
arrays of processors,” I€€€ Trans. Comput., vol. C-32, pp,

M. R. Samatham and D. K. Pradhan, “A multiprocessor net-
work suitable for single-chip VLSl implementation,” in Proc.
11th Annu. Symp. on Computer Architecture, pp. 328-337,
May 1984.
C. H. Sequin and R. M. Fujimoto, “X-tree and Y-component,”
in VLSl Architectures, B. Randell and P. C. Treleaven, Eds.
Englewood Cliffs, NJ: Prentice-Hall, 1983, pp. 299-326.
L. Snyder, ”lntroduction to the configurable highly parallel
computer,“ Computer, vol. 15, pp. 47-56, Jan. 1982.
C. H. Stapper, A. N. McLaren, and M. Dreckman, “Yield
model for productivity optimization of VLSl memory chips
with redundancy and partially good product,” IBM /. Res.
Devel., vol. 24, no. 3, pp. 398-409. May 1980.
C. H. Stapper, F. M. Armstrong, and K. Saji, ”Integrated circuit
yield statistics,” Proc. / € € E , vol. 71, pp. 453-470, Apr. 1983.
P. C. Treleaven and I. C. Lima, ”Japan’s fifth-generation com-
puter systems,’’ Computer, vol. 15, pp. 79-88, Aug. 1982.

pp. 74-83.

July 1982.

902-910, OCt. 1983.

K O R E N A N D P R A D H A N . R E D U N D A N C Y I N VLSl A N D WSI MULTIPROCESSOR SYSTEMS 71 1

