
Yield  and  Performance  Enhancement 
Through  Redundancy in VLSl and WSI 
Multiprocessor  Systems 

New challenges have been brought to fault-tolerant  computing 
and processor architecture research  because of developments in IC 
technology.  One  emerging area  is development of architectures, 
built by  interconnecting  a large number of processing elements on 
a single chip or  wafer. Two important areas, related to such VLSl 
processor arrays,  are the focus of this paper; they are fault-toler- 
ance  and  yield  improvement techniques. 

Fault tolerance in these VLSl processor arrays is of real practical 
significance; it provides for much-needed  reliability  improvement. 
Therefore, we first describe the  underlying concepts of  fault  toler- 
ance at work in these multiprocessor systems.  These precepts are 
useful to  then present certain techniques that will incorporate  fault 
tolerance  integrally  into  the design. In  the second part of  the paper 
we discuss models that evaluate how yield enhancement and 
reliability  improvement may  be achieved by certain fault-tolerant 
techniques. 

I .  INTRODUCTION 

The evolution of  fifth-generation computers [44] makes it 
clear that traditional sequential computer architecture will 
soon see a striking departure, overtaken by newer architec- 
tures which use multiple processors as the state of the art. 
This particular thrust is enhanced by developments in IC 
technology [30], creating a widening gap between the tech- 
nological advances  and the architectural capabilities that 
can exploit these fully. 

As a result, much recent research  has focused on these 
new architectural innovations, especially those created by 
interconnecting  multiple processing elements (PES). One 
important class of such architectures is VLSl  systems that 
interconnect a very  large number of simple processing cells, 
all on a single chip or wafer. Concerns about fault tolerance 
in VLSI-based systems stem from the two key  factors of 
reliability and yield enhancements. Low yield i s  a problem 
of increasing significance as circuit density grows. One 
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solution suggests improvement of the manufacturing and 
testing processes, to minimize manufacturing faults. How- 
ever, this approach is not  only very costly, but also quite 
difficult  to implement, with the increasing number of  com- 
ponents  that can be placed on one chip. However, incorpo- 
rating redundancy for fault tolerance does provide a very 
practical solution  to the low yield  problem. This  has been 
demonstrated in practice for high-density memory chips 
and  should  be extended to other types of VLSl circuits. In 
general, yield may  be enhanced because the circuit can  be 
accepted, in spite of some manufacturing defects, by means 
of restructuring, as opposed to having to discard the faulty 
chip. Achieving reliable operation also  becomes  increas- 
ingly  difficult  with the growing number of interconnected 
elements and hence, the increased likelihood that faults 
can occur. 

In the design of such fault-tolerant systems, a major 
architectural consideration becomes the system intercon- 
nection. Consequently, one goal of this work is the study of 
sound fault-tolerant  network architectures that can  be well 
utilized  in a wide range of VLSI-based  systems.  Also, of 
importance are the related problems of testing,  diagnosis, 
and  reconfiguration. 

VLSl technology has many promising applications, includ- 
ing the design of special-purpose processors [7], for use as 
an interconnected array of processing cells on a single chip, 
as well as the design of supercomputers that use wafer-scale 
technology. These two factors, in conjunction, possess the 
potential  for major innovations in computer architecture. 

One  principal aspect of such architectures is  how fault 
tolerance can well be incorporated into such  systems. In- 
cluded here i s  the problem  of the placement of redundant 
cells so as to achieve the elements of  fault tolerance, yield 
enhancement, testability, and reconfigurability. 

1 1 .  FAULT TOLERANCE IN VLSl AND WSI 

Two VLSl-based areas in which important innovations are 
likely  to occur are in the wafer-scale integrated architec- 
tures, and in  the single-chip/multiprocessing element ar- 
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chitectures. The former has the potential for a major 
breakthrough with its ability to realize a complete multi- 
processing system on a single wafer. This will eliminate  the 
expensive steps required to dice the wafer into individual 
chips and bond their pads to external pins. In addition, 
internal  connections  between chips on the same wafer are 
more  reliable and have a .smaller propagation delay than 
external connections. The latter does  make it possible to 
build a high-speed processor on a single chip, designed by 
interconnecting a large number of simple PES. These archi- 
tectures already have captured the imagination of several 
computer manufacturers and researchers alike. 

As mentioned earlier, the  motivation for incorporating 
fault tolerance (redundancy) is twofold: yield enhancement 
and reliability improvement. Both are achieved by restruc- 
turing the links so as to isolate the  faulty element(s). Vari- 
ous link technologies are available now  which  allow such 
restructurability.  Included among these  are the laser-formed 
links, MOS links (tristate logic and transistors), fusible links, 
and so on. 

Restructuring capability is either static  or dynamic in 
type. Which type is selected  depends on whether restruc- 
turing  should be  performed  only once after manufacturing, 
or an unlimited number of times, as may be  required 
throughout  the operational life. 

The  issue of fault tolerance in VLSl and WSI processing 
arrays  has been  the subject of recent studies, e.g.,  [8], [IO], 
[18],  [20],  [26], [38], [a ] ,  [41]. In these publications, various 
schemes  have been proposed that introduce fault tolerance 
into  the architecture of processor  arrays.  Because fault toler- 
ance is an involved subject, completely  different schemes 
might be  cost-effective in different situations and for differ- 
ent  objective  functions. 

When evaluating  a fault-tolerance strategy for multi- 
processor systems we have to consider the following 
aspects: 

a) types of failures to be handled and their probabilities 

b) the costs  associated with failure occurrences; 
c) the applicable recovery  methods; 
d) the amount  of additional hardware needed; 
e) the system objective functions. 

Fault-tolerance strategies  can  be designed to deal with 
two distinct types of failures;  namely, production defects 
and  operational faults. In the current technology, a rela- 
tively large number  of defects is  expected when manufac- 
turing a silicon wafer. Normally, all chips with  production 
flaws are discarded leading to a low yield (expected per- 
centage of  good chips out of  a wafer). 

Operational faults (or just ”faults”) have, in comparison, 
a considerably lower  probability of occurrence, the dif- 
ference of  which may  be in orders of magnitude. Improve- 
ments in  the solid-state technology and maturity of the 
fabrication processes  have reduced the failure rate of a 
single component  within a VLSI chip. However, the ex- 
ponential increase in the component  count per VLSl chip 
has more than offset the increase in reliability  of a single 
component. Thus operational faults cannot be ignored al- 
though they have a substantially lower  probability of occur- 
rence compared to production defects. Consequently, a 
fault-tolerance strategy that enables the system to continue 

of occurrence; 

processing, even in the presence of operational faults, can 
be  beneficial. 

The two types of failures, manufacturing defects and 
operational faults, also differ in the costs  associated with 
them. Defects are tested for before the ICs  are assembled 
into a system  and, therefore, they contribute only  to the 
production costs of the ICs. In contrast, faults occur after 
the system has been assembled and is already operational. 
Hence, their impact is on the system’s operation and their 
damage might be substantial, especially in systems used for 
critical real-time applications. Clearly, a method which is 
cost-effective  for  handling defects is not necessarily cost- 
effective for  handling operational faults,  and vice versa. 

For both types of failures in VLSI, a repair operation is 
impossible  and  the best one can do is to somehow avoid 
the use of the faulty part by restructuring the system.  This 
implies that in the wafer (in the case of defects) or in the 
assembled system (in the case of faults) there are other 
operational parts which are either identical to the faulty 
one  or that can fulfill the same  tasks. 

Restructuring can  be static or dynamic. Static restructur- 
ing schemes are suitable only  to avoid the use of parts with 
production flaws. Dynamic restructuring is  required during 
the normal system operation, when faulty parts  have to be 
restructured out of the system without human intervention. 
Such a dynamic strategy might be appropriate to handle 
defects as well. Static schemes tend  to use comparatively 
less hardware but consume operator time, while dynamic 
schemes are controlled internally by the system and usually 
require extra circuitry. 

Another aspect that has to be considered when evaluat- 
ing  the effectiveness of a given fault-tolerance technique is  
the  required hardware investment. The hardware added can 
be in the form of  switching elements, (e.g., [8], [38], and 
[41]) or redundancy in processors  or communication links 
(e.g.,  [IO],  [26]). When carrying out such  an  analysis we have 
to take into account the following  two parameters: 

1) the  relative hardware complexity  of processors, com- 
munication links, and switching elements (if they 
exist); 

2) the  susceptibility to failures (manufacturing defects 
or  operational faults) of all the above-mentioned 
elements. 

Processing elements are traditionally considered the most 
important system  resource;  hence, achieving 100-percent 
utilization  of  them is many times attempted. For example, 
in [SI, [38], and [41], switching elements are added between 
processors to assist in achieving this goal. In [IO] and  [26], 
connecting tracks are added on the wafer to be  used in 
bypassing the defective PES when  connecting  the  fault-free 
ones. However,  the  silicon area that needs to be devoted to 
switching elements (e.g., switches capable of  interconnect- 
ing 4 to 8 separate parallel busses  [41]) or to additional 
communication links cannot be ignored. Consequently, such 
schemes might be beneficial only for PES which are sub- 
stantially larger than the switches and the additional links 
(e.g., [32]).  Also, the  addition  of  switching elements and 
especially the longer interconnections between active 
processors result in longer delays affecting the throughput 
of  the system.  To overcome this performance penalty, it has 
been suggested in [25] to add registers for bypassing faulty 
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processors.  The effect  of this is to introduce extra stages in 
the  pipeline thus increasing the latency of the  pipeline 
without  reducing its throughput. 

In  the above mentioned schemes, one of the underlying 
assumptions is that the extra circuitry (e.g., switching ele- 
ments, communication links, or  registers) are failure-free 
and only processors can fail. However, larger silicon areas 
devoted  to those elements increase their susceptibility to 
defects or faults; as a result, the above-mentioned assump- 
tion  might  not be  valid any more. 

In VLSI, the  silicon area devoted to a system element 
might be more important than its hardware complexity. 
Consequently, 100-percent utilization of PES is not neces- 
sarily the major objective, especially if this requires adding 
switches and/or  communication links, which consume 
silicon real  estate. In the new technology, processors will 
be the expendable components, as gates were in SSI or 
small logic networks in LSI. 

This may justify different fault-tolerance schemes which 
do  not  attempt  to achieve 100-percent utilization of  the 
fault-free processors when  the array is restructured to avoid 
the use of  faulty ones  [18]. Such  schemes, which give up the 
use of some fault-free PES upon restructuring, can  be attrac- 
tive for  operational faults (which are few  in number). Here, 
the lack of  additional hardware (switches or links) allows a 
larger number of PES to  fit  into the same chip area, thereby 
offsetting  the penalty  of  giving up the use of fault-free PES 
when restructuring. 

The reported research in this area of  fault-tolerant archi- 
tectures, although a significant beginning, is limited  in the 
following aspects: 

a) Most  of the proposed architectures have been devel- 
oped  on an ad hoc basis. No well-established criterion or 
framework yet exists for the  formulation  of these architec- 
tures. 

b) As indicated above, redundancy can  be  used for both 
yield enhancement and reliability improvement. Recently, 
development of models to evaluate how can a given re- 
dundancy be shared to achieve the best combined improve- 
ment  of  yield and performance has begun [21] but more 
extensive work is still needed. Such models could also be 
used to compare and evaluate different architectures. 

c) The testability and reconfigurability issues  have  seen 
very limited treatment. Algorithms for testing, diagnosis, 
and  reconfiguration need to be developed. 

Ill. A TAXONOMY F O R  MULTIPROCESSOR ARCHITECTURES 

Broadly, there are two types of  interconnection architec- 
tures that are of interest to VLSl processor array implemen- 
tation. The first type is the nearest neighbor interconnec- 
tion  which includes various  mesh interconnections, as 
illustrated in Fig. 1. The second type we refer to here as 
algebraic graph networks which includes networks such as 
binary n-cube, cube-connected cycles, shuffle-exchange 
graph, shift-and-replace graph networks, and group graph 
networks. Examples of the latter are illustrated in Fig. 2. Like 
the mesh connection networks, these admit efficient execu- 
tion of  certain algorithms. Also algebraic structure of some 
of these networks can  be exploited so as to realize asymp- 
totically  optimum VLSl layouts. 

In order to represent uniformly different types of such 

(c) 
Fig. 1. Mesh connected arrays. 
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Fig. 2. Algebraic graph networks. 
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architectures, using different types of processing  nodes 
(processors with internal switches and processors with ex- 
ternal switches) and different types of switches (switches 
used for routing and switches used for fault detection and 
reconfiguration),  we present the following taxonomy. Cen- 
erally, there are two types of system  nodes:  nodes  capable 
of  only  computation and nodes  capable of both  computing 
and switching for  routing. In addition, there are two types 
of switches, the conventional switches,  capable of only 
establishing connections, and fault-detecting switches, 
those  that perform the function of both fault detection and 
reconfiguration. Different types of architectures are delin- 
eated in Fig.  3. The  advantage, generally, in using external 
switches is that  the  computational space  can be  distinct 
from the communication space which, therefore, provides 
greater flexibility for emulation  of  a variety of  communica- 
tion geometries. The  disadvantage of external switches, 
though, is that they require additional hardware support 
and occupy extra VLSl  area. 

Different types of architectures are illustrated in Fig. 3. 
First,  Fig. 3(a) illustrates an architecture where the PES 
perform internally all the switching necessary to establish 
connections. Fig.  3(b)  represents  an architecture where all 
the connections are established by using external switches, 
Such differences are best illustrated by using the follow- 
ing  5-tuple representation of networks. Let N = ( f ,  s, 
Ep, E,, EP.,) denote  the  network, where P represents the 
set of PES, S denotes the set of switches, Ep denotes the set 
of direct processor-processor links, E, denotes the set of 
direct switch-switch links, and EP., denotes the set of 
processor-switch links. Different architectures can be con- 
veniently categorized into the following four types, as 
shown  below, where + represents the null set: 

Type 1 : 

( P ,  s = +, F p ,  E, = Ep-,  = +). 

This denotes the type of architecture shown in Fig.  3(a). 
Here, the array contains only processing nodes with switches 
built  in as an integral part of the processor.  The  mesh 
connections considered in [I81 is an example of such  an 
architecture. 

Type 2: 

( P ’ S ,  Fp = +, E, ,   EP. , ) .  

This denotes the type of architecture shown in Fig.  3(b) 
where all of the  configuration and communication  func- 
tions are performed by switches that are external to the 
processor. The C H I P  architecture proposed by Snyder (411 is  
an example of this type. 

Type  3: 

( f ,  s, F P ,  E, = +! EP.,). 

Fig. 3(c) delineates such  an architecture. Here, in  addition 
to the external switches,  each  processor has an internal 
switch  which sets up the connections between processors. 
The external switches are used to provide the function of 
fault  detection through disagreement detection and subse- 
quent  switching  out of the faulty processor, thus discon- 
necting  it  from the  network. 

Type 4: 

( P ,  s, E P ,   E , ,  E p - , ) .  

( 4  
Fig. 3. (a) Type 1 architecture using  internal switches. (b) 
Type 2 architecture using external  switches. (c)  Type 3 archi- 
tecture. (d) Type 4 architecture. 
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This denotes a type of architecture where all of  the 
different types of  links are used. An example of such  an 
architecture is illustrated in Fig.  3(d).  Here, a linear array of 
PES is provided  with external switch connections which can 
be configured  in four ways, as shown in Fig. qa). The 

Faulty 
P E  

(c) 

Fig. 4. (a) Different switch configurations. (b) Linear  array 
and  binary tree configurations. (c)  Bypassing the faulty PE. 

switches in such an architecture have a dual purpose. First, 
they can be used to provide multiple logical configurations 
such as binary tree in addition to the linear array; thus an 
application that requires both linear array and binary tree 
can use this architecture, as shown in Fig. qb). Secondly, 
the switches can be used to bypass the faulty elements, as 
shown  in Fig. qc) .  

As we can see,  these different categorizations encompass 
all of the different possible architectures that can  be con- 
ceived. Therefore, the above taxonomy provides a conve- 
nient framework for both the analysis of different architec- 
tures and the conceptualization  of  new architectures. 

There are two basic  ways one can introduce  fault  toler- 
ance into these arrays, the first approach would be to 
provide redundancy at  each node so that the node can  be 
reconfigured internally in the event of a fault. For example, 
consider a 9-node mesh connection  shown in Fig. 5. If we 
assume that the interconnects are highly reliable, one way 
to design this array so that it  will be fault-tolerant is to use 
two self-checking processors  at  each node, as shown in 
Fig. 6. The function of the external switch is to determine, 
in the event of a fault, which one of  the two checkers is 
indicating errors and then to switch out the appropriate 
module. 

However, i f  the interconnects cannot be  assumed to be 
reliable,  one has then to provide redundancy by designing 
an  array  larger than  the maximum size required for the 
applications. For example, consider the 4 X 4 array shown 
in Fig. 7 which is  designed to support various applications 
including  the binary tree configuration shown in Fig. &a). 

Fig. 5. A 9-node h-h-cb mesh connection. 

Fig. 6. Fault-tolerant node. 

Fig. 7. A 4 X 4 mesh connection. 

The mapping of  the binary tree onto the array is depicted in 
Fig. 8(b). In this figure, the mapped nodes of the binary tree 
are shown, along with the inactive components, which are 
shown  by dashed lines. Consider now that the active node 
6 becomes faulty. It can  be  easily  seen that the network can 
no longer admit the binary tree configuration, shown in 
Fig. &a). However, should it be possible to execute the 
same application  on a reduced binary tree (perhaps with a 
degraded performance) such as the one shown in Fig. 9, the 
application can still be supported by the faulty array, as 
demonstrated below. 

There are two different ways this can  be  achieved.  First, 
the original 4 X 4 array  can  be restructured into a smaller 
3 X 3 array, as shown in Fig. 10. This would require giving 
up  the use of some  processing  nodes by turning them into 
connecting elements (CEs) [18]. Then, any application that 
can be executed on a 3 x 3 array can  be executed on this 
new (logical) 3 X 3 array.  The  second approach would be to 
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L-J L--l 
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Fig. 8. (a) A binary tree configuration. (b) Mapping of the 
binary tree onto the mesh. 

Fig. 9. Reduced binary tree. 

map directly  the application  configuration onto the  faulty 
physical array. However, the latter approach can  be compu- 
tationally complex [9]. Thus depending on whether or  not 
such reduction is possible, the network may  or  may not  be 
fault-tolerant, with respect to this application. 

Several important concepts emerge from the above dis- 
cussion. First, a node or link can  assume  several distinct 
states.  The following shows  various possible states of  the 

CE 

CE CE 

Fig. 10. Reduced 3 X 3 array. 

node: 

Yode S t a t e  ,w</L, /----A Faul t - f ree  

Part ly   Faul ty  

Conmletely 

/-\ 
Active  Inactive 

Processing  Transmission 

Here, the processing state of the node refers to that state 
in  which  the node is  assigned to perform some useful 
computational task. 

O n  the  other hand, a node in the transmission state is 
assigned to perform only switching, so as to establish a 
path. Thus a node in this state  does not perform any 
computations, except those which may be required  for 
routing, etc. For a link though, this distinction does not 
apply. Accordingly, there are fewer states for a link, as 
shown  below: 

Suitch/Link  State  

#------\ 
Faulty 

/\ 
-- Faul t - f ree  

Active  Inactive 

The various possible state transitions are shown by the 
following  directed graph.  Here, f ,  P, T, A ,  and I denote the 
faulty, processing, transmission,  active, and inactive states, 
respectively. The arc  labels, f and ca, Tepresent the transi- 
tions caused by fault, and change of application, respec- 
tively. 
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Secondly, the various reconfiguration processes  can be 
conceptualized  through an abstraction of layers, formulated 
below: 

Let the physical layer represent the topology which de- 
scribes the interconnection structure, along with the status 
of  the nodes and links in the physical array. A node/link  in 
the physical layer  can  be either in the fault-free or faulty 
state. 

Let a n  application layer  represent that  topology which is 
required  to support a given application. Thus in this layer, 
all of the nodes are processing  nodes; the links, active links. 

Let the  logical layer represent the topology which real- 
izes a given-application layer on a given physical layer. Thus 
a node  in  this layer is either in the processing  state  or in the 
transmission state. All of the links in the logical layer are in 
the active state. 

For a given  configuration,  the above layers are related 
topologically, as shown in Fig. 11. The  nodes in the applica- 

1 Physical layer 

Logical layer 

.Application layer 

Fig. 11. Topological relationships 

tion layer are a subset of  the nodes in the corresponding 
logical layer and these  are, in turn, a subset of  the nodes in 
the physical layer. 

The following defines a set of fundamental problems of 
practical  importance: 

Problem 7: Given an application layer (a set of applica- 
tion layers) and the physical array that admits these applica- 
tion(s),  what i s  the minimum size (number of nodes, silicon 
area) of  the physical layer that can admit the application(s) 
when t or  fewer components fail? 

Problem 2: Given  the geometrical structure(s)  of  an 
application layer  (set of  application layers), how can a 
physical array be designed so that it can provide  “efficient” 
fault-tolerant realization of the application(s)? The term 
efficient may be  defined in terms of factors  such as size of 
physical array, length of communication delay between 
adjacent application nodes, ease of testing and  diagnosis, 
reconfigurability, etc. 

The above problems need to be studied in the context of 
more general and flexible use of redundancy. For  example, 
judicious use of node-level redundancy may offset the 
need  for massive redundancy at the system level. Also, 
broader use of switches as implied by Type 3 and Type 4 
architectures may yield  new system architectures-architec- 
tures that  provide more efficient utilization of redundancy. 

The above discussion is also applicable to the second 

type of networks, the algebraic networks. For  example, 
consider the shift-and-replace graph networks proposed 
recently in [39] as a candidate for VLSl  processor networks. 
Such  an 8-node network is shown in Fig. 12(a). This net- 
work is capable of  emulating various useful logical struc- 
tures such as the linear array, binary tree, shuffle, and the 
shuffle-exchange communication structures, as shown in 
Fig. 12(b). More importantly, this algebraic network can 
emulate structures such as the linear array and binary tree, 
in spite  of a fault. For example, consider the link connecting 
nodes 1 and 2 becoming faulty. In this case, the networks 
can still be restructured both as a linear array and as a 
binary tree, as shown in Fig. 13. Similarly, the network is  
also capable of emulating these  structures in spite of any 
single-node failures. 

It may  also be noted that networks such as the binary 
n-cube and the cube-connected cycles provide some inter- 
esting  fault-tolerant reconfiguration capabilities. For exam- 
ple, consider a 4-cube of 16  nodes, shown in Fig.  14(a). In 
the event of a fault, one can  degrade this to a 3-cube of 8 
nodes, as illustrated in Fig.  14(a). However, this would 
require giving  up the use of seven good nodes. Alterna- 
tively, one can partition the 4-cube into 4 subnetworks of 
2-cubes. Assuming that the  problem can  be divided into 
subproblems  that can be executed on 2-cubes, one can  use 
3 of these, as shown in Fig.  14(b).  This would necessitate 
giving  up  the use of only 3 good nodes. It is obvious that 
the fault tolerance of algebraic networks can  be studied in 
the context of VLSl  processor  arrays. 

Iv. TESTING AND RECONFIGURATION STRATEGIES 

Central to the success of any fault-tolerance scheme is 
the  formulation of effective testing and reconfiguration 
strategies. Basically, there are two different approaches to 
diagnosis and recovery: centralized and distributed. In a 
centralized procedure, one may  assume  an external unit 
which is responsible for initiating testing and reconfigura- 
tion.  In a distributed procedure, the PES themselves are 
responsible for performing  periodic testing and reconfigura- 
tion. 

The advantage of a centralized scheme  is that no ad- 
ditional hardware and software support has to be provided 
within each PE to  allow testing and reconfiguration. On the 
other hand, useful computation for the entire array  has to 
be interrupted so that testing can  be performed. Addition- 
ally, the complexity  of the circuit and the limited access 
from the external unit may not allow a centralized proce- 
dure to be used.  The  advantage of  distributed testing, on 
the other  hand, is that since  each  processor  can perform 
testing in an  asynchronous mode, the testing can  be inter- 
leaved with computation, thus not necessarily requiring a 
complete  interruption of all useful computation. Moreover, 
the  distributed testing has the potential for better fault 
coverage because of  the  proximity of the testing unit and 
the  unit under test. 

From the above discussion, it is apparent that a  distrib- 
uted procedure must strive to make the testing and recon- 
figuration task local to each node. This  way, the testing and 
reconfiguration can be made  transparent to most of  the 
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Fig. 12. (a) Shift-and-Replace  graph. (b) Emulating  logical structures on a Shift-and- 
Replace  graph. 
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Fig. 13. Emulations in the  presence of a faulty link. 

network. However, performing these tasks locally requires 
extra hardware and software support at  each node and a 
distributed procedure must try to minimize it. On the other 
hand, a  centralized procedure must attempt to minimize 
the number of tests that will be required when no faults are 
present. interruption of useful computation will be this way 
minimized. 

In the following, we present an example for a distributed 
testing procedure in which every PE tests all its immediate 
neighbors. In this way, faulty PES and faulty connections 
between PES are detected by the adjacent PES. The proce- 
dure first partitions all the PES into m disjoint testing 

1 1 1  

t 

Binary t r e e  w n h  lmk fault 

groups, T,, T,; . ., Tm-,. After this partitioning, there are m 
phases of testing, where at  phase i (0 Q i Q rn - I), the 
members of T, test all their neighbors. 

The partition is  such that 1) every PE i s  surrounded by PES 
of other groups,  and 2) no PE has two neighbors belonging 
to  the same group. These two properties guarantee that for 
every i ,  no  two members of 7; will test each other, or try 
simultaneously to test a third PE. It can  easily  be shown  that 
five (seven) groups are both necessary and sufficient for a 
partition  with the above properties in the case of a square 
array [I81 (hexagonal array  [12]).  The testing group numbers 
assigned to each PE in a square  array  and  an  hexagonal  array 
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Fig. 14. (a) A binary +cube partitioned into two 3-cubes 
with  faulty  node 9. (b) Partitioned binary 4-cube into  four 
2-cubes with faulty node 9. 

may be calculated from its array indices ( p ,  9) by ( p  + 
29) mod 5 and ( p  + 29) mod 7, respectively. 

When all the m phases of  the testing procedure have 
been completed, each and every PE knows  the status 
(faulty/not-faulty) of all its immediate neighbors and the 
corresponding  connecting links. There is no difference if 
the actual fault is in the neighboring PE proper, or in the 
link leading to  it. 

Moreover, the status of  a faulty PE or link  will be known 
only  to i ts  neighboring PES. This locally stored information 
is sufficient for a distributed  reconfiguration  algorithm (e.g., 
[18]) that will  follow the testing procedure. Thus it may  be 
seen that the above distributed testing procedure does not 
require any passing of test  results, as required in other, 
more general, distributed diagnosis algorithms (e.g.,  [22]), 
by taking advantage of  the regularity of the VLSl array. 

It may be noted that the above algorithm will also work 
with simple comparison testing. In this type of testing, 
there are no tests to be applied  from one processor to the 

other. Simply, what is required is that two neighboring 
processors, i and j ,  exchange the results of certain prede- 
termined identical  computation. In the event that there is  a 
mismatch, processor i can  assume j is faulty and processor j 
can assume i i s  faulty. 

In summary, a key feature of  the above distributed testing 
procedure is that the testing and  subsequent reconfigura- 
tion are transparent to all the nodes in the  network except 
for those that are adjacent to the faulty node. The main 
disadvantage of distributed procedures is, however, the 
extra hardware and software support that each PE must 
provide for  testing and reconfiguration. This  may  be dif- 
ficult  to accomplish in processing arrays consisting of very 
small and simple PES. 

As discussed earlier, centralized testing may  have to inter- 
rupt all  the  computations in the array.  Since it is  assumed 
that the testing is done periodically, it is desirable that the 
number  of tests and the testing time  should be minimized 
when there are no faults. The testing time should be pro- 
portionate to the number of faults; thus a fault-free array 
would require  a minimum number of tests with the number 
of tests increasing with the number of faults. In [31], a 
possible diagnosis strategy was  suggested that makes the 
testing very simple in the absence of any fault; the testing 
becomes progressively more time-consuming with the 
number of faults. Since most of the time no faults are 
present, the performance penalty due to  interruption for 
testing can be minimal. This is illustrated further below. 

In Fig. 15 possible testing graphs for a 5 * 5  end-around 
mesh (the boundary nodes are also  adjacent)  are shown. 
The darkened boxes  represent  nodes  already diagnosed as 
being faulty. The  edges with arrows indicate those com- 
munication edges included in the testing graph. The arrows 
point  from the tester to the tested unit. Algorithm SELF2 
[22] would require a graph with 75 directed edges to  di- 
agnose up to three faults. The strategy presented in [31] 
never employs more than 25 periodic tests. 

Fig. I5(a) indicates a possible initial testing graph. Since 
the end-around mesh is  node-symmetric, the first fault may 
always  be viewed as occurring in the center node;  and the 
same testing graph may then be  used after the first fault is 
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diagnosed. There must exist two adjacent fault-free rows 
(also columns) after no more than two faults have occurred. 
This ensures the graph may be viewed with the faults 
restricted to the interior, i.e., with the border intact. 

Fig. 15(b)-(f) illustrates five possible cases for  the  fault 
locations. In each  instance, the  interior is shown to include 
a Hamiltonian path. As proved in [31],  at  least one fault 
among the nodes in the loop along the border may be 
diagnosed. If all are fault-free, then the first faulty node 
along the path through  the  interior may  be diagnosed. 

Let [ a ,  /?I denote  the closed interval from a to 8. Let the 
nodes in  the mesh be represented by pairs ( a ,  b )  where 
a,  b E [1,5] with a indicating the row and b indicating the 
column. Let the first fault, without loss of generality, be at 
node (3,3). By symmetry, we need only  to consider the 
second fault  occurring at 1) (2,4), 2) (2,3), 3) (1,5), 4) 
(1,4), or 5) (1,3). These possibilities 1)-5) correspond to 
the illustrations in Fig. 15(b)-(f), respectively. Consequently, 
Fig. 15 gives testing.graphs for all unique fault patterns in 
this case.  Precise  necessary and sufficient  conditions  for 
such a  dynamic  testing  of general systems  are given in [31]. 

v .  ANALYTICAL MODELS F O R  EVALUATION OF YIELD 

A N D  PERFORMANCE 

The introduction of  fault tolerance into the architecture 
of VLSI-based multiprocessor systems  has two objectives. 
One is yield enhancement, the other is improvement of 
performance. To  achieve  these two goals, redundancy has 
to be introduced either at the basic element level or/and at 
the system level. In the latter case, redundant elements can 
be added to the original design and they will be used to 
replace defective ones after the manufacturing process  has 
been completed. Such a replacement is  done by reconfig- 
uring  the system using either a static  scheme  or a dynamic 
one. Once  this procedure is completed  the system  goes 
into  operation and it has to handle, from this point on, only 
operational faults. This  can  be done using a dynamic recon- 
figuration scheme which might  be  different from the one 
used for defects. At this point,  the fault-tolerance capacity 
of the system is used to improve its performance. First, the 
remaining redundant elements (if any)  can be  used as 
spares and then, the system is gracefully degraded. We 
conclude, therefore, that the same redundancy can  be  used 
for  both  yield enhancement and performance improve- 
ment. 

We present in this section an analytical model that en- 
ables us to consider both manufacturing defects and oper- 
ational faults. This model allows us to analyze the  effective- 
ness of a given fault-tolerance technique in increasing yield 
and improving performance, or find the tradeoff between 
the  two.  It also  enables us to compare various fault-toler- 
ance techniques, examine different system topologies, and 
determine the optimal amount of redundancy to be  added. 

To formulate such a model, an expression for the yield of 
a fault-tolerant multiprocessor chip is needed. Such expres- 
sions have been presented in [20]  and  [28]. A more general 
expression for  the yield was proposed in [21] and is pre- 
sented in what  follows. 

The yield of any  VLSl chip depends on the types of 

defects, which may occur during the manufacturing pro- 
cess, and their distribution. The majority  of fabrication 
defects can be classified as random spot defects [43] caused 
by  minute particles deposited on the wafer. Hence,  each of 
them may affect only a single element (like  a processor, 
bus, etc.) in a multiprocessor chip. 

For the statistics of the fabrication defects we can adopt 
one  of the models suggested in the literature such as 
Poisson, general negative binomial, binomial statistics, and 
others. Under proper assumptions each of these  statistics 
can be used and  the "correct" one is the one that fits the 
data best  [43]. One model which has been shown to agree 
with experimental results, is the generalized negative bi- 
nomial  distribution [42]. Its attractiveness  stems from the 
fact that it does not assume that all defects are evenly 
distributed throughout  the wafer but rather allows defects 
to cluster. The probability of having x defects on a chip for 
this  distribution is 

where x is the average number of defects per chip and a i s  
the defect  clustering parameter. A low value of a can be 
used to model severe clustering of defects on a wafer, 
while for a 4 00 we  obtain  the Poisson distribution. This 
two-parameter distribution has a mean of x and a variance 
of x(1 + x / a ) .  The  mean and variance of data obtained 
from many wafer samples are used to estimate these two 
parameters. 

For nonredundant chips, the yield is  the probability  of 
having zero defects 

Suppose now that redundancy is  added to a chip so that 
s defective elements can be tolerated (i.e., replaced by 
good spares), and denote by N the  total number of ele- 
ments (e.g.,  processors).  Then, the chip is acceptable with 
any number of manufacturing defects as long as all of  them 
are restricted to at most s elements. The yield, which is 
now  the  probability of  a chip being acceptable, is  given by 

Y = Pr {there are x defects in at most s elements}. 
m 

x = o  

(3) 

If we  denote 

oxy,) = Pr { x  defects are distributed into exactly i out 

of N elements/there are x defects} 

then 

Y = oxy) * Pr {there are x manufacturing 
m s  

x - 0  i -0 

defects in the chip}. (4) 

The last term  in the above equation is Pr { X = x }  and we 
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may substitute it by (1) or  by a similar expression for any 
other defect distribution (e.g.,  Bose-Einstein  statistics [28]). 

The probability OXN) is given by 

where ( k , ,  - y, - ;) is the multinomial coefficient. 
In the previous discussion we have  assumed that only 

one type of elements can  have defects. If two types of 
elements (e.g.,  processors and communication busses)  can 
have defects, then the probability  of having x, defects in 
type 1 elements and x, defects in type 2 elements is 

P r { X ,   = x , , X 2 = x 2 }  = P r { X ,  = x 7 } * P r { X 2 = x , }  (6) 

since the  probabilities of defects in different types of ele- 
ments are independent [43]. 

Suppose now that s, defective elements of type 1 and s, 
defective elements of type 2, out  of N, and N, elements, 
respectively, can  be tolerated. Then, the yield is given by 

*Pr { X, = x,,  X, = x , } .  (7) 

s,  and s2  are not necessarily independent; for example, if 
less than s, elements of type 1 are defective we may be 
able to tolerate more than s2 defective elements of type 2. 
Equation (7) will have in this case to be  changed accord- 
ingly. 

Equation (7) as well as (4) can be multiplied by a “bypass 
coverage probability” [28]. This is  the conditional  probabil- 
ity that an element can  be  bypassed given that it is faulty. 
By adding this probability one may consider less than per- 
fect procedures for locating faulty elements and reconfigur- 
ing  them  out of the system. 

In  the  following we adopt the commonly used  assump- 
tion that only one type of elements can fail (usually, the 
more  complex  one, e.g., the processors).  The  general case 
in  which all system elements can  have defects in them, can 
be analyzed based on expressions similar to (7). 

To tolerate s defective elements, at  least s redundant 
ones are needed. However, the exact amount of required 
redundancy depends upon the specific static  or dynamic 
reconfiguration scheme  used.  This, in turn, determines the 
increase in  chip area which must be taken into account 
when calculating the yield, since a larger number of defects 
is expected now. 

Let ys denote  the increase in  chip area (due to the 
addition of redundancy) needed to tolerate these s faulty 
elements. The factor ys is called the redundancy  factor [20] 
and it depends on the system topology and the reconfigura- 
tion strategy. To take into account the increased number of 
expected defects, we have to substitute x (the average 
number of defects per chip) by y,x in (1). 

In  addition, any  increase in  chip area will reduce the 
number of chips that will fit into the same wafer. Hence, 
instead of calculating the yield which is the  probability that 
a single chip i s  acceptable, one has to calculate the expected 
number  of acceptable chips out of a given wafer. This 

expression, called equivalent yield in [20], is obtained  from 
(4) after dividing  it by y,. By comparing the equivalent yield 
of  the fault-tolerant chip and the yield  of the simplex one, 
we can determine whether it is beneficial, when  yield is 
considered, to have built-in fault tolerance and how many 
redundant elements should be added. This comparison can 
be  done  for various topologies of multiprocessors and dif- 
ferent  reconfiguration algorithms. 

An analysis along these lines has been done in [28] and 
[20]. In  both, it has been observed that the improvement in 
yield saturates above some amount of redundancy. This 
indicates  that there is an optimal amount of redundancy 
that should be added. 

Chips having s or less defects will be accepted and then 
reconfigured to avoid the use of  the defective elements. If 
the number  of defects is less than s, the  chip has  some 
“residual” redundancy which can then be  used for perfor- 
mance enhancement, i.e., handle operational faults which 
occur during  the  lifetime of the system.  Even chips in  which 
no redundant elements are left  when leaving the manufac- 
turing site (i.e., there were originally s defects in the chip), 
can still benefit  from the fault-tolerance capability. 

To evaluate the effectiveness of the “residual” re- 
dundancy and the fault-tolerance capacity of the chip we 
have to select some performance measures and we need a 
model that will  allow us to calculate these  measures. A 
natural  choice  for this purpose is a Markov model like the 
one employed  in [20] and [6]. 

Suppose first that the same reconfiguration scheme is 
used to avoid both manufacturing defects and operational 
faults. This assumption implies that a dynamic scheme is 
employed since no static  scheme  can be used while the 
system is in operation. The  suggested Markov model for 
this case  is depicted in Fig.  16, where ( F )  i s  the system 
failure state and ( j )  i s  a state  at which the system is 
operational in the presence of j faulty elements. A transi- 

h 

Fig. 16. A Markov model for a multiprocessor with defects 
and operational faults. 

tion  from state ( j )  to state ( F )  takes  place when an  ad- 
ditional node becomes faulty and the system fails to re- 
cover from its  effect. The corresponding transition rate is 
denoted by a:. Similarly, a$+’ is the transition rate from 
state ( j )  to state ( j  + 1). These transition rates depend upon 
the failure rates of the system’s elements and the coverage 
probability [20]. 

State (0) in Fig. 16 is the initial state of the system if no 
defects occurred while the chip has been manufactured. If 
there were i defective elements (0 < i < s) then ( i )  would 
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be  the  initial state. Let a, denote the  probability  of this 
event [21] 

m 
a , =  O ( , N j * p r { ~ = x ) .  (8) 

x - 0  

Using a, we can calculate the yield as 
5 

Y = a ; .  ( 9) 
i -0 

State (s + rn) in Fig. 16 is a terminal state [20] (i.e., a state 
from  which the only transition possible is to the system 
failure state (F)), where m is the largest number of  faulty 
elements that  the system  can tolerate if no redundant 
elements were left when the system went into operation. 

Let 

?( t )  = Pr {the system is in state ( j )  at time t /  

the system  was initially  in state ( i ) }  

w h e r e i = O , l ; ~ ~ , s ; j = i , i + 1 , ~ ~ ~ , s + m , w i t h f ( O ) = 1  
and q'(0) = 0 for j > i. 

The Markov model in Fig. 16 is described then by the 
following  differential equations: 

de;( r )  
dt 

-- - -.,si( t )  

where j =  i +  l , i +   2 ; . . , s +  m and 

a. = + ai+l. 
/ / I  

The solution of (IO) and (11) under the condition 

ai + a,, for all ( k )  + ( j )  

which is satisfied in most practical cases, is 

and 

f (  t )  = e-"l'. 

For the Markov model shown in Fig. 16 we can calculate 
several performance measures  such as reliability,  perform- 
ability,  computational availability, and area utilization [20]. 
Let R,( t )  (0 < i < s) denote the reliability  of a system (i.e., 
the  probability that it operates correctly in the time interval 
[0, t ] )  which had i defects during the manufacturing pro- 
cess.  This reliability can  be calculated from the above 
Markov  model as follows: 

s+ rn 

R,( t )  = ?;( t ) .  (1 4) 
j -  i 

We may then define and compute 

1 '  
R(  t )  = - a,R,( t )  (15) 

as the average reliability  of a system having s or less defects 
when manufactured. This  average reliability can then be 
compared to R,( t )  which is  the reliability  of a system with 
no redundancy left from the manufacturing step. If we set 

y i -0 

s = 0 then R,(t)  is the reliability  of  the system i f  only 
perfect chips (with  no defects) are accepted. 

Similarly, we can define and calculate the  computational 
availability A:( t )  (the expected available computational 
capacity) and area utilization measure U,( t). The latter takes 
into account the  additional area needed when fault toler- 
ance is introduced  into the system,  and is defined in the 
following way: 

.U,( t )  = 
computational availability A;( t )  

chip area  increase ys 

The expression for the above introduced  computational 
availability measure is 

s+ rn 

A:( t )  = ciq( t )  (1 6) 
j - i  

where ci is the computational capacity of  the system in 
state ( j )  [20], expressed, for example, in instructions per 
time unit. The computational capacity depends mainly on 
the number  of processors available for computation in state 
( j ) .  This number is at most N - j processors (where N is 
the  number  of processors in the fault-free system), and is 
determined  by  the reconfiguration strategy. In addition, ci 
depends on  the current system structure and application 
since not all processors are utilized  in every possible struc- 
ture  or application. 

Other performance measures, like mean time to failure, 
can also  be calculated. For example, let T, denote the mean 
time  to failure of a system which was initially  in state i ,  
then 

m 

= 1 R , (  t )  dt. (1 7) 
0 

The average mean time to failure can be defined similarly 
to (15). 

This model can be extended in  two directions in order to 
make it  more general and more practical. One is to include 
two or more types of system elements that can fail (during 
manufacturing or later on) like communication busses, 
switches, etc. The  second one is to  allow the use of one 
reconfiguration scheme to handle defects and a different 
one  to handle operational faults. Manufacturing defects can 
be effectively  handled using static schemes like "laser pro- 
gramming"  or electrically fusible links, while operational 
faults are best handled by some dynamic reconfiguration 
scheme. A static scheme for defects requires less silicon 
area on one  hand but consumes operator time on the other. 
A more general Markov  model with  two different recon- 
figuration schemes will enable us to analyze the effective- 
ness of various such  schemes. 

Using  the  method presented in [20] one can derive 
closed-form expressions for the state probabilities and com- 
pute the yield and various performance measures for differ- 
ent architectures. 

VI. CONCLUSIONS 

Fault-tolerant architectures that use redundancy for yield 
and  performance improvement have been considered. We 
have presented a unified framework through which existing 
architectures incorporating fault tolerance can be  analyzed 
and new ones suggested. 
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Several problems related to testing and reconfiguration  of 
these arrays have been described. Both the distributed and 
centralized modes of testing have been considered. 

The last part  of  the paper is devoted to the presentation 
of analytical models for the evaluation of  reliability and 
yield  improvement through redundancy. The available re- 
dundancy on  the  chip or wafer is primarily limited by the 
size of the  chip or wafer,  hence, it is imperative to  find a 
method  by  which one can optimally share the available 
redundancy between yield enhancement and performance 
improvement. The models discussed  can  be  used to study 
the effect of sharing available redundancy between these 
two somewhat competing requirements. 
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