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variety of topologies and
architectural designs of proces-
sor arrays have recently been

proposed, and many computational
algorithms for these arrays have been
devised.! These include globally syn-
chronous systolic arrays and globally asyn-
chronous wavefront :«‘lrrays.z‘3 Most
existing algorithms for these arrays were
developed for problems with inherent
regularity, like vector and matrix opera-
tions, signal and image processing, pattern
recognition, and some nonnumeric (such
as sorting and language recognition) appli-
cations. These computations proceed in
the processor array in a predetermined
manner and achieve high performance
through parallelism and pipelining.

In systolic arrays, all operations are syn-
chronized by a global clock. This global
synchronization ensures that all operands
that have to be processed by every process-
ing element in each computational step
arrive at every PE simultaneously. Global
synchronization greatly simplifies the
internal control of the PE’s operations.
However, this simplification is achieved at
the cost of a possible slowdown in the
throughput of the entire array.’ The
period of the global clock has to be large
enough to accommodate the slowest local
operation (especially when the execution
time is data dependent) and any clock
skews. The latter may result in a slowdown
if large arrays of PEs have to be syn-
chronized or if fault-tolerance through
reconfiguration is introduced into the
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Control-driven arrays
like systolic arrays
provide high levels of
parallelism and
pipelining for
inherently regular
computations. Data-
driven arrays can
provide the same for
algorithms with no
internal regularity.

array, since varied path length and, con-
sequently, varied propagation delays have
to be taken into account.’

Wavefront arrays are asynchronous
arrays that substitute the requirement of
correct timing with that of correct
sequencing. Logically, the computation
front in these arrays advances exactly as it

*Silberman is currently at Carnegie Mellon University,
on leave from the Technion.
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does in systolic arrays, the difference being
that the speed of propagation is not neces-
sarily uniform across the front. This
allows for differences in the timing of the
operations being executed, either because
some of them are inherently faster (for
example, addition versus multiplication)
or due to dependencies on the data (for
example, multiplication by zero is faster).

Both systolic arrays and wavefront
arrays have a computation front that
propagates according to a predetermined
fixed (that is, data-independent) sequence.
Consequently, these arrays prove to be
very effective for executing highly regular
algorithms. Methods for mapping
algorithms with inherent regularity onto
these arrays have appeared in recent pub-
lications (see, for example, Computer,
Vol. 20, No. 7).

Many computationally demanding
problems do not exhibit high regularity
and, therefore, are unsuitable for these
arrays. Still, many of these problems have
an inherent parallelism, and it should be
possible to exploit this parallelism through
processor arrays that can also provide a
high degree of pipelining.

To this end we suggest the design of spe-
cialized processing array architectures,
capable of executing any given arbitrary
algorithm. We adopt the approach pro-
posed by Koren and Silberman,* where
the algorithm is first represented in the
form of a dataflow graph and then
mapped onto the specialized processor
array. The processors in this array will exe-
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cute the operations included in the cor-
responding nodes (or subsets of nodes) of
the dataflow graph, while regular inter-
connections of these elements will serve as
edges of the graph.

Figure 1 shows a dataflow graph
representing the computation of the two
coefficients A and Bin the solution Y(f) =
A cos wt + Bsin wr of a spring-mass sys-
tem with an external force F(f) = F; cos
wt. These coefficients are computed from

k — Mw?
A=F,
(tk — Mw?)* + w'c?
and
B=F, e

(k — Mw?)* + wic?

where k, M, and c are given parameters.

Figure 2 depicts a possible mapping of
the graph in Figure 1 onto a regular proces-
sor array. The hexagonal topology of the
array serves only as an example of aregu-
lar structure. The dataflow graph repre-
sentation enables the exploitation of
concurrency at the lowest possible level by
treating each instruction as an independent
activity. In this way, ‘‘fine-grain
parallelism"5 can be achieved. For exam-
ple, the products wc and w? in Figure 2
can be calculated simultaneously.

When an arbitrary algorithm executes
on an array, in general no regular propa-
gation of computational fronts takes
place. Hence, to speed up the execution of
arbitrary algorithms, we need a more flex-
ible array. Such an array will allow the
generation of new computation fronts and
their cancellation at a later time depend-
ing on the arriving data operands. We call
these arrays, therefore, data-driven arrays.

In these processor arrays, not all cells
(processing elements) will perform exactly
the same set of operations. As aresult, the
operation time of different cells in the
array may differ substantially, and subse-
quent cells may receive their operands in
an arbitrary order. Therefore, the cell
should be capable of testing for the pres-
ence of its operands and execute only the
instructions for which all the necessary
operands have arrived. Thus, the order in
which instructions are executed in a cell is
data-dependent. We call such a cell a data-
driven processing element. (Notice that
wavefront arrays are also data-driven, in
the sense that operations proceed as soon
as operands become available. Neverthe-
less, these arrays are limited to map acy-
clic dataflow graphs, and their
computational fronts are fixed and data-
independent.)
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Figure 1. A dataflow graph.
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Figure 2. The mapping of the graph in Figure 1 onto a hexagonally connected array.
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Figure 3. The floor plan of the processor array chip.

A key feature of our approach, then, is
that it allows any arbitrary algorithm,
expressed in a dataflow programming lan-
guage (such as VAL®, or Value-oriented
Algorithmic Language), to be executed in
a data-driven processor array that can pro-
vide high levels of concurrency and
pipelining. The mapping of the algorithm
is changeable, enabling the user to map
various dataflow graphs (algorithms) onto
the same array. Such a property increases
the number of applications of the array,
making it more appealing to the semicon-
ductor industry and to users, alike. Also,
programmable arrays admit simple fault-
tolerance, since the dynamic and restruc-
turable mapping of dataflow graphs will
permit avoiding faulty processors and
communication links, using any of the
possible reconfiguration techniques.’

The programmability and reconfigura-
bility features of the data-driven processor
array somewhat resemble those of the
Configurable, Highly Parallel Computer,
or CHiP, array,® where a programmable
interconnection structure is integrated
with an array of processing elements. The
user can program this interconnection
structure to best suit a specific application.

The mapping of the application onto the
CHIP array is performed differently, how-
ever. The mapping in our case is an auto-
matic process, while the user must
hand-tailor the CHiP array to each specific
algorithm. (Support for this task is
provided in the form of the Poker Pro-
gramming Environment.)

Before an algorithm is mapped onto the
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data-driven array, it is translated into a
dataflow graph. See the next section for a
brief outline of the concept of dataflow
graphs. We then describe in detail the prin-
ciples of the design of a data-driven array.
Finally, we present an algorithm for map-
ping a given dataflow graph onto the
array. This mapping is independent of the
capabilities of each data-driven cell in the
processor array. In other words, each node
in the dataflow graph is mapped onto a
processor in the array, regardless of the
node’s function. The translation process,
from a program in VAL to a dataflow
graph, makes each node in the graph
match the processing capabilities of an ele-
ment in the array.’

The dataflow concept

In most computation systems, execution
of a program is performed according to its
control flow. The program executes
sequentially according to the order speci-
fied in the program. Even if the program
is written in a concurrent programming
language (such as CSP or Ada), the pro-
grammer has to identify the potential for
parallelism in the algorithm. Furthermore,
those segments explicitly identified as par-
allel are each executed in a control flow
fashion, usually during execution of the
concurrent program.

The dataflow approach to program-
ming attempts to exploit the parallelism
inherent in each algorithm, without requir-
ing the programmer to indicate it explicitly

in the program. In this approach, a pro-
gram is written in a side-effect-free lan-
guage (such as VAL®) and translated into
adataflow graph, or DFG. Dataflow pro-
gram graphs explicitly represent the data
dependencies within a program and, in so
doing, identify program operations that
may be executed independently {that is,
implicit parallelism).

We can view a dataflow program graph
formally as a directed graph whose nodes
are operators and whose arcs represent
data paths. ‘‘Execution’’ of a DFG occurs
astokens ‘‘flow’’ along the arcs, into and
out of nodes, according to a set of firing
rules. These firing rules specify that a node
may fire whenever tokens are present on
each of its input arcs and no token is pres-
ent on any of its output arcs. Such nodes
may fire in any order, and two or more
nodes can fire concurrently. When a node
fires, tokens are removed from each of its
input arcs, the function represented by the
node is computed using the absorbed data
values, and the result is output as a token
on the node’s output arc(s).

Several authors have noted the advan-
tages of using the dataflow approach to
programming. (For a comprehensive
review on the subject, refer to Dennis’
and Khavi, Buckles, and Bhat.'”) The
main advantage is the ‘‘natural’’ parallel-
ism. That is, we do not need special anal-
ysis of the algorithm, looking for portions
of it that can be executed in parallel, prior
to writing the program.

Clearly, the parallelism in a dataflow
program can be affected by the way in
which the program is written. The
sequence of node firing depends only on
data dependencies, thus the level of con-
currency can be automatically detected by
a compiler and expressed as a DFG.

In addition to exploiting parallelism,
dataflow provides the potential for further
algorithm acceleration by pipelining.
When a node has fired and the result(s)
from its operation are consumed, the node
is ready to receive new data and carry out
its function, even though overall process-
ing of the previous cycle’s data may not
have finished.

Processor array
architecture and
principles of operation
The feasibility of designing control-
driven processor arrays was never in ques-

tion; several processing elements for these
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arrays have already been designed (for
example, see Fisher et al.”). However, the
degree of hardware complexity required to
add the data-driven property was not clear
to us. Therefore, we made a preliminary
design of a low-hardware-complexity
data-driven element. The result of this
design is very encouraging. The total hard-
ware complexity of the cell (presented
next) is less than 9,000 transistors in n-type
metal-oxide-semiconductor technology.
This low complexity should make possible
the fabrication of a very-large-scale-
integration chip containing about 50 to 100
cells. Several such chips can then be put
together to form a larger processor array.

The first phase of the design has already
been completed and is reported by
Peled.!" The final steps of the detailed
design and layout of the VLSI chip are
now being carried out.

The proposed floor plan of the chip is
shown in Figure 3. It contains data-driven
cells (all identical, including the boundary
ones) arranged in rows such that the typi-
cal cell has six immediate neighbors in a
hexagonally connected processor array.
The high degree of connectivity of the hex-
agonal topology simplifies the task of
embedding various graph structures.
However, the hexagonal topology serves
here only as an example; it has little impact
on the principles of the design.

The cells communicate with an external
host computer through communication
buses that run between an odd-numbered
row and the subsequent even-numbered
one. The individual cells’ programs are
prepared in this host computer and then
distributed to the cells. The host also sup-
plies the necessary input operands and
accumulates the final results.

In control-driven processor arrays, the
host-to-array communication can in most
cases be conveniently restricted to pass
through the boundary cells. In data-driven
arrays, the elements that are expected to
either receive input operands or transmit
final results may be distributed through-
out the array.

Here, the host to array communication,
if limited to the boundary cells, can sub-
stantially slow down the array operation.
This is unacceptable in a data-driven cell,
so provision is made for each cell to com-
municate directly with the host through the
communication buses shown in Figure 3.
The internal communication among cells
does not use these buses. Instead, each cell
communicates directly and in paralle! with
its six neighbors through dedicated
registers.
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Figure 4. Functional blocks in the data-driven cell.

The width of the communication bus
determines the maximum number of cells
per row. In the current design the width of
the bus is 10 bits, out of which 7 are used
for addressing purposes yielding 128
different addresses (that is, at most 64 cells
per row). The maximum number of rows
is determined by N—the number of pack-
age pins. After subtracting from N at least
10 (for clock signals, ground, and V),
we divide the result by 10 (the width of the
bus) and then multiply by two. Currently,
packages with N = 244 pins are available,
yielding a maximum of 45 rows. Theoret-
ically, the design presented here can yield
a total of 64 x 45 = 2,880 cells.

However, we cannot yet achieve the
upper limit of 2,880 cells per chip because
of the limited number of transistors pos-
sible on a single chip. For a maximum of
500,000 transistors per chip, the chip can
include only 50 cells (based on the detailed
design of the cell, which requires less than
9,000 transistors). A density of 1 million

transistors per chip is exp ected in the near
future, yielding almost 100 cells on a chip.
These cells can be arranged in various
ways, like 10x 10, [1 x4, and so on.

Structure of a basic cell

The cell as designed ¢perates on 8-bit
operands. All internal registers and buses
are 8 bits wide. Still, two or more cells can
participate in a single (aiithmetic) opera-
tion enabling the executicn of 16- or 32-bit
operations. All ce Is—identically
designed—difter only in :heir ID number.
Each cell has an identifying address that is
unique within the pair o “rows connected
to the same bus (see Figare 3).

The functional blocks composing the
basic cell are depicted n Figure 4. The
communication control block contains the
control logic and bus ir terface for com-
municating with the hest computer, for
such functions as loading the instruction
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memory and receiving and transmitting
data operands. This block has a total com-
plexity of about 150 transistors.

Six 8-bit registers, R 1 through R 6 (with
atotal complexity of 400 transistors), are
positioned in the periphery of the cell.
These registers connect to a common inter-
nal bus through which data can be trans-
ferred from one register to the other and
from a register to the execution unit and
vice versa. A register can also be loaded (or
unloaded) through the internal bus with an
operand provided by the host. In addition,
each of the six registers connects directly
to the corresponding register in one of the
six neighboring cells (refer to Figure 4).

The carry-in and carry-out bits are also
transferred through these registers, to
allow operations on multibyte (that is,
16-bit or more) data. This implies that no
other data can be transferred in parallel
between cells with a carry connection. We
could not justify the extra control logic
required to support separate carry lines
between any two adjacent cells, especially
since no data (other than the carry bit) has
to be transferred between cells participat-
ing in a multibyte operation. There is,
however, a side benefit to this: since the
carry-in from another cell is just another
datum, it can be treated as a Boolean oper-
and (as for testing some condition) instead
of an arithmetic carry bit.

The transfer of data between the host
and any of the six registers is under pro-
gram control, while the transfer of data
between a register and the corresponding
register in the adjacent cell is under hard-
ware control. The latter is a frequent oper-
ation, and its execution time is crucial. In
our design, this transfer takes a single
clock cycle and is done in parallel to all
other operations in the cell.

The instruction memory consumes
about 1,150 transistors and contains
instructions that specify the operations the
cell has to perform on operands it receives.
These instructions are loaded from the
host computer before the array’s opera-
tion is started.

The flag array is a uniquely designed
block that controls the data-driven oper-
ation of the cell. The instructions in the cell
are not executed in any predetermined
order. Instead, the arrival of all operands
for a certain instruction enables the execu-
tion of that instruction. The flags monitor
the movement of data operands internally,
as well as in and out of the cell. For each
register, a flag indicates whether the reg-
ister has an operand or is empty and can

34

receive a new operand. The flag array
block (whose design is detailed in a later
section) requires about 350 transistors.

The microprogram control unit is the
largest block in the cell. It requires about
4,500 transistors. This unit translates the
cell instructions stored in the instruction
memory into sequences of control signals
that execute these instructions. In the cur-
rent design, most instructions take
between two to eight clock cycles to exe-
cute. The execution of instructions can
speed up if more parallelism is introduced
into the microprogram, although this will
increase the hardware complexity of the
unit.

Finally, the execution unit, with a total
complexity of 1,000 transistors, contains
a 16-bit shift register and an arithmetic unit
capable of executing all common Boolean
and arithmetic operations, including mul-
tiplication and division (for which sequen-
tial algorithms are employed). The
operands for the arithmetic operations can
be either positive operands or negative
ones represented in 2’s complement. Carry
bits are generated and used whenever
applicable to allow multibyte operations.

Programming the
basic cell

One of the most important design deci-
sions is the determination of the maximum
complexity of the program each cell can
execute. We can identify two alternatives:

(1) Oneor two operationsinevery cell.

(2) A separateinstruction for each reg-

ister (out of the six data registers in
the cell).

In the first alternative, the design of the
cell is simpler and its operation is faster.
However, the overall utilization of the cell
is very low. This results in the need for
large arrays for even the simplest compu-
tations. The larger array required may
decrease the throughput even though each
individual cell operates at a higher speed.

The second alternative achieves the
highest level of cell utilization, since each
register has a separate instruction. Theo-
retically, we can have six different cell
operations. In practice, however, we will
have only two to four operations in a cell,
since many operations involve more than
a single register.

This alternative may also lead to a lower
overall execution time. For example, the
fact that a single variable can be an oper-
and for several operations within the same

cell eliminates the need for generating
several copies of that variable and dis-
tributing them to other cells.

It may appear that the amount of hard-
ware needed in this case is substantially
higher than that needed for the first alter-
native, yet after completing detailed
designs of both alternatives we have con-
cluded that the second alternative requires
less hardware. Also, as shown below, a
data-driven element capable of perform-
ing up to six operations yields a more effec-
tive mapping process.

In view of the above, we selected the sec-
ond alternative for implementation.

The instruction format. We defined
about 108 instructions, most of them simi-
lar to those found in any ordinary 8-bit
microprocessor. These instructions
include

(1) Boolean instructions like AND,

OR, and XOR.

(2) Arithmetic instructions like addi-
tion and subtraction in 2’s comple-
ment, and 8-bit multiplication and
division. An arithmetic operation
may have an input carry and/or
generate an output carry.

Shift instructions for 8- and 16-bit
shift operations with or without
carry-in and -out.
(4) 1/Oinstructions to control commu-
nication with the host.
(5) Flow control instructions, like
Route an operand into one of two
output paths according to the value
of a Boolean control operand.*
Cell initialization instructions
indicating which registers will hold
the carry-in, the carry-out, and the
eight most significant bits in oper-
ations with 16-bit results.

@3

=

6

=

A few instructions have up to six oper-
ands. For exaniple, a shift operation (with
carry-in and carry-out) that operates on a
double word (16 bits) has three input oper-
ands and three output operands. Most
instructions, however, have a substantially
smaller number of operands. The com-
monly used solution of variable-length
instructions must unfortunately be
rejected here. In contrast to a control-
driven PE, the data-driven cell does not
execute its instructions sequentially.
Whenever a new operand arrives, the cell
has to look for instructions that need this
operand and test whether they already
have all their operands. If the instructions
do not start in known positions (in the
memory), the search operation becomes
considerably more complex and time con-
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suming. To prevent a lengthy search and
simplify the test for ready-to-execute
instructions, the instructions should be of
fixed length and the operand fields within
the instruction should be in fixed
positions.

We therefore propose the instruction
format shown in Figure 5. The leftmost
nine bits constitute the operation-code
field and the rightmost six bits, the oper-
and field. The latter indicate only which
registers hold the input operands. LRi=1
(i=1,2,...,6)if theregister Riisaninput
operand. Up to three bits out of the six
may equal 1 in operations with carry-in.

We included no output operands in the
instruction format. As mentioned above,
the six instructions correspond to the six
dataregisters in the cell such that Riis the
destination of the final result for the ith
instruction (i=1, 2, ..., 6). Also, we
assigned no instruction bits to specify
which registers hold (whenever applicable)
the carry-out and the eight additional bits
in operations with a 16-bit result. Instead,
we added special instructions to the
instruction set invoked during cell initial-
ization to indicate which registers are used
for these purposes.

The implication of this design decision
is that a cell can have at most one instruc-
tion generating a carry-out and at most one
instruction with a 16-bit result. This limi-
tation is reasonable in view of the reduced
instruction size and simplified control
logic.

A similar cell initialization instruction
indicates which register is used for the
carry-in, allowing the cell to distinguish
between the register holding the carry-in
and the two registers holding the input
operands, in case three LRi bits are on.

The above scheme is appropriate for
commutative operations. However, for
noncommutative operations like subtrac-
tion and division, we have to specify which
of the two operands (not including the
carry-in) is first. For this purpose we use
the Frst bit; if this bit is 0, the first (right-
most) register in the instruction holds the
first operand; otherwise, the second reg-
ister holds the first operand.

The most significant bit in the op-code
field is the Act, or active, bit. This bit
always equals 1 except in the cell initiali-
zation instructions, which are executed
only once when first loaded and are
ignored from that point on. The Cin and
Cout bits indicate whether the instruction
needs a carry-in and/or generates a carry-
out, respectively.
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Figure 5. Proposed instruction format.

Detailed design of
selected blocks

In this section, we present some design
details of two selected blocks. We designed
the other blocks in the cell in a straightfor-
ward manner and do not detail their design
principles here.

Instruction memory. The instruction
memory consists of a 13-byte memory, an
address counter and three registers that
hold the numbers of the data registers con-
taining the input carry, the output carry,
and the eight additional bits generated in
operations with 16-bit results.

The 13 bytes in the instruction memory
contain six instructions, each two bytes in
length. The 13th byte has only six
meaningful bits (corresponding to the six
data registers). Bit j in this byte is 1 if the
contents of Rj have to be transferred to the
corresponding register (whose index is
1+ (j+2)mod 6) in the neighboring cell
(see Figure 4). Each bit in this byte has to
be accessed separately by the hardware.

The address counter of the instruction
memory has two modes of operation,
instruction loading mode and execution
mode. In the first mode, all 13 addresses
have to be generated; in the second mode,
only six addresses have to be accessed.
Instead of implementing the address
counter as an ordinary binary counter, we
used a shift register. This implementation
requires 24 additional transistors, but it
allows the counter to skip addresses that
do not contain executable instructions,
considerably improving the performance
of the cell.

Consider, for example, a cell having a
single executable instruction. The use of an
ordinary counter will result in a five-cycle
delay before reexecution (of the same
instruction) on a new set of operands can

start. The designed cour ter (based on a
shift register) enables imraediate reexecu-
tion of the same instruct:on if new oper-
ands are available.

Flag array. The flag array controls the
data-driven operation cf the cell. The
exact status of the six datu registers is kept
in this array. Throughit, the cell can check
whether a data register is empty and can be
reloaded, or whether all the operands for
a certain operation have arrived. The flag
array contains only the dynamic flags that
change during the executinn of the instruc-
tions. The instruction r emory contains
the static flags (the LR 1 through LR 6 bits)
that indicate which data registers are the
operands for the given operations.

The dynamic flags are «rranged in seven
rows and six columns. The first six rows
are identically designed and correspond to
the six instructions that the cell executes.
The six columns correspond to the six data
registers. The arrival of ¢ new operand in
Rj enables the setting of ¢ Il the flags in the
jth column. The set signalis ANDed with
the static flags for R/ in all six instructions.
Thus, the number of 1’s in column j equals
the number of operations for which Rj is
an operand.

The dynamic flags arz reset by rows.
Whenever the execution of instruction /
completes, the dynamic flags in row / are
reset. When all flags in column j are reset,
register Rjis empty (its ct rrent value is not
needed any more) and is ready to receive
new data.

The seventh row in the flag array differs
from the first six. The dyramic flags in row
7 correspond to the static flags in byte 13
of the instruction memor. If dynamic flag
jin the seventh row is set, it indicates that
the data in R/ is ready for transfer to the
proper register in the neighboring cell.
Since the transfer of dati is controlled by
hardware (and not the microprogram),
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(a) foralliin [1,n]
x: =if (i/2)*2 =i then x
eval plus (x*1)/(i + 1);
plus x;

min x
endall

(b) !

Figure 6. A program in VAL (a); its translation to a dataflow graph (b).

each flag in row 7 is tested and reset
separately by hardware.

Before executing an instruction, the cell
verifies that the dynamic flags (of the input
registers) in the row of the current instruc-
tion equal the corresponding static flags,
and that the flag of the output register and
the carry-out register (if applicable) are
reset (indicating that the registers are
empty). If all these conditions are satisfied,
the execution starts.

A single cycle suffices to test whether an
instruction is ready for execution. The flag
of the output register is also tested to pre-
vent a possible deadlock. Suppose that,
after the execution starts, it is found that
the output register is not empty because
another instruction still needs its value as
aninput operand. The current instruction
cannot then proceed, and the other
instruction (which would empty the output
register) cannot start.
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Large arrays

The chosen design allows the implemen-
tation of more than 50 basic cells on a sin-
gle chip. If we require a larger number of
cells, we can connect several of these chips
to the same host computer. Alternatively,
we can make this connection through a
control unit, which can reduce the over-
head of the host and speed up the opera-
tion of the array. This control unit can be
either a commercially available microcon-
troller like Intel’s 8051 or a special-purpose
design.

We decided on the latter, mainly
because it can speed up interchip commu-
nication. Internally, the cells communicate
directly with each other. However,
because of the shortage of I/O pins, such
direct communication is not possible
between cells in different chips. Therefore,
this communication has to take place

through either the external host or, prefer-
ably, through a specially designed control
unit. We plan to design such a control unit
in the near future.

The interchip communication may still
overload the external controller. Conse-
quently, the algorithm to be mapped onto
the array has to be partitioned so as to min-
imize interchip communication.

The mapping process

In this section, we present and analyze
a scheme for mapping a dataflow graph
(program) onto a hexagonally connected
PE array (first proposed by Mendelson
and Silberman®).

The process of mapping a dataflow pro-
gram onto a hexagonal array of processors
consists of four phases. For the sake of
modularity, we keep these phases as sep-
arate stages in the mapping process. This
allows experimentation with various
algorithms for each phase, as well as easy
integration of changes driven by develop-
ments in technology. The four stages in the
mapping process are

Stage 1: DF-program translation
Stage 2: DFG mapping onto array
Stage 3: Array partitioning

Stage 4: Task-to-PE assignment

The first stage in the mapping process is
the translation of a dataflow program,
written in a subset of VAL, to a dataflow
graph. This subset excludes all dynamic
data structures (such as heaps, stacks,
multiple-field records) that require a cen-
tral memory facility and their related lan-
guage constructs (such as bound
checking). This stage is general and does
not depend on the specific architecture of
the processor array.

The language VAL was developed to
express algorithms for execution on com-
puters with a high level of parallelism,
more specifically, data-driven machines.
As such, the language is free from side
effects.

The translator that implements the first
stage in the mapping process was built in
a conventional fashion, by utilizing the
Unix tools Lex (for Lexical Analyzer
Generator) and YACC (for Yet Another
Compiler Compiler). Translation pro-
ceeds by analyzing each construct in the
program and translating it to a subgraph.
These subgraphs, when combined, form
the program DFG. This approach to trans-
lation creates a DFG with high locality;
that is, each control structure in the pro-

COMPUTER



gram will be a connected subgraph in the
DFGQG, a fact that simplifies later stages in
the mapping process.

Figure 6 illustrates the translation pro-
cess by showing a program in VAL and its
translation to a DFG. The program takes
a stream of n data values, selects those
values in the even-numbered positions of
the stream, and calculates their average,
their sum, and the minimum value among
them.

The second stage in the process deals
with the mapping of the DFG onto a (the-
oretically) unbounded, finite array of PEs.
Here, the nonplanar graph is mapped onto
a hexagonal array. Clearly, this stage
depends on the specific topology of the
grid, but it does not depend on technology
limitations. By keeping this stage indepen-
dent of the parameters influenced by these
limitations (such as the chip size and
pinout), we do not have to change the
mapping process as a consequence of rapid
technology developments in the fields of
circuit density and chip size. These
technology-dependent parameters will
come into consideration in the later stages
of the mapping process. We describe this
stage and its related algorithms below.

After mapping of the DFG onto an
unbounded PE array, the next stage par-
titions this array into several (subarray)
chips according to the technology-imposed
limitations on the number of PEs per chip.
Performing this partition to achieve a min-
imal number of interchip connections has
been shown to be an NP-complete prob-
lem. Therefore, we adopted the heuristic
solution suggested by Krishnamurthy,'
which starts from an arbitrary division of
the array into two portions, then attempts
to improve upon it by moving single ele-
ments from one side of the division to the
other. When no further improvements are
possible, the same process is recursively
applied to each side of the final division.
Obviously, we stop this process as soon as
each group is fitted onto a single chip.

In the last stage of the mapping process,
each PE in the array is physically assigned
its task(s).

Mapping the DFG onto an unbounded
finite PE array. First, we need to define
certain terms. A path is a set of links in the
array that form a continuous, directed
chain between two PEs. The PE from
which the path emanates is called the
source of the path, and the PE where the
path terminates is referred to as its desti-
nation. We define the length of a path as
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An optimal mapping

would require only as

many PEs as there are
nodes in the DFG.

the number of links that make it up. We
say that a path pin the array represents an
arc a in the DFG if the node at the source
(destination) of a has been mapped onto
the source (destination) of p.

We have implemented the DFG map-
ping process using the following four
steps:

Step 1: Limiting the outdegree

Step 2: Dividing into layers

Step 3: Ordering in each row

Step 4: Routing paths

The mapping process is based on the
routing ability of the PEs and attempts to
minimize the number of additional PEs
required for the mapping. An optimal
mapping would require only as many PEs
as there are nodes in the DFG. Additional
PE:s are required because we must find, for
eacharcin the DFG, a path torepresent it
in the array. This search is complicated by
the nonplanarity of the DFG.

We next describe each of the steps in the
DFG-map process. First, we illustrate
these steps for the case where each PE per-
forms a single operation (besides any rout-
ing duties assigned to it). Subsequently, we
will take into account the ability to gather
several operations into a single PE.

Limiting the outdegree of DFG nodes.
The DFG generated during the translation
stage of the mapping process had no limi-
tations imposed by the array architecture.
As aresult, some of the nodes in the DFG
have several output arcs (the number of
such being the node’s outdegree ). In addi-
tion, DFG operators (nodes) take between
one and three input tokens. However, the
architecture we chose (a hexagonal array)
limits the total number of links that can be
used for input or output to six.

Furthermore, since most results flow
downwards in the DFG, and since each PE
has two neighbors in this direction, we
limited the number of outputs from each
node in the DFG to two. This limitation

also facilitates use of a Pi= tor both com-
putational and routing tacks concurrently
by employing the unused ports for routing.

The first step in the DI'G-map process
is thus the introduction o* Split operators
at the output(s) from DF (5 nodes with an
outdegree larger than 2. For example, Fig-
ure 7 shows the DFG in tigure 6(b) after
the addition of Split nodes (marked as SP).

Dividing the DFG into layers. The next
step of the DFG-map prccess divides the
nodes in the DFG into ayers. Each of
these layers will then be mi:pped onto a sin-
gle row in the PE array.

Srini described a soinewhat similar
approach to layering, " using it for assign-
ing nodes in a dataflow ¢ raph to proces-
sors in a task-level datatlow distributed
computer system. The alzorithm used in
this step consists of a depih-first traversal
of the DFG to mark backward-pointing
arcs (that is, arcs that clos : loops). Experi-
ments with a breadth-first approach led to
consistently less satisfactory results.

This DFG traversal is t1en followed by
a variant of topological sort on the DFG,
which ignores these marked arcs. During
the sorting process, whict begins by label-
ing with level =1 all thcse nodes in the
DFG that receive their inputs from outside
the array, each node N is labeled with
level =/, where i is one :reater than the
highest-labeled node whose output(s) feed
node N.

In Figure 7, we have marked the layers
in the DFG by dashed lines.

Ordering the nodes in a layer. After
dividing the nodes in the JFG into layers,
we place each layer onarow of PEsin the
array in an arbitrary order according to the
initial placement (given t y the compiler).
As a preliminary step towards the defini-
tion of paths to represent all the arcs in the
DFG, we now arrange the nodes in each
row. Since we would like to keep paths as
short as possible, an id¢al order for the
nodes in a row is one th it minimizes the
sum of these lengths. But, since at this
point in the DFG-map process we have not
yet determined the exact length of each
path p, we use the column distance,
denoted by D.(p), between the path’s
source and destination P 3s. For example,
if the source PE for a path is currently
located in the third column of the array
and its destination PE is in the tenth
column (their row locations are not taken
into account), then the zolumn distance
for the path is seven.
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Figure 7. The DFG of Figure 6b with outdegree limited by 2.

Now, we can order the nodes in a single
row r so as to try to minimize the sum o,
= Z,ep D(p), where the set P contains all
those paths with either a source or destina-
tion PE in row r. We have found that a
good heuristic for determining the place of
a node N within a layer is to put it in a
column as close as possible to the center of
mass for all the paths for which N acts as
either its source or destination. Each such
path is assigned a weight equal to its
column distance. Our criterion for evalu-
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ating a given ordering of nodes is the sum
of the o, for all the rows in the array.
The above makes it clear that the order-
ing of nodes within layers is an iterative
process. We begin with the nodes arranged
in the order in which they were found in
the DFG. During each iteration we tra-
verse the array, layer by layer, attempting
to reduce the o,. In each layer, nodes are
processed in the order in which they are
currently found, and a new order is deter-
mined starting with an empty row. This

processing involves, for each node in the
layer, determination of the column closest
to the node’s center of mass. If another
node already occupies this column, we
look for the closest available column and
place the node there.

Iterations are started alternately from
the top and bottom rows, until either no
improvement is possible or a maximum
number of iterations is exceeded. From
our experience, a good limit is 10, but
usually less than five iterations suffice for
convergence. We believe that this results
from the high locality obtained by keeping
language constructs as subgraphs in the
DFG.

We have compared the length of paths
resulting from ordering the array nodes
using the above algorithm, with those
achieved by using the order determined by
the DFG (the starting point for the order-
ing algorithm). This comparison shows an
average reduction (over several examples)
of 46 percent in the average path length
and also adrop of 52 percent in the length
of the longest path.

Building paths in the array to represent
arcs in the DFG. Once each node in the
DFG has been assigned to a PE in the
array, we have to determine how the arcs
in the DFG will be represented by paths in
the array. Links in the array cannot be
shared by paths; that is, they can belong to
at most one path representing a DFG arc.

We approach the problem in a piece-
meal fashion, moving from PE to PE. At
each PE we add a single link to one or more
(incomplete) paths that go through it. A
different approach, which attempts to
build whole paths one path at a time,
suffers from the disadvantage that in some
cases a short path (such as one that con-
nects two neighboring PEs) is lengthened
because other paths occupy the needed
link(s).

Now, at a given PE we must assign links
to certain paths—those originating at the
PE (meaning the PE is the source of the
path) or those that are segments of a longer
path. In the first case, we say that the path
isa full path, whereas in the latter case we
call it a partial path.

We process both full and partial paths
according to their priorities. A priority is
assigned to a path p according to the heu-
ristic formula Priority(p) = AXs + Bxn
— [D. (p) + DAp)], wheres=1 (0)if pis
a full (partial) path and n =1 (0) if the des-
tination for p is (is not) a neighboring PE.
We select the coefficients A and B so that
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Figure 8. Mapping of the DFG in Figure 7.

A<B to give a higher priority to paths
whose destinations are one of the neigh-
boring PEs. D,(p) is the row distance for
the path p, which is analogous to D.(p)
when we consider rows rather than
columns. The factor [D{p) + D/(p)] in
the above formula results in a lower pri-
ority for longer paths.

Note that paths originating at a PE are
never blocked, since we always check for
link availability before attempting to route
a path through a PE. Once we have
selected a path for routing, we assign a link
closer to the path’s destination. If this link
has already been assigned to another
(higher priority) path, we select another
available link.

In some cases, a situation develops
where a large number of paths have to be
routed through a small area in the array.
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This can cause a bottleneck at a given PE,
because there are no available links to
route one (or more) path(s). Rather than
performing an extensive backtracking pro-
cess to search for other possible links-to-
paths assignments, we limit the amount of
backtracking to change only the last deci-
sion made in the routing process. If this
does not solve the problem, we add a row
or column of PEs and use these free PEs
to resolve the situation. From our experi-
ence, this case happens rarely and the
waste of additional PEs for routing pur-
poses remains small.

Figure 8 shows an example of applying
the DFG-map process to the graph in Fig-
ure 7. This figure clearly shows that the PE
utilization is very low—only 13.9 percent
of the total number of PEs are utilized for
computational tasks. One of the reasons

for the low PE utilization is that we have
not taken advantage of the capability of
each PE to perform several operations, as
supported by the chosen design. The easi-
est way to incorporate this capability into
the DFG-map process is to redefine the
DFG in terms of supernodes, each
representing a number of (up to six) nodes
in the original DFG, and t > formally adopt
the generalized firing ru'es presented by
Khavi, Buckles, and Bhut.'" These rules
allow for the firing of tne (super) node
even though not all oper inds are present
(as would be the case wher e some operands
are input to one of the supernode’s oper-
ations, while others are t sed by different
operations).

Therefore, we add a node compression
step that creates superncdes in the DFG.
We refer to the DFG obta ned by the intro-
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Figure 9. A CDFG corresponding to the DFG in Figure 6b (a); its mapping onto a hexagonally connected array (b).

Table 1. Performance measurements for the DFG-map process.

Even Inner

Conditional Random  Spring-Mass Runge-Kutta  Process Product Average

DFG CDFG DFG CDFG DFG CDFG DFG CDFG DFG CDFG DFG CDFG DFG CDFG
Number of rows 13 11 7 4 8 3 22 19 16 10 6 4 12 8.5
Number of columns 8 7 4 3 3 3 13 10 13 7 4 4 7.5 5.7
Number of utilized PEs 25 14 9 5 12 5 50 28 31 17 12 6 23.2 11.7
Percent of utilized PEs 7.4 18.2 32.1 41.7 50.0 S§5.0 7.5 142 139 25.7 50.0 75.0 26.8 383
Maximum P 22 14 6 2 1 1 21 19 12 11 3 1 10.8 8
Average P 334 463 2 1.25 1.0 1.0 2.53 445 3.7 3.53 14 1.0 233 2.64

duction of supernodes as the compressed
dataflow graph, or CDFG. As mentioned
above, the number of operations in a PE
is limited to six; thus, a supernode can con-
tain up to six regular nodes. In creating
supernodes, we take into account the fact
that operations within a single PE cannot
proceed in parallel, contradicting the basic
dataflow approach and negating one of its
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main advantages. Therefore, we create
supernodes by gathering nodes directly
connected by arcs in the DFG (so that
results from one node are used as operands
by the other). Thus, the natyral place in the
DFG-map process for introducing node
compression is immediately after the DFG
has been partitioned into layers (refer to
Figure 7).

Notice that the node compression step
also eliminates from the DFG some Split
nodes whenever both nodes fed by a Split
node become a single supernode in the
resulting CDFG. Once the CDFG is
obtained, the last two steps in the DFG-
map process proceed as usual, using the
CDFG as input instead of the original
DFG. Figure 9 shows the DFG of Figure
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6b after the introduction of supernodes
(9a) and its corresponding mapping (9b).

Performance studies

We discuss two distinct performance
measures in this section. One measure is
the efficiency of the mapping process,
meaning the size of the array required to
map a given algorithm. In case the size of
the array is given, the efficiency can be
expressed as the array wtilization, or the
portion of the array actually used by the
DFG. The second measure is the expected
computation time of the data-driven
array, which is the time required to execute
the algorithm mapped onto the data-
driven array.

We begin by examining the array utili-
zation profile for several programs.

Array utilization. We chose a set of pro-
grams to demonstrate the mapping pro-
cess. These programs appear in Table 1,
where ‘‘Conditional’’ is a nested If expres-
sion from Brock and Montz,'* “Ran-
dom’ is a simple (additive) random
number generator, ‘‘Spring-Mass’’ is the
Spring-Mass system example presented in
Figure 1, ‘“‘Runge-Kutta’’ is the Runge-
Kutta program, ‘‘Even Process’’ is the
example in Figure 9, and “‘Inner Product”
is the sum of two inner products of four
independent vectors.

Several parameters appear in Table 1:
the number of rows and columns occupied
by the mapping (their product is the array
size in number of PEs), and the overall
array utilization in number and percentage
of PEs that perform computations. Also
shown are the length of the longest path in
each graph (Maximum P) and the average
path length (Average P). These measures
indicate the propagation delays incurred
when transmitting operands among PEs.

Table 1 shows the impact of using either
the DFG or the CDFG on the array utili-
zation. Clearly, using the CDFG instead of
the original DFG results in smaller array
size and higher overall PE utilization. The
large variation in PE utilization results
from routing conflicts.

Also notice that the longest path
becomes shorter, even though in some
cases the mapping process increases
several paths. This phenomenon simply
reflects the increased difficulty in routing
paths in the CDFG, since some of the links
originally available for routing in the DFG
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Figure 10. An optimal mapping of the CDFG in Figure 9a.

have been used for intermediate results in
the supernodes. Average path length tends
to grow for the CDFGs in some cases. The
reason for this apparent problem is that
some of the short paths (which caused a
lower average in the DFG case) are elimi-
nated from the graph by the node com-
pression step.

The utilization results indicate that
automatic mapping is feasible and yields
reasonable results, even though it is not
optimal and we have more efficient ways
to perform the mapping. For example,
Figure 10 depicts an ‘‘optimal’’ mapping
of the CDFG in Figure 9a. This mapping,
done by hand, yields a higher array utili-
zation.

Array performance. One can consider
several measures for array performance.
The data-driven array is mostly useful for
repetitively executed algorithms. There-
fore, the most important performance
measure is the throughput, the rate at
which results are produced. To compare
the performance of the data-driven array
to that of a sequential processor, we
employ the speedup and processor utiliza-
tion metrics. Speedup is the ratio between
the execution time of an algorithm on a
sequential processor and the execution
time of the same algorithm on the array.
Processor utilization indicates what por-
tion of time each of the working PEs is
actually used.

Table 2. PE operation timnings (in clock
cycles).

- Operation Clock Cycles

Route

Split

Merge

Magnitude (<, >,...)
Addition

Subtraction
Multiplication
Division 25

—_ L) W W W NN

We examined the expecied performance
on the data-driven array of the algorithms
in Table 1. The timing o PE operations
(computation and routing shown in Table
2 is based on the microcoile developed by
Peled.!!

Table 3 compares the ¢; ecution time of
the six algorithms using ei her the original
DFGs or the correspondin ; CDFGs. Table
4 then compares the exccution time of
those algorithms on the dita-driven array
and on a sequential processor.

From Table 3 we can conclude that nei-
ther the time for the first ) esult to emerge
from the array nor the interval between
subsequent results are str¢ngly influenced
by the node compression. This agrees with
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Table 3. Array performance—DFG versus CDFG (in clock cycles).

Conditional Random Spring-Mass Runge-Kutta Even Process Inner Product

DFG CDFG DFG CDFG DFG CDFG DFG CDFG DFG CDFG DFG CDFG
First result 50 45 69 69 88 84 414 404 132 128 60 58
Next result 14 12 26 26 26 26 372 370 80 76 48 48

Table 4. Performance comparison (in clock cycles).

Conditional Random Spring-Mass Runge-Kutta Even Process Inner Product
68000 Array 68000 Array 68000 Array 68000 Array 68000 Array 68000 Array
(Throughput) ! 93 12 234 26 425 26 691 370 386 76 202 48
Speedup 7.7 9.0 16.3 1.9 5.1 4.2
Number of PEs 9 4 5 23 18 6
PE utilization 0.86 2.25 3.26 0.08 0.28 0.7

intuition, since supernodes were created by
merging nodes forming a chain of opera-
tions dependent on one another. It is also
encouraging to see that these supernodes
do not have an adverse effect on perfor-
mance. In fact, they cause a slight
improvement by reducing the longest path
length. The main advantage of using the
supernodes is the smaller array size needed
to contain the CDFG, as opposed to the
original DFG.

Table 4 compares the potential perfor-
mance of the data-driven array to that of
a sequential processor to illustrate the
effect of pipelining and parallelism in the
data-driven array. For this comparison,
we manually mapped the CDFG onto the
array instead of applying the above map-
ping algorithm. The table includes the exe-
cution time (in clock cycles) of the same six
algorithms on the array and on the 68000
microprocessor.

No commercially available processor is
fully suitable for comparing the perfor-
mance of the data-driven array to that of
a sequential processor. However, to obtain
some quantitative comparison, even if not
a completely satisfactory one, we selected
the commonly used 68000 microprocessor.
This microprocessor also executes 8-bit
operations, and the number of cycles per
instruction in the 68000 and in our PE are
about the same for most instructions. The
only difference is in the multiply and
divide operations. To obtain a reasonable
comparison, we took multiply and divide
execution time as half of the actual time
(35 cycles instead of 70 for the multiply
and 70 cycles instead of 140 for the divide).
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Three performance measures appear in
Table 4: (Throughput) ', speedup (the
number of cycles needed to produce a
result on the array divided by the number
of cycles needed to compute the same
result on the 68000), and processor utili-
zation (speedup divided by the number of
PEs in the array).

The algorithms that we can map onto
the data-driven array can be divided into
two major classes: noniterative and itera-
tive. Iterative algorithms have correspond-
ing DFGs with feedback edges, while
noniterative algorithms have no cycles.
The first three examples in Table 4 are
noniterative and the last three are iterative
algorithms. The highest speedup and PE
utilization are achieved by the iterative
algorithms. The introduction of cycles into
the DFG, as in the last three examples of
Table 4, results in a significant reduction
in speedup. The reduction is due to the fact
that in iterative algorithms maximum
pipelining cannot be achieved.

There are two types of iterative struc-
tures: dependent and independent. In a
dependent structure, the computation
within the iteration body depends on the
previous iteration result. The dependency
point can be at the beginning of the itera-
tion body (such as Runge-Kutta) or at
some internal point (such as Even Pro-
cess). In the first case only parallelism in
the body can be exploited, while in the sec-
ond case some pipelining between succes-
sive iterations is feasible. In an
independent structure (such as Inner Prod-
uct), both parallelism and pipelining can
be exploited, resulting in higher through-

put and, consequently, higher speedup. In
these algorithms, as the body part
increases in complexity, a higher speedup
can be achieved.

From the above discussion we can con-
clude that high speedup and PE utilization
can be achieved when using the data-
driven array. A sequential processor has a
large overhead due to operand handling
(memory references and temporary stor-
age) and branching. We avoid this over-
head in the data-driven array and
consequently can obtain a PE utilization

greater than one.
l well-known types of processor
array architectures (namely, sys-
tolic arrays and wavefront arrays) have
been discussed. One can expect high
throughput when executing highly regular
algorithms on these arrays. This leads to
the conclusion that a different type of
architecture can better suit algorithms that
lack inherent regularity. We have
presented one such architecture, VLSI
data-driven arrays, in this article. The
data-driven array is substantially more
flexible than previousty suggested architec-
tures and is, therefore, more suitable for
high-speed execution of arbitrary
algorithms.

From the examples in the previous sec-
tion, we can conclude that the algorithms
that achieve a high speedup when executed
on the data-driven array are those with
intensive arithmetic computations and
with either no cycles or independent cycles.

he main characteristics of two
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We can expect lower speedup and/or
processor utilization when mapping
dependent structures onto the data-driven
array. In such cases, we need to carefully
examine the cost-effectiveness of using this
array.

Further work is underway to finalize the
design of the array and, more importantly,
to develop more efficient mapping
algorithms that will achieve higher
speedup ratios and better utilization of the
processor array.[]
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