
Saturating Counters: Application and Design Alternatives

Israel Koren
Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003

Email: koren@euler.ecs.umass.edu,

Yaron Koren
Bear Stearns, New York, NY 10179

Bejoy G. Oomman
Genesys Testware, Fremont, CA 94539

Abstract

We define a new class of parallel counters, Sat-
urating Counters, which provide the exact count of
the inputs that are 1 only if this count is below a
given threshold. Such counters are useful in, for
example, a self-test and repair unit for embedded
memories in a system-on-a-chip. We describe this
application and present several alternatives for the
design of the saturating counter. We then compare
the delay and area of the proposed design alterna-
tives.

1. Introduction

Various designs of parallel counters to be used
in multiplier units and other applications have been
proposed and implemented (e.g., [1, 2]). Such de-
signs use different basic building blocks like (3,2)
counters, (7,3) counters and the like [3]. An (� , �)
parallel counter has � input bits and produces a

�
-

bit binary count of its inputs that are 1. Clearly,
�

must satisfy �������
	 � or
� 	���
�������� ��� ����� . We

define here a new type of parallel counters which
we call saturating counters. A saturating counter
needs to provide the exact count of its inputs that
are 1 only if this count is below a certain thresh-

old, denoted by � . The exact output is less impor-
tant when the number of inputs that are 1 exceeds
the threshold � , as long as the output indicates that
the threshold has been exceeded. Such a saturat-
ing counter is needed in the design of a self-test
and repair circuit for large memories embedded in
a system-on-a-chip. Note that the saturating coun-
ters considered here are different from those used
in certain image processing applications and in mi-
croprocessors’ branch prediction units. The latter
normally saturate at their maximum count of � � ���
(and, sometimes also at their minimum count of 0)
and all other results must be exact.

The necessary number of output bits of a saturat-
ing counter, denoted by

�
, does not have to satisfy

the condition
� 	���
���� � � ��� ����� . Instead, the in-

equality which must be satisfied is
� 	 ��
���� � �!� ������ . In principle, � can be any number smaller than� , however, a simpler and faster implementation

can be achieved when � is a power of 2. More-
over, for the application considered in this paper, if
the threshold is not a power of 2 we can still em-
ploy a saturating counter with

�#"%$ � � output
bits where

$&" ��
���� � ��� . We will therefore, focus
in this paper on the special case of [�(' �] saturating
counters with � inputs, a threshold of � " � �*),+ ,
and
�

output bits.

1

The paper is organized as follows. In Section 2
we describe the application that requires the design
of a fast saturating counter. In Section 3 we present
some design alternatives for saturating counters and
in Section 4 we compare the delay and area of the
various alternatives. Section 5 concludes the paper.

2. Self-Test and Repair for Embedded Mem-
ories in a System on a Chip

The high density and size of memory units,
implemented either as separate ICs or as embedded
memories, have resulted in an increasing number
of manufacturing defects leading to low yields
of high volume ICs. System-On-a-Chip (SOC)
designs that contain megabits of embedded mem-
ory are now available from several companies.
The manufacturing yield of these SOC products is
strongly dependent on the yield of their embedded
memory.

Spare memory rows and columns have tradi-
tionally been added to memory designs to replace
defective rows, columns or individual cells. To
perform such replacements, the defective rows,
columns or cells must be identified first. In the
past, dedicated external memory testers with fault
diagnosis capabilities have been used. Following
the identification of the defective cells, the chip is
taken to a laser repair station and fuses are blown
to replace faulty memory cells with spare memory
cells [4].

To eliminate the costly memory tester from the
chip manufacturing process, designers have started
to incorporate Built-In Self-Test (BIST) circuitry
into large memory units. Such circuitry is capable
of executing memory tests to diagnose any error,
which may be the result of either a manufacturing
fault or a fault (intermittent or permanent) that oc-
curs during the normal operation of the IC.

Designers of systems-on-a-chip have gone one
step further, and several current designs include a
Built-In Self-Test Diagnosis and Repair (BISTDR)
circuit for the embedded memories in the SOC.
The use of BISTDR not only enables permanent

memory repair following manufacturing (hard
repair), but also every time the system is pow-
ered up (soft repair). Hard repair can be done
by laser blown fuses or by writing non-volatile
re-configuration flip-flops, while soft repair uses
only the latter [5, 6, 7].

The process starts with a self-test operation
performed internally in the memory unit. Once
the faulty data bits and faulty addresses have been
identified, the faulty data bits are replaced with
spare data bits, and faulty words are replaced with
spare words. Figure 1 shows a block diagram

RIMA

APG

BIC

DPG

ROMAORE

FDU

FBS
RAM

DATA

ADDRESS

CONTROL

TEST CONTROL

TEST RESULT

Figure 1. A block diagram of the BISTDR
unit.

of the BISTDR unit, which consists of the fol-
lowing functional blocks: APG (Address Pattern
Generator), DPG (Data Pattern Generator), ORE
(Output Response Evaluator), BIC (BIST Interface
Controller), FDU (Fault Diagnosis Unit), FBS
(Function to BIST selector), RIMA (Repair Input
Multiplexor Array) and ROMA (Repair Output
Multiplexor Array).

The built-in self-repair is usually executed auto-
matically during the power-on reset sequence of the
SOC and must, therefore, be performed at system
speed using the system clock. The test and repair
process is done on the fly in a single cycle to avoid
the need to store fault information. The Fault Di-
agnosis Unit (FDU) is therefore on the critical path
in the BISTDR circuit since it has to identify the
faulty bit(s), and make a repair decision (address

2

or data repair) within one memory read access cy-
cle. This repair decision is based on the number of
failing data bits at the current address, and the cur-
rently available repair resources (unused spare data
bits and address locations). The failing bits are de-
termined using an array of XOR gates which com-
pares the memory output with the expected output.
This produces a bit vector whose width equals the
width of the memory. A bit in this vector will have
a 1 if there is a mismatch at the corresponding bit
position, and a 0 otherwise.

The critical path within the FDU includes a cir-
cuit that counts the number of 1’s in this bit vector.
This number has to be compared to the number of
spare bits which is typically no larger than 8. If
the number of bit failures exceeds the number of
spares, the memory is not repairable. Therefore, it
is sufficient to know the failing bit count accurately
only when it is less than the number of spares avail-
able. The fast saturating counter we design must
therefore have a threshold - , where - is equal to or
slightly larger than the number of available spares,
allowing us to select a threshold which is a power
of 2. The number of inputs of the required saturat-
ing counter, . , is the width of the memory. Unlike
stand-alone memory chips, embedded memories in
SOC designs have no restriction on the data width
due to pad limitations. Thus, embedded memories
of width of up to 1024 are commonly used in SOCs.
We should therefore design saturating counters for
as many as 1024 input bits.

3. Saturating Counters - Design Alternatives

An / .(021�3 saturating counter has . input bits de-
noted by 4657084:9;0=<=<=<7084�> , 1 output bits denoted by?*@�A 5 0 ?*@�A 9 0=<=<=<*0 ?�B and a corresponding threshold
of -DCDE @*A 5 . The output satisfiesF ?�@*A 5 0 ?*@�A 9 0=<=<=<�0 ?*B�G 9HC >IJ K 5 4 J

if
>IJ K 5 4 JML E @*A 5

whileF ?*@�A 5 0 ?*@*A 9 0=<=<=< ?�B7G 9 N /OE @�A 5MPDQ 02E @SR Q 3
if
>I J K 5 4 JMT E @�A 5

For example, a / Q=U EWVX0YV;3 saturating counter has
1024 inputs, a threshold of 8, and produces four
output bits satisfyingF ?*Z 0 ? 9W0 ? 570 ?�B7G 9�C 5 B 9\[IJ K 5 4 J
if there are at most eight input bits which equal 1,
and
F ?*Z 0 ? 9W0 ? 5=0 ?*B�G 9]N^/O_:0 Q7` 3 if there are nine or

more input bits which equal 1.

A complete Wallace tree for 1024 inputs pro-
duces nine output bits and requires 16 levels of (3,2)
counters. A straightforward way to implement a/ Q=U EWVX0YV;3 saturating counter is to use (3,2) counters
in the columns with weights E 9 02E 5 and E B but use
only OR gates in the column with weight E Z . This
implementation, shown in Table 1, requires 11 lev-
els of (3,2) counters plus one level of an OR gate,
assuming that two levels of OR operations in col-
umn E Z can be completed in parallel to the opera-
tion of a single level of (3,2) counters in the E 9 02E 5
and E B columns. Table 1 shows, for each level of the
tree, the number of (3,2) or (2,2) counters required
in every column, and the resulting number of inter-
mediate results in every column. For example, in
the second level of the tree, 114 (3,2) counters are
used in the E B column, producing 114 intermediate
bits of weight E B and 114 bits of weight E 5 , which
are added to the 115 bits generated directly in theE 5 column. The notation 9+2(OR [) in the E Z col-
umn means that two levels of OR gates are used, 9
in the first level and 2 in the second.

Note that the implementation depicted in Table
1 will produce a result of 8 if the number a of in-
put bits which equal 1 satisfies a�bdc;egf�C U , e.g.,
16, 32 and so on. If such a situation is not allowed,
a threshold of - C Q7h can be selected. However,
for the application at hand the probability of such
an event occurring was deemed to be negligible.

3

The average expected number of defective memory
cells in a single row is less than 4, with a standard
deviation of less than 2, making the probability of
16 defective cells in one row practically zero.

In [1] Jones and Swartzlander have compared
the design of parallel counters using only (3,2) or
(2,2) counters to designs using more complex coun-
ters like (7,3), (15,4) and (31,5). They have an-
alyzed the delay and area of different implemen-
tations and concluded that designs based on (3,2)
and (2,2) counters only are generally superior. We
therefore decided not to experiment with counters
like (7,3), (15,4) and (31,5). However, in recent
years (4;2) compressors [3] have become common
in parallel multiplier designs, and very efficient im-
plementations for them have been proposed (e.g.,
[8]). Consequently, we studied the possibility of
using (4;2) compressors instead of (3,2) counters in
one or more levels of the saturating counter. Ta-
ble 2 shows that if (4;2) compressors are used in
levels 1 through 5, the total number of levels is
reduced from 12 to 9. (4;2) compressors, though,
have a higher delay than (3,2) counters. However,
if the delay of a (4;2) compressor is only about 50%
larger than the delay of a (3,2) counter, the over-
all delay of the [1024,4] saturating counter still de-
creases when (4;2) compressors are used. Detailed
delay comparisons are reported in the next section.

Tables 1 and 2 were obtained using an online sat-
urating counter simulator which is available at [9].

3.1. (i7jlkYm8konqp�k2r) units

Re-examining Tables 1 and 2, one can notice
that the last few stages achieve only a small reduc-
tion in the number of bits but incur a high delay.
One could replace the last four stages in Table 1,
which reduce the number of bits from (5,5,2,1) to
(1,1,1,1), by a look-up table with sut8vwt8vwx inputs and
4 outputs. However, a simpler and probably faster
(for most technologies) solution exists which takes
advantage of the saturating nature of the counter.
This solution uses a special 3-column (i 5,5,2 p ,3)
unit, as shown in Table 3. If we wish to apply the

y{z y{| yw} y{~
Level

341(3,2)
341 342 1
113(3,2) 114(3,2)

113 114+115 114 2
113 229 114
37(3,2) 76(3,2) 38(3,2)

37 76+39 38+76 38 3
37 115 115 38
9+2(OR �) 38(3,2) 38(3,2) 12(3,2)
4+38 38+39 12+39 14 4
42 77 51 14

10+3(OR �) 25(3,2) 17(3,2) 4(3,2)
3+25 17+27 4+17 6 5
28 44 21 6
7+1(OR �) 14(3,2) 7(3,2) 2(3,2)
4+14 7+16 2+7 2 6
18 23 9 2
4+1(OR �) 7(3,2) 3(3,2) 1(2,2)
3+7 3+9 1+3 1 7
10 12 4 1
2+1(OR �) 4(3,2) 1(3,2)
1+4 1+4 2 1 8
5 5 2 1
1+0(OR �) 1(3,2) 1(2,2)
2+1 3+1 1 1 9
3 4 1 1
0(OR �) 2(2,2)
3+2 2 1 1 10
5 2 1 1
1(OR �) 1(2,2)
2+1 1 1 1 11
3 1 1 1
1(OR �) 12
1 1 1 1

Table 1. A ���=��sW�XkY�;� saturating counter us-
ing (3,2) and (2,2) counters. It uses 892
(3,2) counters, 5 (2,2) counters and 49 4-
input OR gates.

same approach to the [1024,4] saturating counter
which uses (4;2) compressors (see Table 2), a
(i 13,8,3 p ,3) unit could be used. The design
principles of such units are presented next.

An (i7jlkYm8konqp�k2r) unit, shown in Figure 2, is a
saturating parallel counter which receives j inputs
of weight s;�*�,� , m inputs of weight s��*� x and n in-
puts of weight s��*�6� . It produces three outputs of
weights s��*�,� , s;�*� x and s����6� where s����,����� is
the threshold of the saturating counter.

We restrict our discussion to the case where s��
4

�X� �6� �w� �X�
Level

205(4;2)
410 205 1
90(4;2) 41(4;2)

90+90 91+41 41 2
180 132 41
41(4;2) 28(4;2) 8(4;2)
1(3,2)

82+1 42+28 28+8 9 3
83 70 36 9

20+5(OR �) 15(4;2) 7(4;2) 2(4;2)
1(2,2) 1(3,2)

30+1+8 16+7+1 8+2 2 4
39 24 10 2
9+3(OR �) 5(4;2) 2(4;2) 1(2,2)
3+10 6+2 2+1 1 5
13 8 3 1
3+1(OR �) 2(3,2) 1(3,2)

1(2,2)
1+3 3+1 1 1 6
4 4 1 1
1(OR �) 2(2,2)
1+2 2 1 1 7
3 2 1 1

1(2,2)
3+1 1 1 1 8
4 1 1 1
1(OR �) 9
1 1 1 1

Table 2. A ���=���W�X�Y�;� saturating counter us-
ing (4;2) compressors, (3,2) and (2,2) coun-
ters. It uses 444 (4;2) compressors, 5 (3,2)
counters, 6 (2,2) counters and 44 4-input
OR gates.

��� �
, for which the maximum carry from the posi-

tion of weight ��¡*¢6£ to the position of weight �u¡�¢6¤
is 1. Thus, we have ¥,¦D� bits of weight � ¡*¢6¤ to be
added. § ¡�¢6£�¨ª©q«­¬¯®=®=®q¬°©�± can be replaced, if
needed, by § ¡*¢6£²¨°© « ¦ ®=®=® ¦ © ± . For

��� �
this sim-

plification is not needed since the delay of the two
(or less) XOR gates will be smaller than the delay
of the gates required to generate § ¡�¢ « . The contri-
bution of © « � ®=®=® � © ± to § ¡*¢6¤ can be represented by

�X� �6� �³� �{�
Level

341(3,2)
341 342 1
113(3,2) 114(3,2)

113 114+115 114 2
113 229 114
37(3,2) 76(3,2) 38(3,2)

37 76+39 38+76 38 3
37 115 115 38
9+2(OR �) 38(3,2) 38(3,2) 12(3,2)
4+38 38+39 12+39 14 4
42 77 51 14

10+3(OR �) 25(3,2) 17(3,2) 4(3,2)
3+25 17+27 4+17 6 5
28 44 21 6
7+1(OR �) 14(3,2) 7(3,2) 2(3,2)
4+14 7+16 2+7 2 6
18 23 9 2
4+1(OR �) 7(3,2) 3(3,2) 1(2,2)
3+7 3+9 1+3 1 7
10 12 4 1
2+1(OR �) 4(3,2) 1(3,2)
1+4 1+4 2 1 8
5 5 2 1
1(OR �) (´ 5,5,2 µ ,3) 9
1 1 1 1

Table 3. A ���=���W�X�Y�;� saturating counter us-
ing a (´*¶:�2¶:�2��µ�� �) unit. It uses 891 (3,2)
counters, one (2,2) counter, 43 4-input OR
gates and a (´*¶:�2¶:�2��µ�� �) unit.

an additional input of weight ��¡*¢6¤ , i.e.,·6¸º¹ «»¨ ¼ © « © ¤ for
� ¨ �© « © ¤ ¦ © « © £ ¦ © ¤ © £ for

� ¨ �
The truth table for the (´7½l�Y¥8� � µ�� �) unit is:¾ « ¦ ®=®=® ¦ ¾�¿ · « ®=®=® · ¸ · ¸º¹ « § ¡*¢ « § ¡*¢6¤

1 À 1 À
0 All 0’s 0 0
0 A single 1 0 1
0 Two or more 1’s 1 À

5

...
2k−22

ss k−2

k−1

k−1

2k−3

sk−3

yjy1x xi

xi+1

... ...
zz 11 m

Figure 2. An (Á7ÂlÃYÄ8ÃoÅqÆ�Ã2Ç) unit.

The resulting Boolean expressions are:È*É�Ê6Ë²ÌÎÍÐÏÒÑÎÓ=Ó=ÓWÑHÍÕÔ{ÑÖÍ6Ôº×ÒÏ andÈ*É�Ê Ï ÌÙØ�ÏMÑ°Ó=Ó=Ó;ÑÖØ�ÚÖÑDÛ�ÍÐÏYÍ Ë ÑHÍÐÏ\Í³ÜÑ°Ó=Ó=Ó�ÑHÍ6Ô�Í6Ôº×ÒÏÞÝ
We can substitute Í Ôº×ÒÏ into the expressions forÈ*É�Ê6Ë and È*É*Ê Ï . This would result in product terms
with up to three literals in È;É*Ê Ï , i.e., fan-in ß
3. Notice that the simplified Boolean equation
for È*É*Ê6Ë may in fact produce È;É�Ê6Ë =1 even if the
correct value is 0, but only if È;É*Ê Ï =1. Therefore,
the probability of producing an output of 8, when
the number à of input bits which equal 1 satisfiesà�Âdá;âäã Ìæå and à ç^ã (e.g., à =16), is lower
than the corresponding probability for the saturat-
ing counters of the types depicted in Tables 1 and
2.

To calculate the delay and area of the pro-
posed (Á7ÂlÃYÄ8ÃoÅqÆ�Ã2Ç) unit, some further analysis
is required. The total number of signals in an
implementation of È;É*Ê Ï after the first level of gates
(OR gates for the Ø inputs and AND gates for the
remaining terms) isè Ë Ìêé Ä ÑDëì í Ñ Â�â�Äïîgð³Ä Ñ ÂñÂdá;â
ð³Ä
if Å Ì ì , andè Ë Ìòé Ä ÑÙëì í Ñ ì Ä Ñ Â�â�Äïîóð³Ä Ñ ÂñÂdá;â
ð³Ä
if Å Ì Ç , where ð³Ä is the maximum fan-in allowed.

The table below shows the number of signals
(after the first level of gates, i.e., OR gates for
the Ø inputs and AND gates for the ÍXô;Í³õ andÍ�ôWöu÷Yö�ø terms) and the number of logic levels for
the special case of fan-in ð³Ä ÌÎù , Âúß ù and Å Ì ì .

Ä 2 3 4 5 6 7 8è Ë 4 7 11 16 22 29 37
of levels 2 3 3 3 4 4 4

For fan-in ð³Äüû ù the total number of gate levels is
therefore ë»Ñþý�ÿ������ è Ë�� .

The exact benefit of using an (Á7ÂlÃYÄ8ÃoÅqÆ�Ã2Ç) unit
instead of several levels of (3,2) and (2,2) coun-
ters is highly dependent on its circuit implementa-
tion. For simplicity, we will assume for the numer-
ical results summarized in the next section that the
(Á7ÂlÃYÄ8ÃoÅqÆ�Ã2Ç) unit is implemented using basic logic
gates with a delay of �
	 for an OR or AND gate
with fan-in= ð³Ä or less. The (3,2) and (2,2) counters
are implemented using 2-input XOR gates whose
delay is denoted by ����
�� .

4. Numerical Results

Figure 3 compares the delay of an [� ,4] saturat-
ing counter (for � =72, 136, 264, 520 and 1032) im-
plemented in four different ways: using (3,2) and
(2,2) counters only, allowing the use of (4;2) com-
pressors as well, and allowing all types of counters
including the special (Á7ÂlÃYÄ8ÃoÅqÆ�Ã2Ç) unit. The lat-
ter has two implementations, one with fan-in ð³Ä Ìù and another with ð³Ä Ì Ç . Only the basic de-
sign, which is restricted to the use of (3,2) and (2,2)
counters, is unique. The remaining three designs
have multiple possible implementations and the de-
lay of the fastest implementation for that type is
shown. The delays in Figure 3 are measured in
terms of ����
�� under the assumptions that ��	 Ìå���� � ��
�� , ��� Ë�� Ë�� Ì � ��
�� , ��� Ü � Ë�� Ì ì � ��
�� and
� � �� Ë�� Ì Ç��!��
�� . The results indicate that the use
of (4;2) compressors reduces the delay by no more
than one ����
�� in the given range of inputs, but

6

10

15

20

128 256 384 512 640 768 896 1024

D
el

ay

Number of input bits

(3,2) counters only
(3,2) counters and (4;2) compressors

All counters allowed (fan-in=3)
All counters allowed (fan-in=4)

Figure 3. Delay comparison (the delay unit
is "�#�$�%).

using in addition an (&('*),+�).-0/1)32) unit further re-
duces the delay by 3 "�#�$�% or 2.5 "�#�$�% for fan-in4 +6587 or 3, respectively.

Figure 4 shows the estimated area for three
of the design alternatives. The area is mea-
sured in terms of 9 #�$�% under the assumptions
that 9;: 5 <�=�>?9@#�$�% , 9BADC�E C�FG5 H?=�>?9@#�$�% ,
9 ADI�E C�F 5J2K=�>?9L#�$�% and 9 ANM�O C�F 5P70=�>?9L#�$�% . The
area of an (&('*),+�).-0/1)32) unit is determined by
the number of gates required. Figure 4 shows
that the reduction in total area due to the use of
(4;2) compressors increases with the number of
inputs (under the above-mentioned area ratios
assumption). The use of an (&('*),+�).-0/1)32) unit may
increase the total area but the area will still be
lower than that of the basic design using only (3,2)
and (2,2) counters.

To make a decision regarding the use of an
(&('*),+�).-�/1)32) unit, the designer should consider the
delay as well as the area. A measure like Area Q
Delay

C can help, and Figure 5 shows that the use
of an (&('*),+�).-�/1)32) unit is beneficial.

As mentioned above, a design using (4;2) com-
pressors and an (&('*),+3).-�/1)32) unit is not unique and
therefore one can trade off area and delay. Figure

500

1000

1500

2000

2500

3000

128 256 384 512 640 768 896 1024

A
re

a

Number of input bits

(3,2) counters only
All counters allowed (fan-in=4)

(3,2) counters & (4;2) compressors

Figure 4. Area comparison (the area unit is
9@#�$�%).

6 illustrates such a tradeoff for R =520 and 1032
where the basic designs (using only (3,2) and (2,2)
counters) are also shown for reference. Note that
a reasonable reduction in the area can be achieved
with some increase in delay. Further increases in
the delay will only marginally reduce the area, and
thus are not advisable.

5. Conclusion

Saturating counters have been defined and
several design alternatives have been presented
and evaluated. The motivation for this study was
the need to design such a counter as part of a self
test and repair unit for an embedded memory in
a system on a chip. The saturating counter that
has been implemented uses (3,2) counters and an
(&('*),+�).-�/1)32) unit. It has been implemented using
the Perfect SAGE standard cell library for 0.15mi-
cron TSMC CMOS from Artisan. A preliminary
design which did not use an (&('*),+�).-0/1)32) unit did
not satisfy the timing requirements.

7

100

300

500

700

128 256 384 512 640 768 896 1024

A
re

a
x

D
el

ay
**

2

Number of input bits

(3,2) counters & (4;2) compressors
All counters allowed (fan-in=4)

Figure 5. Area S Delay T comparison.

References

[1] R. F. Jones and E. E. Swartzlander, “Paral-
lel Counter Implementation,” Journal of VLSI
Signal Processing, pp. 223-232, 1994.

[2] E. E. Swartzlander, “Parallel Counters,” IEEE
Trans. on Computers, Vol. C-22, pp. 1021-
1024, 1973.

[3] I. Koren, Computer Arithmetic Algorithms,
2nd edition, A K Peters, Natick, MA, 2002.

[4] I. Koren and Z. Koren, “Defect Tolerant VLSI
Circuits: Techniques and Yield Analysis,”
Proceedings of the IEEE, Vol. 86, pp. 1817-
1836, Sept. 1998.

[5] H. C. Ritter and B. Muller, “Built-In Test Pro-
cessor for Self-Testing Repairable Random
Access Memories,” Proceedings of the Inter-
national Test Conference, 1987, pp. 1078-
1084.

[6] R. Treur and V. K. Agarwal, “Built-In Self-
Diagnosis for Repairable Embedded RAMs,”
IEEE Design & Test of Computers, June 1993,
pp. 24-33.

1000

2000

3000

14 16 18 20

A
re

a

Delay

(3,2) counters only, 520 inputs
All counters allowed, 520 inputs
(3,2) counters only, 1032 inputs

All counters allowed, 1032 inputs

Figure 6. Area vs. delay tradeoff.

[7] Y. Nagura et. al, “Test cost reduction by At-
speed BISR for embedded DRAMS,” Pro-
ceedings of the International Test Conference,
2001, pp. 182-186.

[8] N. Ohkubo, M. Suzuki, et. al., “A 4.4-ns
CMOS 54 S 54-b Multiplier Using Pass-
Transistor Multiplexor,” IEEE Journal of
Solid-State Circuits, vol.30, pp. 251–256,
Mar. 1995.

[9] http://www.ecs.umass.edu/ece/koren/
arith/simulator/SatCount/

8

