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Abstract 

Defect maps of 57 wafers containing large area VLSI ICs were analyzed in order to find 
a good match between the empirical distribution of defects and a theoretical model. Our 
main result is that the commonly employed models, most notably, the large area clustering 
negative binomial distribution, do not provide a sufficiently good match for these large 
area ICs. Even the recently proposed medium size clustering model, although closer to the 
empirical distribution than other known distributions, is not good enough. To obtain a good 
match, either a combination of two theoretical distributions or a "censoring" procedure (i.e., 
ignoring the worst chips) is necessary. 

1. Introduction 

Defects maps of 57 wafers containing large area VLSI chips were analyzed with several 
purposes in mind: To find a good match between a theoretical yield model and the empirical 

distribution of defects, to determine a criterion for distinguishing between "low quality" 
from "high quality" chips, and to determine whether certain areas on the wafer or on the 
chip are more prone to defects than others. 

2. Matching a theoretical distribution 

The first objective of the analysis was to match a yield model to the empirical defect 

distribution. In the past, the large area negative binomial distribution has been successfully 
used to describe the distribution of defects on a chip, i.e., 
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Figure 1: Comparing the empirical cumulative frequency of the number of defects in a 
module/quadrant/chip to the large area negative binomial model. 

TO test whether the same distribution can be used for the examined large area VLSI 
chips, we calculated the empirical frequency of chips with k defects, k = 0,1,2, ... , and 

tried to fit to it a large area negative binomial distribution (with the constraint AA+. = 5.52 
which is the empirical average number of defects per chip in our sample). The cumulative 
empirical frequency of chips with k defects or less and the cumulative theoretical probability 

of k defects or less are depicted in Figure 1. 

We then divided every chip into 4 equally sized quadrants, and divided each quadrant 

into 4 equally sized modules. The chip is thus divided into 16 modules. We next compared 
the empirical frequency of quadrants with k defects and of modules with k defects to the 
corresponding large area negative binomial probabilities (under the constraints: Apvodront = 
1.38 and X m d d e  = 0.345). The cumulative frequencies and probabilities (for k defects or 
less) appear in Figure 1. The conclusion that can be drawn from Figure 1 is that the large 

area negative binomial distribution is not suitable for describing the defect distribution of 
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large area chips. The smaller the area, the better the fit. In this case, the fit is best when 

the area of a module is concerned, but it is very poor when attempting to  describe the 
defects on the chip as a whole. 

We, therefore, tried to identify another theoretical yield model which will be suitable for 

describing the defects on a chip. Since the chips may have some redundancy incorporated 
into them, or may be used as partially good chips, we chose the following criterion for 
goodness of fit of a model to the empirical results: 

Denote by freq(m) (m = 0, ..., 16) the relative frequency of chips with m fault-free 

modules, and by cfreq(m) the cumulative frequency of chips with m fault-free modules or 

less. Similarly, denote by prob(m) the theoretical probability (according to  some given yield 
model) of a chip with m fault-free modules, and by cprob(m) the cumulative probability 
of m or less fault-free modules in a chip. We applied the Kolmogorov-Smirnov test for 
goodness of fit, and accordingly, searched for a yield model in which the m-um absolute 
difference between cfreq(m) and cprob(m), denoted by dif, does not exceed 0.02. 

dif = max Icfreq(m) - cprob(m)l 
Osms16 

We first tried to match the empirical results with a single probability distribution. The 

candidate distributions were: The Poisson distribution; the small area negative binomial 

distribution [4]; the medium area negative binomial distribution with two different block 
sizes, namely, 2 x 2 and 4 x 4 [3]; and the large area negative binomial distribution. The 

parameters of these distributions are summarized in Table 1. The parameters have been 

Poisson Distribution 
Large Area Clustering 
Small Area Clustering 
Med. Area Clust. - 4 x 4 block 
Med. Area Clust. - 2 x 2 block 
Small Ar. & Large Ar. 

0.345 
- 

0.260 - 

x, 
- 

0.345 
0.345 

- 
0.345 

0.085 0.0014 

0.123 

0.360 

Table 1: Parameters of theoretical distributions. 

selected so as to minimize the maximal difference dif under the constraint X,dd.=0.345 

(the empirical average). 

The empirical and theoretical cumulative distributions are depicted in Figure 2 and in 
Table 2, and the maximal differences appear in Table 2. As can be seen, none of the 

five single probability distributions mentioned above had a satisfactory match with the 
empirical distribution of the number of fault-free modules per chip. 
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Figure 2: Comparing the empirical cumulative frequency of fault-free modules t o  
theoretical distributions. 
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Observing the defect maps indicates that there are two sources of defects, systematic 

and random, or heavily clustered and less heavily clustered. To verify this observation, we 
calculated the clustering measure QA for the different sized areas A between 1 x 1 and 4 x 4 

modules. For a given area size A,  QA was calculated as the solution of the equation 

where FA is the empirical yield of an area of size A and AA = 0.345. A. A constant value 
of aA for every A would indicate large area clustering, while a value linearly increasing 
with A would indicate small or medium area clustering. The resulting values of QA were 
neither constant nor linearly increasing, but increased in a less than linear fashion. This 

again points to  the presence of two independent defect sources. 

In the past, the presence of systematic defects has been modeled by a “gross yield factor.” 
This approach did not fit our data since the empirical distribution did not have a mode at 

0, probably due to the large area of the chip. As a result, we attempted two other modeling 
approaches. One was to search for a combination of two defect distributions that will 

match the empirical distribution, and the other was to remove those chips with a very large 
number of defects and try to fit a probability distribution to the remaining chips. These 
two approaches are described in the next two sections. Note that they are not equivalent, 

and each can be used for different purposes. 

3. Combining two probability functions 

Denoting by Z ( A )  the number of defects in area A,  we assume that Z ( A )  = X l ( A )  + 
X z ( A )  where X l ( A )  and Xz(A)  are independent random variables, denoting the number of 

defects of type 1 and of type 2, respectively, in area A,  

Given the two distributions of XI and Xz ,  the theoretical probability of m fault-free 

modules in a chip (denoted by prob(m)) can be calculated as follows (we assume that a 

module has an area of l), 

prob(m) = (:) ‘km(-1)J  ( l6 i “) P [Z(m + j )  = 01 
j = O  

For the two types of defects we considered all combinations of two out of the following 

distributions: the Poisson distribution (with the parameter A, defects per module), the 

1 -  
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large area negative binomial distribution (with the parameters A1 defects per module and 
ai), the medium area negative binomial distribution (with the parameters A, defects per 

module, U,, and a block size that is equal to the size of the chip - 4 x 4 modules), and the 
small area negative binomial distribution (with the parameters A, defects per module and 

U‘). 

Combining the Poisson distribution with the small area negative binomial distribution 
or with the medium area negative binomial distribution did not prove to be close enough to 

the empirical distribution. The small area negative binomial, on the other hand, provided 
a very good fit when combined with the large area negative binomial (di~L0.0085). The 
results appear in Figure 2 and in Table 2. 

We estimated the parameters for each of the models by performing an extensive search 
in the parameter space (under the constraint A m d d c  = 0.345). The resulting parameters 

appear in Table 1. This method of estimation proved to be very time consuming, especially 
for the models combining two distributions. Other possible approaches for obtaining esti- 

mators for the parameters of the combined models are the moment method, the maximum 
likelihood method, or the “least squares” method in which the sum of the squares of the 
differences between the theoretical and empirical yields is minimized. The theoretical yields 
for every block size R x C between 1 x 1 and 4 x 4 are: 

The empirical values of YRC, p ~ c ,  can be calculated for every (R, C), and “least squares” 

estimates for the parameters can be obtained. 

4. Separating the “low quality” ICs 

A different method of modeling the defects in large area chips is separating the ‘low 

quality” from the “high quality” chips by determining a “cut-off’ number of defects, such 
that a chip with this number of defects or more is considered of low quality and is ignored. 

The candidates for being a cut-off point are: the average number of defects per chip, the 
95th percentile (thus throwing away the worst 5% of the chips), or any value in between. 

Since the median in our sample has been 0, it is not suitable as a cutoff point. The average 

number of defects per chip has been 5.52, and 6 has, therefore, been selected as the f i s t  
candidate for a cut-off point. The 95-th percentile is 17, and 18 is another possible cut-off 

point. 

For every cut-off point C, we threw away all the chips with C defects or more, and tried 
to fit a defect distribution to the remaining chips. The relative frequency of chips with 
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m fault-free modules has been calculated (m = 0, ..., 16) and compared to the theoretical 

probability obtained from three yield models: The large area negative binomial distribution, 

the negative binomial distribution with a block size of 4 x 4 (equal to the chip size), and the 
negative binomial distribution with a block size of 2 x 2 (a quarter of a chip). The goodness 

of fit between the theoretical and empirical distribution has been measured by dif defined 
in equation (2). Figure 3 depicts the maximal differences between the cumulative frequency 
and probability, for 6 5 C 5 18 and the three theoretical distributions. As can be seen 
from Figure 3, the best fit has been obtained for the 2 x 2 block, for all cut-off points. 
Table 3 shows the implications of choosing a specific cut-off point, namely, the percentage 
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Figure 3: Maximum difference between theoretical models and experimental results. 

of chips that will be thrown away, the yield of the remaining chips, and the parameters of 

the theoretical yield model of the remaining chips. The latter can be used to calculate the 
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yield of the remaining chips in case they have some incorporated redundancy, or can be 
used as partially good chips. 

6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

0.1393 
0.1215 
0.1055 
0.0978 
0.0898 
0.0844 
0.0766 
0.0728 
0.0663 
0.0617 
0.0580 
0.0542 
0.0508 

Remaining 
yield 
0.5932 
0.5812 
0.5708 
0.5659 
0.5609 
0.5576 
0.5529 
0.5506 
0.5468 
0.5441 
0.5420 
0.5398 
0.5379 

I n  

Table 3: Implications of different cut-off values. 

5. Dependence on location 

We proceeded to determine whether any part of the chip or any specific area on the 

wafer is more prone to defects than the rest. Specifically, we compared the top half and 
the bottom half of the chip, the right half and the left half of the chip, the center and the 

boundaries of the chip, and the center and the boundaries of the wafer. 

To this end, we used statistical tests which are based on the Gaussian approximation and 

use averages and standard deviations of the number of defects per quadrant. The results 
are summarized in Table 4. We concluded that the number of defects on the boundary 

of a wafer is significantly larger than that in the inside area, and a similar conclusion can 
be reached for a chip. In addition, the number of defects in the top half of the chip was 

found to be significantly larger than that of the bottom half, while there is no significant 
difference between the right half and the left half. More exact statistical tests which will 

take into account the specific defect distribution need to be developed. The dependence 

of the number of defects on the location may require the modification of the yield models 

used. 
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Location 
Wafer boundary 

Wafer center 
Chip boundary 

Chip center 
Upper half of chip 
Lower half of chip 
Left half of chip 

Right half of chip 

Average number of Standard Deviation Statistical 
defects per quadrant significance 

2.154 24.60 
1.142 6.64 significant 
1.420 23.79 
0.740 10.24 significant 
1.860 17.82 
0.900 5.87 significant 
1.310 13.07 not 
1.450 13.48 significant 

6. Conclusions 

Several conclusions can be drawn from this analysis of 57 defect maps of large area 

ICs. First, the large area negative binomial distribution breaks down as the area of the 

chips increases beyond a certain point and new theoretical models are needed for yield 
calculations. Second, we could not determine the existence of any ”gross yield” effect. 
Instead, it is necessary to either throw away the chips with the most defects or to find a 

combinationof two probability distributions in order to get a good match with the empirical 
results. In addition, there seem to be differences in the number of defects which are the 
result of the location, within the chip and within the wafer. More accurate statistical tests 
need to be developed to verify these differences. 
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