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ABSTRACT

The previously proposed unified negative binomial distribution for projecting the
yield of defect tolerant integrated circuits is analyzed in this paper. The proposed
model is first extended to a more general case. Then, the derived yield expression is
validated through simulation. Finally, the new model is employed in the analysis of

empirical data from twelve defect maps.

1. INTRODUCTION

The negative binomial distribution (with the two parameters A and a) has been
recognized by many researchers as adequately describing the distribution of defects in
integrated circuits (e.g., [1]), since this distribution can model the clustering of defects
which has been observed in practice. However, for actual yield calculations {especially
when redundancy is involved), further assumptions such as large area clustering or

small area clustering have been used [3].

In an earlier paper [2] we suggested the addition of a third parameter, namely the
block size, to the existing two parameters of the negative binomial distribution. The

purpose of this parameter is to unify the existing yield calculations as well as to add
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a wide range of models (medium size clustering) that have not been deall with before.
The block size has been defined as the smallest area on the chip for which the defects
in two adjacent areas are statistically independent. In this earlier paper we presented
the formulas for calculating the yield of a chip as a function of the block size under
the simplifying assumption that both the chip and the block are linear arrangements
of modules. We showed that as the block size increases, the chip yield decreases, and
the optimal redundancy (i.e., the redundancy which maximizes the yield per chip area)

increases. Several methods of estimating the block size have been suggested as well.

In this paper we first extend the yield calculation to the two-dimensional case. We
then validate the analytical model using both simulation and some actual wafer maps
which have been analyzed using this model. Section 2 presents the yield equations and
the parameter estimation. The model validation appears in Section 3 and Section 4

concludes the paper.

2. YIELD MODEL

This section generalizes the results in [2] to the more realistic case, where the
chip and the block are two-dimensional. For completeness, we repeat here the model
description and the main assumptions. The problem we deal with is that of calculating
the yield of a chip consisting of N modules, out of which M are necessary for proper
operation and N — M are spares. The yield of such a chip is defined as the probability
that at least M of the modules are defect-free. We use as our fault model the commonly
used negative binomial distribution, i.e., the probability of = defects in an area of size
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where A4 and a, are parameters.

Since A4 1s the average number of defects in an area of size A, it must be propor-

tional to A and can be calculated by
\/h =AxA

where A is the average number of defects in a unit area. The parameter oy is a measure

of the size of the defect clusters and its dependence on the area A is not uniquely



determined. Two extreme cases were dealt with in the literature: One is large area

clustering, where a4 is fixed for all A’s,
Qg — .
The second is small area clustering, for which a, is linear in A, i.e.,
ay=AXa

where a denotes the clustering parameter corresponding to a unit area.

In order to unify the yield equations resulting from these two models and to add
a large number of “medium size clustering” models, the addition of a third parameter,
namely, the block size B, has been suggested in [2]. The block size is defined as the
smallest area on the chip for which the defects in two adjacent areas are statistically
independent, and inside which the defects are uniformly distributed. Intuitively, the
blocks form a division of the wafer into sub-areas in such a way that distinct defect

clusters are contained in distinct blocks.

We show next how the yield of a chip with redundancy can be calculated, assuming
that the defects on the wafer have a negative binomial distribution with a block size B.
For mathematical tractability we make the assumption that both the chip and the block
are shaped as rectangles with an integer number of modules. B, x B, = B modules
for the block and €, x C; = N modules for the chip. We choose as the unit area the
area of a module, and as the basic parameters the module parameters Anoq and Gmod-
For the sake of simplicity we denote these by A and «, respectively. Consequently, the

block parameters are Apoer = By - By - A and apoer = .

As was proven in [2], for an area consisting of D modules which is totally contained
within one block, the probability of exactly k defect-free modules can be calculated

using “large area clustering” as follows
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Unless the block size is very large, the chip area will be divided into several sub-
areas, each contained in a different block, and the number of defect-free modules in

the entire chip can be described as the sum of the numbers of defect-free modules in



each of the parts. Since these sub-areas are in different blocks, they are assumed to
be statistically independent with respect to the number of defects. The probability of
k defect-free modules in the entire chip can, therefore, be calculated either by using
the generating function technique or as a convolution. The details of the generating
function technique are given in [2]. Since the convolution technique is computationally

simpler, 1t is employed in this paper.

There are min(B;,C1) X min(Bz, C;) possible placements of the chip relative
to the block. Denote a placement by (H;, R,) where 1 < R; < min(B,,C;) and
1 < R; < min(B;,C;). The placement (R;, R;) determines the way the chip is divided

into complete and partial blocks. For given values of R; and R, denote:

Qu'.mwu
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Note that C; = Ry + nqy x By + mq, Cy = Ry + na X By + my, and that for ) < By,
ny = 0 and my = Cy — R;. Similarly, for C; < By, ny = 0 and my; = (3 — R;.

Once R, and R, are determined, the chip is divided into (at most) 9 disjoint

sub-areas in the following manner (see Figure 1):

(1) 1 (possibly) partial R; x R, block.

(2} n, (possibly) partial Ry x B, blocks.

{3) 1 (possibly) partial R, x m, block.

(4) ny (possibly) partial By x R, blocks.

(5) n1 x np complete By x B, blocks.

(6) n1 (possibly) partial By x m; blocks.

(7) 1 (possibly) partial m, x R; block.

(8) ma (possibly) partial m; x B, blocks.

(9) 1 (possibly) partial m; x m, block.
For C; < B; and C, < B,, only 4 sub-areas, namely, areas 1,3,7 and 9 exist,

To calculate the yield of a chip with redundancy, we need to find the probabilities
P(J = k), where J denotes the number of defect-free modules in a chip. These prob-
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abilities are first calculated for a given placement (R;, R;), and then averaged over all

possible placements.

Denoting by J; the number of defect-free modules in sub-area i, (i = 1,...,9), we

have

Since the J;'s are statistically independent, the probability function of J is the convo-
lution of the probability functions of Jy, ..., J, namely,

PRRNJ =)= Y P(Jy=k)P(Jr=h)- - P(Jo = ko). (3)
ky+-+ko =k

The superscript { Ry, Rz) indicates the dependence of the probabilities on the placement.

For simplicity, it is omitted in the notation P(J; = k;), although these probabilities
clearly depend on (R, Ra).

To calculate the probability functions of J; {for given (Ry, Rp)), we need to dis-
tinguish between ¢ = 1,3,7,9 and @ = 2,4,5,6,8. Fori = 1,3,7,9 the sub-area is

contained in one block, and
P(J; = k) = a{k;, Di) (4)

where a(k, D) is defined as in equation (2) and D; is the number of modules in sub-area
i, namely,
bw = .mwmwu» .Uu = MNHSN‘ .U..__ = SH.NN&_ bw - miMms.

For i = 2,4,5,6,8, sub-area 1 is itself divided into several parts, each contained in a
different block. These parts have equal dimensions and are statistically independent.
Denote by s; the number of those parts, by D; the number of modules in each of them
and by k;; the number of defect-free modules in part j of sub-area ¢ (7 = 1,...,5;,
i=2,4,5,6,8), then,

bOﬁ,w- = un.v = M Q.:nu.f .U& QAW-.MH bﬂv v D\ﬁk..u..ubu.v Amv
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where 83 =mn,, D= RiB;, 34=n, Dy =B R;, s5=mniny, Ds = BBy, 385=mn,

bm”muﬂﬂvuu g =Tig m._.‘_,_.ﬁw bm”.ﬁ;umu.



Equations (4) and (5) are now substituted into (3), and (3) is averaged over all
possible placements ( R;, R;),

1 min(B1,C1} min(B2,C2)

P(J=k)= > Y PRI =k).  (6)

min{ By, C1) x min(B,,Cs) g Rz=1

The yield of the chip can now be calculated using

Y(Chip) = P(J > M) = W P(J =k). (7)
k=M

The calculation of the yield according to equation (7) requires the knowledge of the
parameters A, &, B; and By, and the correct estimation of these parameters is crucial to
a precise yield prediction. Estimating A and o is discussed in the literature (e.g., [5]). A
can be estimated from the average number of defects per module. Given W wafers with
S modules each, let X; denote the number of defects in module i (i = 1,...,§ x W),
then,

1 Sx W

A=——%Y X; 8

SxW ®
where A denotes the estimate of the parameter A. The estimation of « is slightly
more complicated since it depends on the assumed block size. For a given block size
(B1, By}, a( B1, Bz) can be estimated as follows. Let Yg, 5, denote the fraction of defect-

free (B; X B,) blocks out of all given mm%ﬁu blocks of this size. Then, &(B, B,) is the

solution of the equation

M —a(B1,B;)

(B, B) )

Y, B, = |1+

We suggest two methods of estimating the block size ( By, B;), one is based on the values
obtained for &(By, B,), and the other is based on the Chi-square test for statistical

independence.

The first method utilizes the fact (proven in [2]) that the parameter o remains
constant within a block and increases when the area consists of several blocks. In this

method, a(, 7) is estimated for every potential block size (7, 7) and the values of &(3, 7)
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ate arranged in matrix form. We then search for the largest (i,7) for which &(7,7) is

still close to &(1,1), and this (i, j) is used as an estimate of (B, Ba)-

The second method is based on the assumption that the different blocks are
statistically independent with respect to the number of defects. The block size in this
method is determined in two steps, first B; and then B,. For every potential block size
(i,7), each wafer is divided into blocks of size (z,7 ). To determine the value of By, a
Chi-squate statistic is calculated, for every (3, j), to test independence between every
two vertically neighboring blocks. The resulting values are then arranged in matrix
form. The index i of the first row for which the Chi-square values are significantly
lower than those of the other rows is chosen as B;. Similarly, B; 1s determined by
testing for independence between horizontally neighboring blocks, and by choosing the
index j of the first column whose values are significantly low. The two methods for

estimating ( By, B;) are demonstrated in the next section.

3. MODEL VALIDATION

This section is devoted to validating the above formulas, using simulated wafers
first and then empirical data obtained from twelve defect maps of wafers manufactured

by IBM [4].

As a first step, 10,000 wafers of size 24 x 24 modules each were simulated, using
the parameters: A = 0.1, « = 0.25, and a block size of 2 x 3 modules. The parameters

A, a, B, and B, were then estimated based on the simulated wafers.

o~

The estimate obtained for A was A = 0.1007. The matrix of the & estimates for
block sizes between {1 x 1) and (8 x 8) is given in Table 1. The two Chi-square tests
(one for rows and one for columns) have been performed for the same block sizes, and
the resulting statistics are presented in Tables 2 and 3. The block size (B, B;) can
be found either from the a matrix or from the Chi-square matrices. Observing the a
matrix (Table 1), it is easily seen that the value 0.26 in the (2, 3) position is the farthest
entry which is close to 0.28. We therefore deduce that the block size is (2 x 3). The
same conclusion is reached by observing the Chi-square matrices. In the rows matrnx
(Table 2), line 2 is the first to have very small numbers (and so does every row whose
index is a multiple of 2). In the columns matrix (Table 3), column 3 is the first with

significantly low values (so is column 6, since 6 1s a multiple of 3). The block size is,
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therefore, estimated as (2, 3).

The estimated parameters were then used for yield calculations. A chip size
of 4 x 6 modules was selected, and the yield of this chip with d spare modules was
calculated in four different ways. This yield is the cumulative probability of d or less
defective modules, or the probability of N — d or more defect-free modules, denoted
by P(J > N — d) in the previous section. First, we found the actual proportion of
simulated 4 x 6 chips with 4 or less defective modules (d = 0,...,24). The theoretical
probability was then calculated using three yield models: The large area clustering
model, the small area clustering model, and the equations obtained from the block
model. The results are depicted in Figure 2. As expected, the block model provides
the best fit in this case. In addition, we can see that for d > 2, the large area clustering
model underestimates the yield, while the small area clustering model overestimates
it. For very small values of d, three of the graphs almost coincide but the small area

clustering model underestimates the yield.

As a second step for validating the proposed yield equations, we analyzed 12 wafer
maps manufactured by IBM [4], each consisting of 24 % 24 modules. We first estimated

A and obtained X = 0.1089. We then estimated « for every possible block size between
(1 x 1) and (12 x 12), and the results are presented in Table 4. (Block sizes larger than
(12 x 12) have not been considered.) The Chi-square tests for independence were then
performed, and the resulting statistics appear in Tables 5 and 6. The determination
of the block size based on Tables 4, 5 and 6 is not as straightforward here as it was
in the case of the simulated wafers. The empirical data include only 12 wafers, which
is a very small number for statistical purposes. We, therefore, have to combine both
methods of the block size estimation and consider all three tables simultaneously. By
combining the information in Tables 4, 5 and 6 we estimated the block size (Bi, B,) to
be (10 x 8).

We then proceeded to compare the empirical and theoretical yield of a chip of
size (10 x 11) modules. The yield of this chip (as a function of the number of spare
modules, denoted by d) was calculated using both the large area clustering model and
the block model with a (10 x 8) block. The results were then compared to the empirical
proportion of chips with d or less defects in the actual wafer maps, and are depicted
in Figure 3. As can be seen, the large area clustering model is more accurate for very
small values of d. For d > 2, however, the block model with a (10 x 8) block provides



a much better fit to the empirical results.

To determine the sensitivity of the yield estimation to the exact choice of the
block size, three other block sizes have been chosen: (10 x 7), (10 x 9) and (10 x 6), and
the estimated yield of a (10 % 11) chip was calculated for each one of them. The results
appear in Figure 3, and they demonstrate that if the deviation from the “correct” block
size is small, so is the deviation of the predicted yield from the empincal results. This

deviation increases as the error in estimating the appropriate block size increases.

4. CONCLUSION

The recently proposed generalization of the well-known negative binomial yield
model has been mbm._,%uam in this paper. It has been demonstrated (using simulation
and empirical data) that in certain situations the more general model provides a more
accurate yield projection compared to the previously suggested models. Additional
analysis of empirical data needs to be performed to gain better understanding of the

circumstances under which the more general model has to be employed.
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Figure 1: A placement of a 4 x 6 chip relative to 2 x 3 blocks, Ry =1, R, =2.
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0.28 0.33
0.27 0.32
0.48 0.56
0.50  0.60
0.68 0.85
0.72 0.90
093 1.16
098 1.21

0.26
0.26
0.48
0.50
0.70
0.73
0.95
0.98

0.46 0.50 0.50 0.67
0.46 0.51 0.50 0.68
0.83 096 093 1.28
0.80 1.03 098 137
1.27 146 141 194
1.34 154 1.48 206
1.72 198 1.91 265
1.79 2.06 1.98 2.75

0.75
0.76
1.44
1.53
2.19
2.32
297
3.02

Table 1: The o matrix for the simulated wafers.

220683.34 203881.48 245000.22

0.28
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1.88

1234.57 1049.30

4.44

300.75 289.79

5.97

10.27 1.15
8§798.31

10.22 5.87
1191.06

10.7¢ 0.71
278.46

10.63 4.01

136178.55 96182.90 115760.10

3.07
4260.57
1.94
550.32
0.78
111.66
0.45

3.10

2917.43

2.66

302.30

2.76

73.70

1.03

5.14
3280.47
2.67
347.95
1.14
72.53
2.63

71963.05
3.21
1825.31
1.81
158.85
0.43
40.11
5.61

Table 2: The Chi-Square matrix for the rows of the simulated defect maps.

100686.63
113273.83
58799.13
54168.29
30668.13
34574.99
22257.25
24383.17

Table 3: The Chi-Square matrix for the columns of the simulated defect maps.

36679.00
35649.67
18425.02
16258.17
8739.49
9604.63
5940.09
6195.51

0.07
0.56
1.43
3.63
1.22
0.65
2.30
3.18

4294.11
4179.13
1926.59
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880.34
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518.31

993.03
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181.54
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104.04

78.54
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1.41
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1.06
2.22
3.37
5.95
2.67
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354.57
244.62
99.11
84.79
70.72
40.53
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620.23
262.97
150.38
66.78
55.49
32.58
23.38

71715.63
7.33
1715.88
6.53
171.62
5.22
25.26
3.56



1.10
0.53
0.48
0.41
0.38
0.46
0.46
0.44
0.43
0.45
0.48
0.52
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0.44
0.44
0.42
0.39
0.45
0.48
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0.43
0.47
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171.28 136.12
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63.86
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37.03
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67.18
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10.59

0.52
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0.40
0.35
0.36
0.36
0.33
0.42
0.38
0.43
0.37
0.41
0.42
0.45

0.91
0.61
0.56
0.54
0.44
0.64
0.57
0.65
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0.45
0.51
0.53
0.59

0.57
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0.43
0.39
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0.46
0.44
0.47
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0.66
0.60
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0.64
0.70
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0.71
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0.83

0.74 0.56 0.48

0.67
0.60
0.65
0.57
0.69
0.73

0.59 0.48
0.54 0.45
0.59 0.49
0.49 0.45
0.62 0.53
0.656 0.54

0.80 0.70 0.58
0.64 0.55 0.49
0.68 0.58 0.56

0.72
0.91

Table 4: The a matrix for the twelve defect maps.

317.19
177.73
108.27
72.70
32.61
44.02
12.05
6.87
7.90
7.73
10.49
10.40

271.23 181.67
143.39  96.48
82.38 49.94
53.55  30.72
28.52 16.01
45.46  23.85
8.30 4.96
8.58 2.5%
4.55 0.52
6.05 3.37
7.73 3.27
9.80 5.48

206.04
112.24
72.63
41.25
18.75
28.68
11.48
4.29
13.13
5.67
11.46
12.95

126.49
84.16
36.31
26.25
14.95
21.04
10.61
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7.70
7.20

138.21 86.28
92.02 59.58
4543 31.22
31.16 22.00
21.06 10.09
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11.52 4.87

6.09 1.88
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3.67 0.96
6.57  0.49

0.62 0.60
0.87 0.72

89.99
53.39
28.56
20.61
7.94
5.69
4.42
4.13
4.56
24.77
10.62
10.24

Table 5: The Chi-Square matrix for the rows of the defect maps.

682.08 448.34
449.74 359.78
276.16 262.93
202.53 220.85
168.06 170.58
184.45 143.17
141.92 149.14
126.23 125.89

123.96
95.49
99.84

104.05

85.27
82.81
97.34
80.36

209.07
129.08
106.83
78.51
67.68
70.18
56.52
35.34
37.17
32.48
43.10
32.66
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23.05 22.66
18.22 1761
22.22  22.48
19.97  10.56
20.99 7.20

137.51
87.67
70.77
54.05
51.42
40.49
30.76
29.23
20.58
19.18
16.31
14.89

41.95
32.70
18.72
16.97
19.39
12.16
10.89
14.54

7.09
10.14
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3.73

67.89
31.36
20.26
14.12
18.95
11.12
13.60
13.19
9.58
9.29
8.61
5.27

47.57
24.53
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17.63
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14.60
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13.13
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48.19
30.38
25.59
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Table 6: The Chi-Square matrix for the columns of the defect maps.

108.44
58.25
34.22
18.33
10.49

8.23
4.35
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7.00
11.22
10.89
3.14

36.93
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21.05
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7.53
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33.35
19.86
9.80
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4.83
1.43
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35.79
15.34
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12.15
12.17
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