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A Statistical Study of Defect
Maps of Large Area VLSI IC’s

Israel Koren, Fellow, IEEE, Zahava Koren, and Charles H. Stapper, Fellow, IEEE

Abstract— Defect maps of 57 wafers containing large area
VLSI IC’s were analyzed in order to find a good match between
the empirical distribution of defects and a theoretical model.
Our main result is that the commonly employed models, most
notably, the large area clustering negative binomial distribution,
do not provide a sufficiently good match for these large area IC’s.
Only the recently proposed medium size clustering model is close
enough to the empirical distribution. An even better match can
be obtained either by combining two theoretical distributions or
by a ““censoring” procedure in which the worst chips are ignored.
Another goal of the study was to find out whether certain portions
of either the chip or the wafer had more defects than the others.

Index Terms— Defect maps, large area clustering model, low
quality IC’s, medium area clustering model, yield models.

I. INTRODUCTION

EFECTS MAPS of 57 wafers containing large area VLSI
Dchips were analyzed with several purposes in mind: To
find a good match between a theoretical yield model and
the empirical spatial distribution of defects; to determine a
criterion for distinguishing between “low quality” and “high
quality” chips; and to determine whether certain areas on the
wafer or on the chip are more prone to defects than others.
See Fig. 1 for an example of a defect map. In this figure, the
wafer is divided into 12 x 6 = 72 chips, and the circles denote
the locations of the defects found on the wafer.

The preliminary results of this study were reported in [5].
Unfortunately, the defect maps that were analyzed at that time
were found later on to include what seemed like systematic
defects along either horizontal or vertical lines, but were
actually introduced by the measuring equipment. We had
therefore, to remove these errors and repeat the analysis. This
paper contains the analysis results using the corrected wafer
maps, and includes new performance measures, graphs, and
statistical tests which do not appear in [5].

II. MATCHING A THEORETICAL DISTRIBUTION

The first objective of our study was to match a yield
model to the empirical defect distribution. The goodness of
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Fig. 1. An example wafer defect map with high defect density.

fit of a theoretical yield model to the empirical results can
be measured in two different ways, based on the random
variable of interest. One way is observing Dehip, the number of
defects per chip, and comparing its theoretical and empirical
distributions. An alternative method is through dividing the
chip into equally-sized modules, and comparing the theoretical
and empirical distributions of the random variable G chip»
defined as the number of defect-free (good) modules on a
chip. This measure is of interest when the chips have some
redundancy incorporated into them or can be used as partially
good chips, since in those cases the yield of the chip is
determined by the distribution of the number of its defect-
free modules rather than by the defect distribution. The first
method, i.e., that of comparing the defect distributions is more
detailed, and therefore, more sensitive to small deviations.
Comparing the good modules distributions is more robust and
may in some cases be sufficient. Both methods of comparison
are described and demonstrated next.

Denote by FD(k) the relative frequency and by PD(k) the
theoretical probability (according to some yield model) of
chips with k defects

PD(k) = Prob[Dchip = k], (/C = 07 1, 2, . )

Let CFD(k) and CPD(k) denote the cumulative relative fre-
quency and the cumulative probability, respectively, of k or
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less defects in a chip

k
k) =Y _FD(i),
i=0

To test the goodness of fit between the two distributions we
calculate the maximum absolute difference between CFD(k)
and CPD(k), denoted by DIFD.

DIFD = max |[CFD(k)
k>0

k
CPD(k) = Y PD(i)

— CPD(k)| (1

According to the Kolmogorov-Smirnov test for goodness of fit
[3], the fit between the two distributions is good if DIFD does
not exceed 0.022 (the critical value for a sample size of 3876,
which is the number of chips analyzed in this study, and for
a significance level of 0.05).

Similarly, denote by FG(m) and PG(m) the relative fre-
quency and the theoretical probability, respectively, of chips
with m defect-free modules, and by CFG(m) and CPG(m)
the cumulative relative frequency and cumulative probability,
respectively, of chips with m or less defect-free moduies.

PG(m) = PI'Ob[GChip = m]

Z FG(i Z PG(i)

In this paper, as explained later, the chip is divided into 16

CFG(m CPG(m

modules, and m, therefore, assumes the values 0, 1,. .. 16.
Using the same criterion as in (1), we define
DIFG = CF -
oglnagxlsl G(m) — CPG(m)| )

and accept the theoretical model (with a significance level of
0.05) if DIFG < 0.022.

In the past, the large area negative binomial distribution has
been successfully used to describe the distribution of defects
on a chip [1]. Denoting by D(A) the number of defects in
an area of size A (contained within a chip), the probability
function for this distribution is,

Prob[D(A) = k] = Prob(k defects in area A)
:F(k+aA) ()\A/OéA)k
k'F(aA) (1 + )\A/aA)k‘“"A

where A4 and a4 are the average number of defects and the
clustering parameter for area A, respectively.

To test whether the same distribution can be used for the
examined large area VLSI chips, we calculated the empirical
frequency of chips with k defects, k = 0,1,2,... . We then
tried to fit to it a large area negative binomial distribution,
with Achip = 2.056 (the average number of defects per chip
in our sample) and an cip which provided the best fit to
the empirical results. The cumulative empirical frequency of
chips with k defects or less and the cumulative theoretical
probability of k defects or less are depicted in Fig. 2.

Since the fit did not prove good enough, we divided every
chip into four equally sized quadrants, and divided each
quadrant into four equally sized modules. The chip is thus
divided into 16 modules. We compared the empirical cumula-
tive frequency of quadrants with k defects and of modules with

3

0.9

Cumulative
Frequency/ 0.8
Probability

Module -

frequency —+—
Module - probability -+—
Quadrant - frequency *—
0.7 -4 Quadrant - probability -e— e
Chip - frequency -o—
Chip - probability A—

0.6 L i L 1 L 1 I L I L ) I
9 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of defects

Fig. 2. Comparing the empirical cumulative frequency of the number of
defects in a module/quadrant/chip to the large area negative binomial model.

k defects to the corresponding large area negative binomial
probabilities, under the constraints Aquadrant = 0.514 and
Amod = 0.128 and the best aguadrant and @moq. The results
of these comparisons appear in Fig. 2. The conclusion that can
be drawn from Fig. 2 is that the large area negative binomial
distribution is not suitable for describing the defect distribution
of the given large area chips. The smaller the area, the better
the fit. In this case, the fit is best when the number of defects
per module is concerned, but it is very poor when attempting
to describe the defects on the chip as a whole.

We, therefore, tried to identify another theoretical yield
model for describing the spatial distribution of the defects.
We considered the following three probability distributions for
D(A) (the number of defects in an area of size A):

1. The Poisson distribution, according to which

k
e % )
II. The small area negative binomial distribution [8]. Consider
the module to be the basic unit of area and let any other area
be measured in these units. According to this distribution, the
number of defects per module, denoted by D04, is assumed
to have a negative binomial distribution, and the number of
defects in the different modules is assumed to be statistically
independent. The probability function of D(A), for an area of
size A which is an integer multiple of a module, will, therefore,
be the A-fold convolution of the probability function of Dy,04,
or

Prob[D(A) = k] =

A
Z Z HProb[Dmed = 1]

Prob[D(A) = k] =
iyt +iA=kj_1
=Yy [ e
i1+ +ia=kj=1 Z]T(amod)
y (Amod/®mod )™ )

(1 + /\mod/amod)ij_é_ozmod

III. The medium area negative binomial distribution [6] with
different block sizes, namely, 2 X 2, 2 x 3, 2 x 4, 3 x 3
and 4 x 4 modules. According to this distribution, the basic
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unit is a block consisting of R x C modules, the number of
defects in a block has a negative binomial distribution, and
the defects in distinct blocks are statistically independent. The
distributions of D(A) can be calculated (similarly to (5)) as
the convolution of the distribution of Dyjock (the number of
defects per block). For a thorough discussion of the medium
area negative binomial distribution see [6]. Note that the small
and the large area negative binomial distributions are special
cases of the medium area negative binomial distribution, with
block sizes of 1x 1 and 48 x 24 (the whole wafer), respectively.

Once a specific distribution out of the three mentioned above
is selected, and since the area of a module is the unit area and
the chip consists of 16 modules, the theoretical probability
function of Dcpip can be calculated as

PD(k) = Prob[Dchip = k| = Prob[D(16) = k]
(for k=0,1,2,...)
The probability function of G.nip has been calculated using

the inclusion and exclusion formula. The probability of m
defect-free modules in a chip, denoted by PG(m), is given by

) 16 16—m .
PG(m) = Prob[Genip = m] = (m) Z (-1y
7=0
x (16 J_ m)Prob[D(m +7)=0]
(form =0,1,---,16) 6)

Equation (6) assumes implicitly that the probability
Prob[D(m + j) = 0] is a function of the area size m 4 j only.
Note that although, for a general spatial defect distribution,
the distribution of D(A) depends not only on the size A
of the area but also on its shape and location, this is not
the case for the Poisson, large area negative binomial, and
small area negative binomial distributions. For these three
distributions, Prob[D(A) = k] is a function of A only. When
using the medium area negative binomial distribution, for
which the probability function of D(A) does depend on the
shape of the area, a slightly different version of (6) is used
(as can be found in [6]).

The parameters for the different distributions have been
estimated so as to minimize the maximal differences DIFD
and DIFG under the constraint \j0q = 0.128 (the empirical
average). The empirical and theoretical cumulative distribu-
tions for Dy;p (defects per chip) and G cpip (g0od modules per
chip) are depicted in Figs. 3 and 4 and the maximal differences
appear in Tables I and II, respectively.

Note that when comparing the empirical distribution of
defects per chip to the different probability distributions (Fig.
3), the curves of the large area and the small area negative
binomial distributions almost coincide (although both are quite
far from the empirical curve). This is an artifact of the
numerical search for the “best” values of opip and amoq and
the similarity of the expression for Prob[D(A) = 0] in these
two distributions. This, however, is not the case in Fig. 4,
where the two distributions have distinctively different curves.
Fig. 4 depicts the distribution of the number of defect-free
modules per chip, and this number depends heavily on the
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Fig. 4. Comparing the empirical cumulative frequency of the number of
defect-free modules in a chip to theoretical distributions. (Inset shows detail).

clustering pattern and not only on the number of defects in
the chip.

As can be seen in Tables I and II, out of the single
probability distributions mentioned above, only the medium-
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area negative binomial with a block size of 2 X 3 had
a satisfactory match with the empirical distribution of the
number of defect-free modules per chip. For this probability
model we obtain a maximal difference DIFG = 0.0164,
which is below the limit of 0.022. (For DIFG = 0.0164,
the theoretical model will be rejected only if the significance
level chosen is greater than 0.25, which is usually considered
too large). However, for the same distribution we obtain
DIFD = 0.0269 and the fit is not good when defect distribution
is considered rather than good modules distribution (with a
difference of 0.0269, the hypothesis of fit will be rejected at a
significance level which is greater than or equal to 0.007). A
different modeling approach should, therefore, be taken.

The two other approaches which we attempted were: to
search for a combination of two defect distributions that
will match the empirical distribution, or to remove those
chips with a very large number of defects and try to fit a
probability distribution to the remaining chips. These two
approaches are described in the next two sections. Note that
they are not equivalent, and each can be used for different
purposes. The first approach should be used if the yield of all
the manufactured chips is to be estimated, while the second
is appropriate if the worst chips are discarded and we are
interested in the yield of the remaining chips.

III. COMBINING TWO PROBABILITY FUNCTIONS

Observing the defect maps indicates that the defects can
be viewed as originating from two sources: systematic and
random, or heavily clustered and less heavily clustered (see,
for example, Fig. 1). To verify this observation, we calculated
the clustering measure « 4 for the different area sizes A
between 1 x 1 and 4 x 4 modules. For a given area size A,
a4 was calculated as the solution of the equation

—aa
Ys= <1+/\—A)
o4

where V4 is the empirical yield of an area of size A and A4 =
0.128 - A. A constant value of a4 for every A would indicate
large area clustering, while values linearly increasing with A
would indicate small area clustering. The calculated o 4’s were
neither constant nor linearly increasing, but increased in a less
than linear fashion. This again points to the presence of two
independent defect sources.

In the past, the presence of systematic defects has been
modeled by a “gross yield factor” [4]. This approach proved
suitable when calculating the theoretical distribution of Gcpip,
and is equivalent to combining two distributions; one is the
random defect distribution (usually the large area negative
binomial) and the other models large defects which render
the whole chip faulty. According to this second distribution,
G chip can only assume two values, namely, 0 (good modules)
and 16 (good modules). When these two distributions are
combined, the result is a bi-modal distribution of Gcpip, With
one of the modes at 0. This approach is suitable for small
and medium area chips where the “gross yield” effect is
noticeable. It cannot be applied to our data since the empirical
distribution of Gcpi, did not have a mode at 0, probably

due to the large area of the chip. We, therefore, searched for
some other combination of two probability distributions which
would fit the data. We considered all combinations of two out
of the following three distributions: the Poisson distribution,
the large area negative binomial distribution, and the small
area negative binomial distribution. The medium area negative
binomial distribution has not been considered, since it by itself
has 4 parameters, and combined with some other distribution
we would have to search for 6 parameters.

The theoretical probabilities of Dp;p (the number of defects
per chip) and of Gni, (the number of defect-free modules
per chip) for a combination of two distributions have been
derived as follows. Denoting by D(A) the number of defects
in an area of size A, we assume that D(A) = D;(A)+ D2(A)
where D;(A) and D, (A) are statistically independent random
variables, denoting the number of defects of type 1 and of type
2, respectively, in the area of size A.

Since the chip is divided into 16 modules and assuming that
a module has an area of 1, Dep;p = D(16) and the probability
distribution of Dcpip, is the convolution of the two probability
distributions of D;(16) and D,(16),

PD(k) = Prob[Dchip = k] =

k
> Prob[Dy(16) = j] x Prob[Dy(16) = k — j]
3=0

9

The expressions used for Prob[D;(16)=j] and
Prob[D2(16) = k — j] appear in (3), (4), and (5) for the
large area, Poisson, and small area distribution, respectively.

The probability distribution of Gchip has been calculated us-
ing the inclusion and exclusion formula, as given by Equation
(6). Since D(A) = Dy(A) + D2(A) and D;(A) and Dy(A)
are assumed to be statistically independent, Prob[D(A) = 0] =
Prob[D;(A) = 0] - Prob{D2(A) = 0], and

i6—m

PG(m) = (13) > (—l)f'(16 ; m)Prob[D,(m +5)=0]
X ProlJ)[Dg(m +7)=0] ®

The expressions used for P[D;(m + j) =0} (: = 1,2) are
special cases of (3), (4), and (5) with k = 0. Specifically,

. ’\mo —Xchip
Prob[D;(m + j) = 0] = (1 + %-d) (large area)
chip

Prob[D;(m + j) = 0] = e~ M+ Amed (Poisson)

(1 + ’\"‘—"d) m]
mod
Combining the Poisson distribution with the small area

or with the large area negative binomial distribution [based

on (7) and (8)] did not prove to be close enough to the
empirical distribution of either D or G. The small area
negative binomial, on the other hand, provided a very good fit
when combined with the large area negative binomial (DIFD
= 0.0032 and DIFG = 0.0031). The results of the Dcyip

m+j

Prob{D;(m + j) = 0] = (small area)
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TABLE I
COMPARING THE EMPIRICAL CUMULATIVE FREQUENCY OF THE
NUMBER OF DEFECTS IN A CHIP TO THEORETICAL DISTRIBUTIONS

Poisson Large Small Medium | Medium | Combined
distri- Area Atea Area Area | Small Ar&
bution | clusteri lusteri lusteri luster: Large Ar.
48 x 24 block | 1 x 1 block | 2 x 2 block | 2 x 3 block | clustering
Maximal
‘ i 0.4107 0.0323 0.0324 0.0297 0.0269 0.0031
TABLE II

COMPARING THE EMPIRICAL CUMULATIVE FREQUENCY OF THE NUMBER OF
DEFECT-FREE MODULES IN A CHIP TO THEORETICAL DISTRIBUTIONS

Poisson Large Small Medium Medium Combined

distri- Area Area Area Area Small Ar.&

bution ) i 1 i 1 i 1 i Large Ar
48 x 24 block | 1 x 1 block | 2 x 2 block | 2 x 3 block | clustering

Maximal
difference

0.4107 0.0685 0.1087 0.0273 0.0164 0.0032

comparison appear in Fig. 3 and Table I, while the resuits
of the Gchip comparison appear in Fig. 4 and in Table II.

As mentioned before, we estimated the parameters for each
of the models by searching through the parameter space, so
as to minimize the maximal differences DIFD and DIFG
under the constraint A4 = 0.128 (the empirical average).
This method of estimation is similar, but not identical, to
the maximum likelihood estimation method, and proved to be
very time consuming. Other possible approaches for obtaining
estimators for the parameters of the combined models are
the moment method, the maximum likelihood method, or the
“least squares” method in which the sum of the squares of
the differences between the theoretical and empirical yields is
minimized. The theoretical yields for every block size R x C
between 1 X 1 and 4 x 4 are:

YRC = PI‘Ob[D](RC) = 0] . PI‘Ob[Dz(RC) = 0} (9)

The empirical values of Yrc, }A’Rc, can be calculated for every
(R,C), and “least squares” estimates for the parameters can
be obtained.

IV. SEPARATING THE “LOW QUALITY” ICS

A different method of modeling the defects in large area
chips is separating the “low quality” from the “high quality”
chips by determining a “cutoff” number of defects, such that a
chip with this number of defects or more is considered of low
quality and is ignored. This procedure can be justified in two
different ways, practical and theoretical. Practically, some IC
manufacturers actually throw away the heavily defective chips
and deal with the rest. Theoretically, there exists a statistical
method in which “outliers™ (i.e., observations which seem to
be very different from the rest) are ignored when the analysis
is performed.

The candidates for being a cutoff point are: the average
number of defects per chip, the median (thus throwing away
the worst 50% of the chips), the 95th percentile (thus ignoring
the worst 5% of the chips), or any other suitable percentile. In
our sample, the median number of defects per chip is 0 and
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the average is 2.06, both too small to serve as cutoff points.
The 90th percentile is 6, while the 97.5 percentile is 18. Any
value between these two is a reasonable cutoff point.

For every cutoff point C, we “threw away” all the chips
with C defects or more, and tried to fit a defect distribution to
the remaining chips. The relative frequency of chips with m
defect-free modules has been calculated (for m = 0,...,16)
and compared to the theoretical probability obtained from four
yield models: The large area negative binomial distribution,
the small area negative binomial distribution, the medium area
negative binomial distribution with a block size of 2 x 2, and
the medium area negative binomial distribution with a block
size of 2 x 3. The goodness of fit between the theoretical and
empirical distribution has been measured by DIFG defined
in (2). Fig. 5 depicts the maximal differences between the
cumulative frequency and probability of Gcpip for 6 < C < 18
and the four theoretical distributions. As can be seen from Fig.
5, the best fit has been obtained for the 2 x 3 block, for all
cutoff points. Note that the large area clustering distribution
provides a reasonable approximation only for very low values
of the cutoff point, while the small area clustering distribution
provides a bad fit for all cutoff values.

Additional information that can be obtained by using the
“censoring” technique is demonstrated in Table III. Table III
shows the implications of choosing a specific cutoff point,
namely, the percentage of chips that will be thrown away,
the yield of the remaining chips ( i.e., Prob[Dchip = 0]), and
the parameters of the theoretical yield model of the remaining
chips. The latter can be used to calculate the distribution of
G chip Which is relevant when the chips have some incorporated
redundancy, or can be used as partially good chips.

V. DEPENDENCE ON LOCATION

When analyzing very large area chips, two types of ques-
tions come to mind. One is whether the different areas on
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the same chip are statistically dependent or independent with
regard to defects, and the other is whether any specific area
is more prone to defects than the other. The statistical tests
which are to be used to answer the second question depend
largely on the answer to the first question. If the different
areas are independent, then tests for independent samples have
to be used, while if they are dependent, then tests for paired
samples must be used. Another problem is—can tests based
on the normal distribution be used, or do we have to use
nonparametric tests.

We were interested in comparing the top half and the bottom
half of the chip, the left half and the right half of the chip,
the boundaries and the center of the chip, and the boundaries
and the center of the wafer, in order to detect any significant
differences with regard to the number of defects.

For each of these comparisons, we performed four different
tests, namely, the i-test for independent samples, the #-test
for paired samples, the Mann-Whitney test for independent
samples, and the Wilcoxon test for paired samples. The first
two tests are based on the fact that although the number of
defects per chip is not normally distributed, tests based on
the normal distribution can be used with good accuracy when
the sample size is very large (see [2]). The last two tests are
nonparametric and do not assume any specific distribution of
the defects. All four tests will be described next and their
numerical results are summarized in Table IV.

We first describe the tests comparing the top half and the
bottom half of a chip. Every chip was divided into four
quadrants, and the number of defects in each quadrant was
counted. Denote by z; and y; the number of defects in the
top quadrant and in the bottom quadrant, respectively, for pair
number : of adjacent quadrants. Since the sample consisted of
3876 chips, we had n = 7752 pairs (z;,y;).

Denote:

1
Sﬁzn_l<;wf—n$2>;
1 n
2 _ 2 2 1.
Sy-nl(;yz _ny)a

SV
Il
S
| [ =
—
TN
Nk
I
LN
|
3
U
(X}
N———’

where T, 7, and d are the average number of defects per top
quadrant, the average number of defects per bottom quadrant,
and the average difference, respectively. SZ, SZ, and S3 are
the unbiased estimates of the corresponding variances.

The test statistic used in the ¢-test for independent samples is

z-73

lindep. = —F————
,/S%/n + Sg/n

TABLE 1II
IMPLICATIONS OF DIFFERENT CUTOFF VALUES
Cutoff || % thrown | Remaining | A a
value | away chips yield
6 10.1% 59.3% 0.82 | 0.72
7 8.2% 58.3% 0.91 | 0.60
8 6.8% 57.6% 0.99 | 0.55
9 5.9% 57.0% 1.05 | 0.52
10 5.0% 56.6% 1.11 | 0.49
11 4.4% 56.2% 1.17 | 0.40
12 3.9% 56.0% 1.21 ] 0.39
13 3.5% 55.8% 1.25 | 0.37
14 3.2% 55.6% 1.29 1 0.35
15 2.9% 55.4% 1.32 1 0.35
16 2.6% 55.3% 1.36 1 0.34
17 2.3% 55.1% 1.41 | 0.34
18 2.0% 54.9% 1.45 0.29
TABLE IV
DEPENDENCE OF THE NUMBER OF DEFECTS ON LOCATION
Wafer boundary | Chip boundary | Upper half Left half
Test vs. vs. vs. vs.
Wafer center Chip center Lower half Right half
Average
t-test Difference —0.021 —0.533 —0.074 —0.018
for Standard
Indepe- Deviation 0.110 0.073 0.032 0.032
ndent t —0.195 —7.264 —2.282 —0.566
Samples | Significant?
(level=0.05) No Yes Yes No
Average
t-test Difference —0.021 —0.533 —0.074 —0.018
for Standard
Deviation 0.075 0.051 0.024 0.029
paired t —0.287 —10.416 —3.040 —0.635
Samples | Significant?
(level=0.05) No Yes Yes No
Mann- W — E(W) —184.5 —785283 —987700 —70474
Whitney | Standard
test for Deviation 176.45 98521 278537 278537
Indepe- z —1.045 —7.971 —3.546 —0.253
ndent Significant?
Samples | (level=0.05) No Yes Yes No
Wilcoxon | W — E(W) —116.5 —243876 —169681 —24242
test Standard
for Deviation 125.860 18415 31108 31479
paired z —0.926 —13.243 —5.455 —0.770
Samples | Significant?
{level=0.05) No Yes Yes No

The difference is significant if |tindep.| > 1.96 (at a signifi-
cance level of 0.05).

If the two samples are assumed to be correlated, the ¢
statistic to be used is

&l

tpaired =

n
S|

/n

and the difference is significant if |tpaired| > 1.96.

The two nonparametric tests are based on ranking the
observations rather than on the observations themselves,
and are therefore distribution-free [3]. In the Mann-Whitney
test for independent samples, the 2n = 15504 observations
Z1,.-.,%n,Y1,- - Yn are combined, and ranked from smallest
to largest. W is then defined as the sum of the ranks associated
with the z;’s. If there is no difference between the upper half
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and the lower half of the chip then

2 1 2(2
E(W) = n2n+1) o2 (W) = 2 +1)
2 12
Based on the central limit theory, the test statistic is
\ W — E(W)
- oW)

and the difference is significant if |z| > 1.96.

In the equivalent of the Mann-Whitney test for paired
samples, called the Wilcoxon test, the n differences d1, ..., d,
are ranked according to their absolute value from smallest to
largest, and W is the sum of the ranks associated with the
positive d;’s. If there is no difference between the upper half
and the lower half of the chip then

n(n + 1) n(n +1)(2n + 1)

E(W) = 2 =
(W) 1 and o*(W) o1
Based on the central limit theory, the test statistic is
- W — E(W)
- o(W)

and the difference is significant if |z| > 1.96.

The comparison of the left half and the right half of a chip is
done similarly, with z,, . . ., ,, denoting the number of defects
in the left quadrants and y1,...,y, denoting the number of
defects in the right quadrants (n = 7752).

To enable the comparison between the boundary of a chip
and its center, each chip has been divided into an outer and an
inner area of equal size. The number of defects in the outer
areas of the different chips is denoted by z1,...,z,, and the
number of defects in the inner areas is denoted by y1,...,Yn,
where n = 3876 is the number of chips. The four statistical
tests described earlier have now been performed using these
two samples. The comparison of the wafer boundary to the
wafer center is done by dividing each wafer into its outer layer,
with a width equal to half the chip’s width, and its inner area.
z1,...,ZT, denotes the average number of defects per module
in the outer areas, and vy, . .., y, denotes the average number
of defects per module in the inner areas (n = 57).

The numerical results are summarized in Table IV. Based
on these results, at a significance level of 5%, it is apparent
that all four tests result in the same conclusion, for any of the
four comparisons. Specifically, we conclude that the number of
defects in the center of a chip is significantly larger than that on
the boundary. In addition, the number of defects in the bottom
half of the chip was found to be significantly larger than that
of the top half, while there is no significant difference between
the right half and the left half. These observations may prove
to be of significance to the wafer fabrication process engineers.
Another important conclusion that can be drawn is that there
is no significant difference between the wafer boundary and
its center. This is in. contrast to the common belief that the
number of defects per chip goes up as the distance from the
center of the wafer increases.

The above conclusions can be reached whether the normal
approximation to the number of defects is assumed or not.
More accurate statistical tests must be based on the actual
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defect distribution, which can only be obtained given a much
larger sample of wafers.

VI. CONCLUSION

Several conclusions can be drawn from this analysis of 57
defect maps of large area IC’s. First, the large area negative
binomial distribution breaks down as the area of the chip
increases beyond a certain point and new theoretical models
are needed for yield calculations. The medium-sized area
negative binomial distribution can be used as a reasonably
accurate approximation. Second, we could not determine the
existence of any “gross yield” effect. Instead, it is necessary
to either “throw away” the chips with the most defects or to
find a combination of two probability distributions in order to
get a good match with the empirical results.

In addition, statistical tests (both parametric and nonpara-
metric) indicate that there are differences in the number of
defects which are the result of the location within the chip.
On the other hand, a “radial dependence” within the wafer has
not been observed.

Some of the above mentioned conclusions are specific to the
IC’s that we have analyzed and cannot be generalized to other
types of large area IC’s. However, the methods and principles
which we proposed here are universal and applicable to almost
any large area IC. Based on this and previous studies [6] we
believe that the defect distribution of most large area IC’s has
a medium size clustering factor in it. The block size, though,
will probably differ from one type of IC to the other, and from
one fabrication line to the other. Similarly, the exact nature of
the differences among the different areas on the chip in their
sensitivity to defects will depend on the specific chip type,
fabrication line and wafer run.
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