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A Unified Negative-Binomial Distribution for
Yield Analysis of Defect-Tolerant Circuits
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Abstract—It has recently been recognized that the yield of fault-
tolerant VLSI circuits depends on the size of the fault clusters.
Consequently, models for yield analysis have been proposed for
“large-area clustering” and “small-area clustering,” based on the
two-parameter negative-binomial distribution. We propose the
addition of a new parameter, the block size, to the two existing
parameters of the fault distribution. This new parameter allows
us to unify the existing models and at the same time add a whole
range of “medium-size clustering” models. Thus, we increase the
flexibility in choosing the appropriate yield model. We present
methods for estimating the newly defined block size and validate
our approach through simulation and empirical data.

Index Terms— Block-size estimation, defect tolerance, fault
clusters, negative-binomial distribution, VLSI circuits, yield.

1. INTRODUCTION

hen manufacturing fault-tolerant VLSI circuits, the

precise estimation of the yield is crucial since it
determines the amount of redundancy to be added to the
circuit. The accuracy of the estimated yield depends on the
statistical model selected to describe the spatial distribution
of manufacturing faults. We make the distinction between
physical defects and circuit faults. A defect is any imperfection
on the wafer, but only the fraction of defects that actually
affect the circuit operation are called faults. Since our purpose
is yield estimation, we concentrate in this paper on modeling
the distribution of faults rather than that of defects.

For some time in the past the Poisson distribution was used
to model the spatial distribution of faults on the wafer. This
implies that the faults occurring in any two distinct areas are
statistically independent, resulting in relatively simple yield
calculations. Researchers today agree that the distribution
of manufacturing faults has more clusters than predicted by
the Poisson distribution [1]. Several distributions that allow
such increased clustering of faults have been suggested, most
notably the negative-binomial distribution, which was shown
to have a good fit with actual fault distributions.
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The negative-binomial distribution has two parameters, X
and o. Assuming that the number of faults in an area of size
A has a negative-binomial distribution with the parameters A 4
and o4 enables the calculation of the probability of z faults
occurring in the given area, namely

Plaatz)  (Aa/oa)®

x'I‘(a;;) (1 + /\A/(IA)O‘/H'zl)
where ) 4 is the expected number of faults in area A, and a4 is
the clustering parameter for the considered area, measuring the
deviation from the Poisson distribution. The smaller its value,
the larger this deviation. In particular, (1) enables calculating
the probability of zero faults in area A that, if no redundancy
exists, constitutes the yield of this area

prob(z faults in area A) =

yield = prob(0 faults in area A) = (1 4+ As/a4)™ . (2)

In yield calculations, however, it is often desirable to
find probabilities pertaining to subareas of A (when some
redundancy exists in A) or to extrapolate the probability to
areas larger than A (when a larger circuit is designed). The
two parameters (A4, a4) are insufficient for any of these two
purposes. They only specify the probability of z faults occur-
ring in A but not the way in which these faults are distributed
over area A. Two negative-binomial random variables with
the same 4,4 may have completely different clustering
patterns and, consequently, different yield expressions when
areas either smaller or larger than A are concerned. Note that
the parameter A4 can be easily interpolated or extrapolated to
an area of any size A* by Aas = A4 - (A*/A). The parameter
«, however, can not be extended to an area other than A
without some additional information regarding the clustering
pattern.

Most of the proposed models for estimating the manu-
facturing yield of fault-tolerant VLSI circuits have noticed
this inadequacy of the two-parameter negative-binomial dis-
tribution and assumed “large-area clustering” {2]. Under this
assumption, the size of the clusters is comparable to the size
of the wafer, implying that the faults over the whole wafer
are correlated, that the number of faults in any subarea of
the wafer has a negative-binomial distribution, and that the
parameter « is constant for any subarea of the wafer.

“Small-size clustering” is discussed in [3]. Under this as-
sumption, the wafer is divided into small blocks that are
statistically independent. Any subarea of the wafer is assumed
to consist of a whole number of these blocks, and hence the
faults in any disjoint subareas are independent. In addition,
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the number of faults in any subarea has a negative-binomial
distribution, and the parameter « is proportional to the area.

Some papers ignore the clustering pattern altogether. An
attempt to deal with the size of the clusters has been made
in [4]; however, the approach there is impractical due to the
prohibitive number of parameters in the model. Muehldorf
[5] has presented a nonparametric method for determining
clustering, but no method for calculating the effect of clus-
tering on the yield is proposed. Another approximate model in
which clusters are mentioned is presented in [6]. The proposed
model assumes that every area on the wafer has a negative-
binomial distribution, which for medium-size clustering is
mathematically incorrect (as will be proven in Section II).
Moreover, no method for calculating the yield of a chip with
redundancy is suggested.

In this paper we do not attempt to define a cluster or to
investigate cluster sizes and their effect on the yield. Instead,
we view the clustering as an empirical phenomenon that is
the result of the wafer area being divided into subareas we
call blocks, such that the faults in distinct blocks are statis-
tically independent. The number of faults in each block has
a negative-binomial distribution, with a uniform distribution
within the area of the block. The faults in partial areas of the
same block are, therefore, correlated. We suggest the addition
of the block size as the third parameter of the spatial negative-
binomial distribution. This new parameter enables us to treat
in a unified manner “small-area clustering” and “large-area
clustering,” which until now have been treated in two different
ways, and “medium-area clustering” for which, to the best of
our knowledge, no satisfactory model has been developed.

The notion of “block size” (to be defined in the next section)
has several advantages over the previously used “cluster size.”
It can be defined mathematically, while we have not found
any satisfactory definition of the cluster size. Due to the exact
definition, statistical properties of the fault distribution can
be proven rigorously. One such property that is significant
for yield calculation is that the parameter o remains constant
as long as the considered area is confined within the same
block and increases when the area consists of more than one
block. The introduction of the block size also enables the
development of a unified approach to yield calculation for
the different “cluster sizes.” This provides more flexibility
in choosing an appropriate yield model, and can be used
in determining the sensitivity of the calculated yield to the
specific block size assumed.

The objective of this paper is, therefore, to introduce a
unified approach to yield analysis by adding a third parameter,
i.e., the block size, to the two existing parameters of the
negative-binomial distribution and to demonstrate its use when
calculating the yield of fault-tolerant circuits.

This paper includes several results presented in [7] and
[8]. These results are briefly reviewed here for the sake of
completeness. The paper is organized as follows. In the next
section we describe the yield model and define the suggested
parameter—the block size. Section HI demonstrates the use
of the block size in calculating the yield of a chip with
some redundancy in it. In Section IV we propose statistical
methods for estimating the block size for given empirical data.

Section V presents some numerical results that demonstrate
and validate the use of the block size in yield calculations.
Final conclusions are presented in Section VI.

II. THE MODEL DESCRIPTION

In our model, a chip consists of basic units called modules.
A module is a circuit block such as a memory subarray or a
digital-logic macro that is replicated in a chip. The area of a
module is assumed to be the unit area, and all other areas are
measured in these units. To illustrate the use of the suggested
third parameter for the unification of yield models we chose
the problem of calculating the yield of a chip consisting of
N identical modules, out of which M are needed for proper
operation and N — M are spares that can replace any of the M
modules if they are faulty. The same analysis can be applied to
the calculation of the yield of partially good chips, i.e., chips
that have no redundancy but can still be used (though to a
lesser degree) when some of their modules are faulty.

Any fault-tolerant circuit must include, in addition to the
functional modules, some control circuitry whose purpose is
to reconfigure the fault-free modules into an operational chip.
In this paper we do not take this circuitry into account, since its
inclusion in the calculation will only complicate the equations
and will not add any insight into the fault model. Our model
does allow the inclusion of the control circuitry in the yield
calculation without assuming statistical independence between
the functional and control circuits, but the specific layout of the
circuit has to be considered in this case as further explained
in Section III

We further assume that a wafer consists of W modules and
that the number of faults per wafer has a negative-binomial
distribution with parameters (A, @, ). The yield of the chip
is the probability that at least M out of the N modules are
fault-free, a probability whose calculation involves dealing
with subareas of the chip. Hence, as explained before, the two
parameters (), o) are insufficient and a third parameter is
required to indicate which subareas within the wafer (and,
consequently, within the chip) are statistically independent
with respect to manufacturing faults. We suggest the use of
a parameter called block size defined as follows.

Definition: The block size is the smallest number B such
that the wafer can be divided into disjoint areas of size B
modules each, so that these areas are statistically independent
with respect to manufacturing faults.

The relationship between the block size and the cluster
size is not very clear, mainly because there is no rigorous
definition of the term “cluster size.” Intuitively, the blocks
form a division of the wafer into subareas in such a way
that distinct fault clusters are contained in distinct blocks.
However, actual clusters can be either smaller or larger than B.

In the next theorem we state several properties of the block
size. In particular, we prove that the block possesses the same
property formerly attributed to the cluster, namely, that the
parameter « is constant for all areas within the same block
and increases linearly with the number of blocks included in
the given area.
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Theroem 1: Let the number of faults in the wafer have a
negative-binomial distribution with parameters (A, a.,) and
block size B, and let W denote the wafer size (measured in
number of modules), then

1) The number of faults in a block has a negative-binomial
distribution with parameters (s, o), Where

A1.L) Ay

MEWE T WiB

©)
and the block-size parameter equals B.

2) For any area of size A contained in one block, the number
of faults has a negative-binomial distribution with parameters
(A/BMAy, ap) and block size A.

3) For any area consisting of C' complete blocks, the number
of faults has a negative-binomial distribution with parameters
(CAs, Cap) and block size B.

Proof: The proof of all three parts of the theorem is
based on the generating function of the negative-binomial
distribution. Let P(z) denote the probability function of a
negative-binomial random variable with parameters (A, ), and
let T'(z) denote the corresponding generating function. Then,

T(z) = P(z)s"
z=0

_w=Ta+z) Ka)®
'; 20(a) (1+ Ma)or="

(e 0=y ®

Let T,(2), Tp(2), To(2), and T.(2z) denote the generating
functions of the number of faults in the wafer, in a block,
in an area of size A contained in a block, and in an area
consisting of C' blocks, respectively.

1) Since there are W/ B independent blocks in the wafer

To(2) = (To(2)) ®
hence
Ty(2) = (Tu(2)) 7

(i o)

Qo

_ B\ T
=(1+—-~—(1 BZ)WA“’> ©)

W Qw

The right most side of (5) is the generating function of a
negative-binomial distribution with parameters (VV%’ %)
The block size is clearly B.

2) Let Py(z), P,(x) be the probability functions of the
number of faults in the whole block and in the partial area
A, respectively. Given a fault in the block, its distribution
inside the block area is uniform and its probability of falling
within area A is A/B. Hence,

=S8 0-3)”
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and

To(2) = Y Pa(x)2”

=0 -
EEm ()@ (-8)

By interchanging the order of summation we obtain
T —ip(')i: AVEZ AP At
)= i=0 " z=o \7 B B
= . A zAY
=Zﬂm@—§+§)

=0

=T 1—A+ﬁ
- B B

Since
1—2)A)
Ty(z) = (1 + (__2)£>

ap

it follows that

A1) T
Ta(2) = (1 + L(—Z)_b> (6)

p

The last expression is the generating function of a negative-
binomial distribution with parameters (A5, 3). Since B is
the block size for the whole wafer and A < B, the block size
for the partial area must be A.

3) The C blocks are independent with respect to faults, each
having a generating function T}(z), hence

T.(z) = (Ty(2))°
—Cay
_ (1+ (1 _Z)/\b)

Qp

—Cayp
= (1 L 3=20% _CZ),,O/\I)> (7

which is the generating function of a negative-binomial distri-
bution with parameters (C Ay, Caip). The block-size parameter
is clearly equal to B.

Corollary: The module parameters (A, ,,) can be ob-
tained as follows

_ /\b _ /\w
A= 2= ®)
= v ©)
Om Op W/B

Proof: A module is a subarea of a block, hence (8) and
(9) follow directly from parts 1) and 2) of Theorem 1.
Notice that unless B = W (large-area clustering), there are
areas on the wafer for which the distribution of the number of
faults is not negative binomial. To be more specific, we state
the following theorem.
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Theorem 2: Let the number of faults in the wafer have a
negative-binomial distribution with parameters (A, @) and
block size B, and let E be the size of an area divided among
K blocks so that £ = Zfil A;, where A; is the size of
the subarea contained in the 7th block. The number of faults
in area E' has a negative-binomial distribution if and only if

A=Ay =..-=Ax = E/K.
Proof: Similarly to the proof of Theorem 1, let T;(z)
(¢ =1,---,K) and T.(2) denote the generating functions of

the number of faults in subarea A; and in area E, respectively.
Then,

3
&

[
o
oe
x

~
Il
—

o

A T
—"(1—2)/\1,
14 B “/7°
( ' ol
DI
ap

The last expression is a generating function of a negative-
binomial random variable if and only if 4; = Ay = - .- = Ag.
In this case, the parameters are ( %x\b, Kay) or, equivalently,
(Edm, Kapy).
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Remarks:

1) Cases 1-3 of Theorem 1 are special cases of Theorem 2.

2) If B = W, then for any area E on the wafer K = 1
and the distribution of the number of faults in £ is negative
binomial.

We have so far found the block parameters and the module
parameters given the wafer parameters and the block size
B. In our model the chip parameters are not meaningful
and are, therefore, not calculated. Since the chip area may
be divided unequally among several adjacent blocks, then
based on Theorem 2 the number of chip faults will not,
in general, have a negative-binomial distribution. Instead, it
will be the sum of several statistically independent negative-
binomial random variables.

Our objective is to calculate the probability that exactly &
out of the N chip modules are fault-free, based on the three
parameters Ay, ., and the block size B. Let the random
variable G be the number of fault-free modules in the chip,
then this probability can be denoted by Pg (k). For a chip with
N — M redundant modules, the yield can be calculated by

N
Y(chip) = > Pg(k). (10)
k=M

The equivalent yield (i.e., the expected fraction of operational
modules) of partially good chips is

N
k
Yeq = D wFa(k) (11)
k=M
where M is the minimal number of modules that have to be

fault-free for the chip to be usable. The calculations in the next

section will be based on the module parameters (A, @, ), but
as can be seen from (8) and (9) they are a function of the wafer
parameters (., ) and of the block size B.

III. YIELD OF DEFECT-TOLERANT CHIPS

To avoid complex geometric considerations, we assume that
both the chip and the block have rectangular shapes. The chip
has dimensions (C7,C3) with N = C; - C5, while the block
has dimensions (By,Bs) and B = B; - By. We discuss a
simple case first and the general case later.

A. A Simple Case

We first assume that B is a divisor of N and that every chip
covers exactly N/B blocks. This includes the case B > N
(i.e., the large-area clustering case) that is equivalent to B =
N. The following are three special cases:

(1) Small-Size Clustering: In this case B = 1, and all N
modules are assumed to be statistically independent. Pg(k)
can, therefore, be calculated using the binomial probability as
follows [3]

Pg(k) =(]Z) [(H i—:>—amr
e, Nk
: {1 - (1 + i—:)

(2) Large-Size Clustering: In this case B = N, which
implies that the faults within the entire chip are uniformly
distributed and that all sections of the chip are statistically
dependent. The probability Pg(k) for this case has been
researched extensively and the equivalence of most of the
proposed expressions has been proven in [2]. The probability
Pg (k) in this case is obtained by finding the probability of x
faults occurring in a chip and then distributing them uniformly
among the N modules in the chip. This results in

Pg(k) = a(k,N)

(12)

where the function a is defined by (see [2])

(7))

=0
(13)

a(j? A) =

(3) Medium-Size Clustering: ie.,1 < B < N.

To calculate Pg(k) in case (3), we have to utilize an
intermediate method, in which each block is considered in
its entirety, and the different blocks are then combined relying
on their statistical independence. This method includes (1) and
(2) as two extreme special cases.

Let G;,G be the random variables denoting the number
of fault-free modules in the éth block and in the entire
chip, respectively (i = 1,---,N/B). Gy,---,Gy/p are in-
dependent and identically distributed random variables and
G = Zf-V:/IB G;. For each block, the distribution of G; can
be obtained from (13), and the distribution of G can then be
obtained by using either convolution or generating functions.
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The generating-function technique is demonstrated in this
subsection, while the convolution technique is used in the next
subsection. Let ®¢,(z) and ®(z) be the generating functions
of G; and G, respectively, then

6 (2) = (e, ()", (14)
Note that the generating functions ®(z) are different from
the generating functions T'(z) used in the previous section.
The functions T'(z) characterize the number of faults in a
given area, while the functions ®(z) pertain to the number
of fault-free modules in a given area.

The generating function ®¢,(z) is based on the probability
function Pg, (k). Since G; is the number of fault-free modules
in one block, the “large-area clustering” equation must be used
to calculate its probability function, i.e.,

PGi(k) = (l(k,B)
(where a(k, B) is defined in (13).)
Since all G;’s are identically distributed, the resulting

generating function will not depend on ¢ but on the block
size B only.

og,(2)

B
Z PG'L(k) : Zk
k=0

B

> a(k,B)-2*

k=0
B B-k
B-k
-2 ()5 (")
(k Tam
( + +l ) -z~
Using the identity

()CT)= ()05

and substituting j for k + [ we obtain

B ()()( 2

j=01=0
e wle)

Jj=0

ot

P, (2) =
Summing over ! yields

P6.(2) (15)

The generating function of G (the number of fault-free mod-
ules in the entire chip), ®¢(z), can now be obtained from (14).
Note that for the special case B = N (large-area clustering)
we obtain

N

Bl )

P (2) = @c.(2) =

(16)
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while for B = 1 (small clusters)

0g(2) = (@a,(2)"

cam\ Y
= (1+(z—1)<1+%) m)

The generating function ®(z) can be used for calculating
the probabilities Pg(k) by

1 8tk
k'B k(I) ( )/ZZU'

Differentiating (16) k times and substituting in (18) yields

(13) for large-area clustering. Differentiating (17) k times and

substituting in (18) results in (12) for small-area clustering.
For the special case k = N (i.e., the chip is fault-free) we

)

Po(k) = (18)

have
o )<I> 1 B B 19
E c(2) = ( + K) (19)
which yields
B\ "B
Po(N) = (1+ a—’") . (20)
Substituting B = N we obtain
Nip,\ ™"
Pg(N) = (1 + —a—> (21)
while for B =
A —Nam
Pg(N) = (1 + aﬂ) (22)

which again are the well-known probabilities of a fault-free
chip for large-area clustering and for small-area clustering,
respectively.

B. The General Case

In practice, the size of the chip is not necessarily an integer
multiple of the block size, nor are the chip boundaries identical
to the block boundaries. We need, therefore, to generalize our
previous results to this more realistic situation. As before, we
choose as the unit area the area of a module and as the basic
parameters the module parameters A,,, and a,,. Consequently,
the block parameters are A\, = B - By - Ay, and oy = oy

Unless the block size is very large (comparable to the size of
the wafer), the chip area will be divided into several subareas,
each contained in a different block, and the number of fault-
free modules in the entire chip is equal to the sum of the
numbers of fault-free modules in each of the parts. Since
these subareas are in different blocks, they are assumed to
be statistically independent with respect to the number of
faults. The distribution of the number of fault-free modules
in each of these subareas can be obtained from (13), and the
probability of k fault-free modules in the entire chip can be
calculated using the convolution technique as detailed below.
(The generating function method has been demonstrated in
the previous subsection.)
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Fig. 1. A placement of a 4 Xx 6 chip relative to 2 x 3 blocks

(Bi=1LRy=2nm=ng=mi=mo=1).

There are min(B1, C1) x min(By, Cy) possible placements
of the chip relative to the block (where min is the minimum
function). Denote a placement by (R;, Ry) where Ry and R;
are the vertical and horizontal distances, respectively, between
the left top corner of the chip and the block boundaries, as
depicted in Fig. 1. Clearly, 1 < Ry < min(B,C;) and
1 £ Ry < min(By,C3). The placement (R;, Ry) determines
the way the chip is divided into complete and partial blocks.
For given values of R; and R, denote

Ci—-R
ny = {—13—11} ) mp = (Cl —Rl) mod B]

5]
ny = 5

—_— mo = (Cz - Rz) mod BZA

B,

Note that Cy = Ry +ny; X By +my, Cy = Ry+ns X By +mo,
and that for C; < By, n; = 0 and m; = C; — R;. Similarly,
for o < By, ng = 0 and my = Cy — Ra.

Once R; and R, are determined, the chip is divided into
(at most) nine disjoint subareas in the following manner (see
Fig. 1):

1) one partial block of size Ry x R,.

2) nyo partial blocks of size R; x B,.

3) one partial block of size Ry x ma.

4) n, partial blocks of size B; X R».

5) ny x ng complete blocks of size B; x Bs.

6) n; partial blocks of size By x m.

7) one partial block of size m; x R,.

8) no partial blocks of size m; x Bs.

9) one partial block of size m; X mo.

For C; < B; and C5 < By, only four subareas, namely, areas
1, 3, 7, and 9, are nonempty.

To calculate the yield of a chip with redundancy, we need
to find the probabilities Pg(k), where G denotes the number
of fault-free modules in a chip. These probabilities are first
calculated for a given placement (R;, Ry) and then averaged
over all possible placements.

Denoting by G; the number of fault-free modules in subarea
1, (@0 = 1,---,9), we have

9
G=ZG1-.
=1

Since the G;’s are statistically independent, the probability
function of G is the convolution of the probability functions
of Gy,---,Gy, namely

PERLE) (G = |) =

>

ks +-+ko=k

P(Gl = kl)P(Gz = kz) .. P(Gg — kg)

(23)

The superscript (R;, Ry) indicates the dependence of the
probabilities on the placement. For simplicity, it is omitted in
the notation P(G; = k;), although these probabilities clearly
depend on (R;, Ry).

To calculate the probability functions of G; (for given
(R1, R2)), we need to distinguish between i = 1,3,7,9 and
1= 2,4,5,6,8. For ¢ = 1,3,‘7,9 the subarea is contained in
one block, and

P(G; = k;) = a(k;, A;) (29

where a(k, A) is defined in (13) and A4; is the number of
modules in subarea i, namely

Ay =RiRy, As=Rimy, A7=Rom;, Ag=mims.

For + = 2,4,5,6,8, subarea 7 is itself divided into several
parts, each contained in a different block. These parts have
equal dimensions and are statistically independent. Denote by
s; the number of those parts, by A; the number of modules in
each of them and by k;; the number of fault-free modules in
part j of subarea ¢ (j = 1,---,3;, i = 2,4,5,6,8), then

P(G; = k;) =

2

kit tkizto ki, =k;

a(ki1, Ai)alkiz, A;) - - - a(kis,, As)

(25)

where s2 =nq, Ay = R1B,, s4=ny, Ag= B1Ry, 85 =n1n9,
A5 = Ble, Sg=mnj, AG = Blmz, 88 =Ny, and Ag =Bgm1.
Equations (24) and (25) are now substituted into (23), and
(23) is averaged over all possible placements (R1, Rs)
1
I'l’liI](Bl7 C]) X min(Bz, Cz)
min(B;,C1) min(B;,C,)

> PRR(G =),

P (k) =

Ri=1 Ry=1
(26)
Finally, the yield of the chip is
N
Y (chip) = Y Pg(k). e1))
k=M

In the above analysis the probabilities P(G; = k;) were
calculated for subareas that include modules only. If the chip
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includes some support circuitry as well, then the expression
P(G;=k;) for one or more subareas will have to be replaced
by P(G;=k; N support circuitry is fault-free). As a result,
the overall yield of the chip will depend upon the exact
placement of the support circuitry within the chip layout.

IV. ESTIMATING THE BLOCK SIZE

The correct estimation of all the model parameters, namely
(Am> 0tm), and the block size is essential for proper evaluation
of the yield of circuits with redundancy. The parameters Ay,
and a., can be estimated using standard estimation techniques
such as the moment method, the maximum likelihood method,
or curve fitting.

Given S wafers with W modules each, let X; denote the
number of faults in module ¢ (i = 1,---,5 - W) and X the
average of the X;’s, then,

—

. 1 S-W
)\m:X:S—_V—V—;X,- (28)

where X; denotes the estimator of the parameter Ap,.

To obtain a moment-method estimator for «,,, note that
when X has a negative-binomial distribution with (Ap, m),
then its variance V(X) is

Am
V(X)=An <1 + Zv_)' 29)
The estimator for the variance is
—— 1 g 2
V(X)) = —— 2-X".
X = 5o L XX (30)

Equating (29) and (30) and substituting X for A, yields the
following estimator for a.,

X

Um = —_— —- (1)
V(X)-X

A different estimator for a,, is obtained by “curve fitting”

[2]. Denote by Y, the fraction of fault-free modules out of

the S - W modules, then &, is the solution of the equation

—

A/\ —Qm
Om

The maximum likelihood estimator of o, can be found in [9].

The problem of determining the block size based on em-
pirical data is not a classical statistical problem. Simple
estimation based on averaging the sizes of actual clusters is
very difficult since, given a fault map, it is not always clear
what the boundaries of the clusters are. Moreover, even if
the average cluster size can be estimated, its relation to the
block size is not clear at this point. We, therefore, suggest two
nonstandard methods of estimating the block size, both based
on a procedure called “the quadrat method” or “the window
method” [2].

Assuming, as we did before, that the block is rectangular,
its size can be described by a tuple (By, Bz). The wafer is

(32
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divided into rectangular subareas (windows or quadrats) that
are increased at every step. Given S wafers with W modules
each, start with windows of size I = 1,J =1 and then
alternately increase I and J by 1 until the appropriate value of
the block size is reached. For each fixed value of (1, J) divide
all the given wafers into windows of size I x J (thus having
U = (S-W)/(I-J) windows), and then count the number
of faults in each window denoting by X; the number of faults
in window i, (i = 1,---,U).

The first method utilizes the fact (proven in Section II) that
the parameter o remains constant within a block and increases
when the area consists of several blocks. In this method,
a(I, J) is estimated for every potential block size (I,J), and
the values of &(I,J) are arranged in matrix form. We then
search for the largest (I, J) for which &(7, J) is still close to
@(1,1), and this (I, J) is used as an estimate of (B, B2).

The second method is based on the assumption that the
different blocks are statistically independent with respect to the
number of faults. The block size in this method is determined
in two steps, first B; and then Bj. For every potential
block size (I, J), each wafer is divided into windows of size
(I,J). To determine the value of By, a chi-square statistic
is calculated for every (I,J) to test independence between
every two vertically neighboring blocks. The resulting values
are then arranged in matrix form. The index I of the first
row for which the chi-square values are significantly lower
than those of the other rows is chosen as Bj. Similarly, B> is
determined by testing for independence between horizontally
neighboring blocks and by choosing the index J of the first
column whose values are significantly low. The two methods
for estimating (B, B2) are demonstrated in the next section.

V. MODEL VALIDATION AND NUMERICAL RESULTS

We first validate the newly proposed yield formulas by using
simulated wafers, then demonstrate the effect of the block
size on the yield and on the optimal amount of redundancy
to be incorporated in a chip, and finally test the block model
on empirical data obtained from 12 particle maps of wafers
manufactured by 1BM [10].

As a first step, fault maps of 10000 wafers, each of size
24 x 24 modules, were simulated. The goal of the simulation
was to validate the techniques suggested for estimating the
block size as well as the proposed yield equations. The
parameters used were Ay = 0.1, ap = 0.25, and a block size of
2 x 3 modules. The faults were simulated as follows: a number
of faults z were generated according to the negative-binomial
distribution with parameters (0.1,0.25) for each of the 960 000
blocks and then uniformly distributed among the six modules
in the block.

The parameters Ap, ap, Bi, and B, were then estimated
based on the simulated wafers. The estimate obtained for As
was )\, = 0.1007. The matrix of the a estimates for block
sizes between (1 x 1) and (8 x 8) is given in Table I. The
two chi-square tests (one for rows and one for columns) have
been performed for the same block sizes, and the resulting chi-
square statistics are presented in Tables II and IIl. The block
size (By, Ba) can be found either from the o matrix or from
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TABLE 1
THE o MATRIX FOR THE SIMULATED WAFERS

028 033 026 046 050 050 0.67 0.75
0.27 032 026 048 0.51 0.50 0.68 0.76
048 056 048 083 0.96 093 1.28 1.44
0.50 0.60 0.50 0.89 1.03 098 1.37 1.53
0.68 085 0.70 1.27 146 1.41 1.94 219
072 080 073 134 1.54 148 2.06 2.32
0.83 116 085 1.72 198 191 265 297
088 121 098 1.79 206 1.98 275 3.02

TABLE II
THE CHI-SQUARE MATRIX FOR THE ROWS OF THE SIMULATED DEFECT MAPS

220683.34 203881.48 245000.22 136178.55 06182.90 115760.10 71063.05 71715.63

0.28 10.27 115 3.07 3.10 5.14 3.21 7.33
8050.98 7101.01 8798.31 4260.57  2017.43 3280.47 1825.31 1715.88
1.88 10.22 5.87 1.94 2.66 2.67 1.81 6.53
1234.57 1049.30 1191.06 550.32 302.30 347.95 158.85 171.62
4.44 10.70 0.71 0.78 2.76 1.14 0.43 5.22
300.75 289.79 278.46 111.66 73.70 72.53 40.11 25.26
5.97 10.63 4.01 0.45 1.03 2.63 5.81 3.56
TABLE 111

THE CHi-SQUARE MATRIX FOR THE COLUMNS OF THE SIMULATED DEFeCT MAPS

100686.63 36679.00 0.07 4294.11 993.03 2.85 9033.73 697.09
113273.83 35649.67 0.56 4179.13 938.29 1.41 865.55 620.23
58799.13 18425.02 143 1926.59 416.69 0.68 354.57 262.97
54168.20 16258.17 3.63 1691.40 359.87 1.06 244.62 150.38
30668.13  8739.49 1.22 836.14 18154 222 99.11 66.78
34574.99  9604.63 0.65 880.3¢ 12598 3.37 84.79 5549
22257.25  5040.09 230 544.87 104.04 595 70.72 32.58
24383.17  6195.51 3.18 51831 78.54 2.67 4053 23.38

the chi-square matrices. Observing the o matrix (Table I), it
is easily seen that the value 0.26 in the (2,3) position is the
farthest entry close to 0.28 (the element in the (1,1) position).
We therefore deduce that the block size is (2 x 3). The same
conclusion is reached by observing the chi-square matrices.
In the rows chi-square matrix (Table II), line 2 is the first to
have very small entries (and so does every row whose index
is a multiple of 2). In the columns chi-square matrix (Table
II), column 3 is the first with significantly low values (so
is column 6, since 6 is a multiple of 3). The block size is,
therefore, estimated as (2, 3).

The estimated parameters were then used for yield calcula-
tions. A chip size of 4 x 6 modules was selected, and the yield
of this chip with d of its modules as spares was calculated in
four different ways. This yield is the cumulative probability
of d or less faulty modules, or the probability of N — d
or more fault-free modules, denoted by P(G > N — d) in
the previous section. First, we found the actual proportion of
simulated chips with d or less faulty modules (d = 0, - - -, 24).
The theoretical probability was then calculated based on three
different yield models: the large-area clustering model (13), the
small-area clustering model (12), and the equations obtained
from the block model. The results are depicted in Fig. 2. As
expected, the block model provides the best fit in this case. In
addition, we can see that for d > 2, the large-area clustering
model underestimates the yield, while the small-area clustering
model overestimates it. For very small values of d, three of
the graphs almost coincide but the small-area clustering model
underestimates the yield.

We then analyzed the effect of varying the block size on the
yield and on the optimal redundancy. We selected a wafer of
size 24 x 24 modules and a chip of size 3 x 3 modules, with

Yield

...%. Simulation results

...}. Large area model 4
; ...¢.. Small area model

0.2 ...0.. Block model 4

I ) 1 L L
0'10 2 4 6 8 10 12

Number of Spare Modules - d
Fig. 2. Comparing three theoretical yield models to simulation results.
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Fig. 3. Yield as a function of block size.

two spare modules (the chip requires at least seven modules
for proper operation). We fixed the values of the parameters
(Aw, ) and calculated the yield of the chip as a function of
the block size B. Fig. 3 shows the dependency of the yield on
the block size for three sets of the parameters (A, @), As
can be seen, in all three cases the yield decreases as the block
size increases. A possible explanation to this phenomenon is
that for a larger block size, the fault clusters tend to be larger
making it more likely to have more than two faulty modules
per chip. We can also conclude that for certain combinations
of (Aw, o) the projected yield is considerably lower for high
values of B (approaching large-area clustering) than for small
values of B.

We next investigated the effect of B (and that of the other
two parameters) on the optimal redundancy to be incorporated
in a chip. We chose a wafer of size 24 x 24 and a basic chip
of size 2 x 3 modules. We then added several spare modules
and calculated the equivalent yield (i.e., the yield divided by
the ratio between the area of the chip with redundancy and
its area without redundancy). Fig. 4 depicts the equivalent
yield as a function of the number of spare modules for
several sets of parameters. The optimal redundancy for a
given set of parameters is the number of spares for which the
equivalent yield achieves its maximum. The optimal amount
of redundancy clearly depends on all three parameters A, @,
and B. To isolate the effect of each of the parameters, we fixed
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Fig. 4. The equivalent yield as a function of the amount of redundancy. (a)
Aw = 280 and a,, = 10. (b) Ay, = 280 and B = 4. (c) oy = 15 and
B = 4.

two out of the three and let the third vary. As can be seen from
Fig. 4(a)~(c), the optimal redundancy is nondecreasing in each
of the parameters A, @, and B.

As a last step for validating the proposed yield equations,
we analyzed 12 particle maps of wafers manufactured by IBM
[10], each consisting of 24 x 24 modules. We first estimated
) and obtained A = 0.1089. We then estimated « for every
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TABLE IV
THE o MATRIX FOR THE TWELVE DEFECT MAPS

110 056 052 040 091 049 057 048 0.72 074 056 0.48
053 044 044 035 0.61 046 0.55 047 0.66 0.67 0.50 0.48
048 044 044 036 056 046 048 043 060 060 054 045
0.41 042 042 036 054 049 052 043 062 065 059 0.49
0.38 039 0.38 033 044 043 048 039 064 057 049 045
046 045 047 042 0.64 053 057 051 070 069 0.62 053
046 048 048 038 057 053 058 047 079 073 065 054
0.44 047 048 043 065 055 058 050 072 0.80 0.70 058
0.43 043 044 037 053 045 049 046 068 064 0.55 049
0.45 047 049 041 054 051 056 044 0.71 068 058 0.56
048 051 051 042 062 053 061 047 077 072 062 060
0.52 051 052 045 072 059 062 051 0.83 091 0.87 0.72

TABLE V
THE CHI-SQUARE MATRIX FOR THE ROWS OF THE DEFECT MAPS

347.86 393.96 317.19 27123 181.67 206.04 12640 138.21 86.28 89.99 108.44
350.84 225.44 177.73 143.39 06.48 11224 8416 92.02 59.58 53.30 58.25
17128 136.12 108.27 §2.38 49.94 72.63 36.31 4543 31.22 2856 3422 33.35
14200 95.66 7270 53.55 30.72 4125 26.25 31.16 22.00 2061 1833 10.86
63.86 56.39 3261 2852 1601 1875 1495 21.06 1009 7.94 1049 9.80
9298 67.18 44.02 4546 23.85 28.68 21.04 20.27 10.00 569 823 7.08
3113 1891 12.05 830 496 1148 1061 1152 487 442 435 483
32.15 1270 687 858 255 429 463 609 18 413 453 143
21.74  7.86 790 455 052 1313 660 3.24 378 456 7.00 537
20.20 11.42 773 6.05 337 567 1638 256 0.96 24.77 1122 535
2577 1375 1049 7.73 32T 1146 770 367 096 1062 1080 5.67
3703 1059 1040 9.80 548 1295 720 657 049 1024 314 753

1248
54.18

TABLE VI
THE CHI-SQUARE MATRIX FOR THE COLUMNS OF THE DEFECT MAPS

682.08 448.34 209.07 100.24 123.47 137.51 41.95 67.89 47.57 48.19 36.93
449.74 359.78 129.08 5237 57.48 87.67 32.70 31.36 2453 30.38 2494
276.16 262.93 106.83 50.36 4550 70.77 18.72 20.26 20.94 25.50 21.05
202.53 220.85 78.51 4058 33.66 54.05 16.97 1412 17.63 2221 17.38 13.58
168.06 170.58 67.68 36.02 2414 5142 1039 18.95 25.86 20.07 15.70 1347
184.45 143.17 70.18 33.07 28.80 4049 1216 1112 1460 14.01 1283 7.98
141.92 149.14 5652 21.81 1959 30.76 10.89 13.60 1547 1524 1248 7.20
12623 125.89 3534 23.05 22.66 20.23 1454 13.19 1883 1685 13.03 943
123.96 8527 3747 1822 17.61 2058 7.09 9.58 1587 1587 15.01 1215

0540 82.81 3248 2222 2248 1918 1014 929 16.66 16.72 11.89 1217

99.84 97.3¢ 4310 1997 1056 1631 6.6% 861 1313 1163 774 716
104.05 80.36 32.66 2099 7.20 1489 373 527 269 519 753 314

35.79
15.34
17.06

possible block size between (1 x 1) and (12 x 12), and the
results are presented in Table IV. (Block sizes larger than
(12 x 12) have not been considered.) The chi-square tests for
independence were then performed, and the resulting statistics
appear in Tables V and VI. The determination of the block
size based on Tables IV-VI is not as straightforward here
as it was in the case of the simulated wafers. The empirical
data include only 12 wafers, which is a very small number
for statistical purposes. We, therefore, have to combine both
methods of the block-size estimation and consider all three
tables simultaneously. By combining the information in Tables
IV-VI we estimated the block size (B;, Bz) to be (10 x 8).

Finally, we compared the empirical and theoretical yield of
a chip of size (10 x 11) modules. The yield of this chip (as a
function of the number of spare modules, denoted by d) was
calculated based on both the large-area clustering model and
the block model with a (10 x 8) block. The results were then
compared to the empirical proportion of chips with d or less
faulty modules in the actual wafer maps and are depicted in
Fig. 5. As can be seen, the large-area clustering model is more
accurate for very small values of d. For d > 2, however, the
block model with a (10 x 8) block provides a much better fit
to the empirical results.

To determine the sensitivity of the yield estimation to the
exact choice of the block size, three other block sizes have
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Fig. 5. Comparing the block model (with four different sizes of the block)
and the large-area clustering model to the measurements for a 10 x 11 chip.

been chosen: (10x7), (10x9), and (10 x 6), and the estimated
yield of a (10 x 11) chip was calculated for each one of them.
The results appear in Fig. 5, and they demonstrate that if the
deviation from the “correct” block size is small, so is the
deviation of the predicted yield from the empirical results. This
deviation increases as the error in estimating the appropriate
block size increases.

VI. CONCLUSIONS

A unified negative-binomial distribution for yield analysis
of fault-tolerant circuits has been presented in this paper.
By adding a new parameter, namely, the block size, to the
two existing parameters of the negative-binomial distribution,
we have unified the yield analysis for large-area clustering,
small-area clustering and medium-area clustering. We have
demonstrated through several numerical examples the effect
of the block size on the projected yield and consequently,
on the optimal amount of redundancy. We have proposed
methods for estimating the block-size parameter of the fault
distribution and demonstrated (through simulation and empir-
ical data) that in certain situations the more general model
provides a more accurate yield projection compared to the
previously suggested models. Additional analysis of empirical
data needs to be performed to gain better understanding of the
circumstances under which the more general model has to be
employed.
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