
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 8, AUGUST 1986

Analysis of a Class of Recovery Procedures
ISRAEL KOREN, MEMBER, IEEE, ZAHAVA KOREN, AND STEPHEN Y. H. SU, SENIOR MEMBER, IEEE

Abstract-Recovery procedures involving time redundancy in
the form of instruction retries and program rollbacks have
proved to be very effective against transient failures in computer
systems. A class of such recovery procedures is presented and
analyzed here, and the parameters of each procedure are
determined so that the system's operation is optimized. These
procedures are then compared in order to select the most
appropriate one for given system parameters.

Index Terms-Checkpoint, error latency, error recovery proce-
dures, instruction retry, intermittent faults, permanent faults,
program rollback.

I. INTRODUCTION

R ELIABILITY and availability of a computer system may
be increased by incorporating redundancy into the

system. This may be either hardware redundancy or software
redundancy (time redundancy) or both. Time redundancy,
i.e., repeating an instruction or a section of the program which
has failed, requires relatively few hardware and software
resources and has proved to be very effective against
intermittent failures which constitute the majority of failures
occurring in computer systems. By using time redundancy, the
system may recover from the effects of the fault at the cost of
the time needed to repeat an instruction, a section of the
program or the complete program. Various recovery strategies
may be used for this purpose, each consisting of several
recovery steps, which are applied successively as long as the
system has not fully recovered from the effect of the fault.

Several researchers have analyzed such recovery proce-
dures [1], [3], [8]-[10]. These works differ in some of their
assumptions (like the possibility of errors during recovery) and
in their objectives. Most of them are concerned with maximiz-
ing the system availability, while others have different goals
like minimizing the number of delayed transactions [1] or
minimizing the mean response time of transactions [3].
The main recovery technique analyzed in these studies is the

program rollback. Our purpose here is to analyze somewhat
more general recovery procedures which consist of instruction
retries in addition to program rollbacks. Our analysis also
takes into account the various types of permanent and
intermittent faults that may occur. All these types of faults

Manuscript received January 2, 1985; revised August 8, 1985. This work
was supported in part by the National Science Foundation under Grant
MCS78-24323.

I. Koren is with the Department of Electrical Engineering, Technion-
Israel Institute of Technology, Haifa 32000, Israel.

Z. Koren is with the Department of Computer Science, Technion-Israel
Institute of Technology, Haifa 32000, Israel.

S. Y. H. Su is with the Department of Computer Science, State University
of New York, Binghamton, NY 13901.
IEEE Log Number 8609401.

have different effects on the system's operation and therefore,
may have different recovery techniques which are effective
against them. In addition, we consider the possibility of faults
with a latency period, while a common assumption in most
previous works was the coincidence of error occurrence and
error detection.
The recovery procedures we examine in this paper are based

on two recovery techniques, namely, instruction retry and
program rollback. Whenever an error is detected (note that a
continuous error-checking mechanism is necessary for any
recovery procedure), an attempt to identify the failing instruc-
tion is made and this instruction is then repeated [2], [5]. The
instruction retry may fail because either the intermittent fault
persists, or the damage caused by the fault is so severe that
instruction retry is ineffective against it, or the faulty
instruction has not been correctly identified. Since the cost (in
wasted time) of instruction retry is considerably lower than
that of other recovery techniques, it might be worthwhile to
repeat the failing instruction more than once up to a predeter-
mined number of times (denoted by KT) to take care of
persistent faults.

If all KT instruction retries are unsuccessful, the second
recovery step, which is program rollback, is initiated. To
avoid having to repeat the program from its beginning, it is
common practice to periodically save sufficient information to
enable the system to restart the program at the last point at
which information was saved. These points are called check-
points and the intercheckpoint interval is one of the most
important parameters of the rollback technique [1], [3], [8],
[10].

If the rollback operation fails, we may declare that the
program has failed and resort to more severe methods of
recovery like reloading the entire program into memory and
restarting it. However, less costly steps like repeating the
rollback to the last checkpoint or even rolling the program
back to an earlier checkpoint may prove to be effective,
especially when intermittent faults with long latency periods
can be expected [6]. If all these recovery steps fail, one has to
debug the system in order to locate permanent faults.

In the next section, some definitions and notations are
introduced. In Sections III, IV and V, three different recovery
procedures are analyzed. These procedures are then compared
in Section VI for several values of system parameters.

II. PRELIMINARIES

The probability of a fault occurrence during the execution of
a machine instruction depends upon the functional units used
when executing the instruction and the execution time of the
instruction. A simple instruction using only a few system units

0018-9340/86/0800-0703$01.00 © 1986 IEEE

703

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 8, AUGUST 1986

is more likely to be executed successfully than an instruction
employing a large number of system units, since faults (and
especially intermittent ones) occurring in unused units are not
expected to introduce errors in the instruction's results.
Consequently, we partition the instruction set of the computer
system into N subsets. Two machine instructions are in the
same subset if their execution time is the same and the same
system units are used while these instructions are executed
(e.g., the instructions ADD, SUB, and COMPARE in fixed-
point arithmetic are usually in the same subset). We denote by
T, the execution time of an instruction of type i, and by fi the
frequency at which such an instruction is being executed.
Clearly, Y2=lfi = 1.

Let Xi denote the rate at which faults occur while executing
an instruction of type i. We adopt here the viewpoint that fault
occurrences obey a Poisson process [1], [4], [7]. However, we
distinguish between permanent faults which cause a system
failure, and intermittent faults, which in most cases can be
recovered from. Let s denote the fraction of faults that are
permanent; sXi is therefore the rate of permanent fault
occurrences while an instruction of type i is being executed.
For the intermittent faults we adopt the continuous parameter
Markov model [1], [4], [7], namely, at the rate (1 - s)Xi the
fault becomes active causing the system to malfunction, and
when active it becomes inactive at a rate Ai, allowing the
system to operate correctly. When the intermittent fault
becomes inactive, we may try to recover from its effect by
repeating the instruction. However, instruction retry is not
always effective against intermittent faults even if the failing
instruction has been correctly identified; for example, if some
of the data needed for repeating the instruction is not available
any longer [5].

Clearly, an instruction involving a large number of data
movements is more likely to be not recoverable from the
effects of an intermittent fault by instruction retry than an
instruction with a few data movements. We denote by ri the
percentage of intermittent faults not recoverable by instruction
retry when executing an instruction of type i. Consequently,
the failure rate Xi is divided into the following.

1) The rate of intermittent faults recoverable by instruction
retry M(I) - Xi(l - s)(I - ri).

2) The rate of intermittent faults not recoverable by
instruction retry X(2) = Xi(l - s)ri.

3) The rate of permanent faults X(3) = X,S.
The correct identification of the failing instruction is a

necessary condition for the success of the instruction retry
step. A major reason for incorrect identification of the failing
instruction is a latency period between the occurrence of the
fault and the manifestation of the consequent error [6]. An
additional latency period may appear between the occurrence
of the error and its detection. However, we may for our
purposes lump these two latency periods into one.
We denote by ax the ratio of faults occurring in instruction i

whose short latency period allows correct identification of the
failing instruction. Hence, the ratio of the faults whose long
latency period results in an incorrect identification of the
failing instruction is 1 - (xi. For mathematical tractability we
assume that the ratio a, is the same for all three types of faults
1), 2), and 3). Consequently, each of the three failure rates MD

is further divided into two rates of X 1Wae and)\:)(1- a); j
1, 2, 3; i= 1, *-N.
To analyze a recovery procedure, we may view the process

of executing instructions as a renewal process. The time
periods necessary to successfully complete the execution of
consecutive instructions form a series of independent, identi-
cally distributed random variables, with the starting instants of
the instructions being the renewal points. Randomness is
introduced into the process by two factors: the type of the next
instruction is random, having the probability distribution (fi,
f2, * - , fN), and the instruction may be correctly executed, or
fail and necessitate retries, a program rollback or even
reloading and restarting the program. Our analysis consists of
investigating the stochastic behavior of these renewal periods
and minimizing their average length.

Clearly, the various courses that an instruction execution
may take depend upon the recovery procedure employed. All
the recovery procedures analyzed in this paper are special
cases of a general recovery procedure which can be repre-
sented by a vector (KT, KB, KE) with the following interpreta-
tion. Whenever an error is detected, a supposedly "failing"
instruction is identified. It is then retried up to KT times. If all
KT retries fail, up to KB rollbacks to the last checkpoint are
performed. If all KB rollbacks fail, up to KE rollbacks to the
earlier checkpoint are performed. If all KE earlier rollbacks
fail, we say that we have a program failure (caused by
hardware and not by software failure). In this case the system
is diagnosed and if no permanent failures are detected, the
program is reloaded and restarted. If a permanent fault is
detected, it has to be repaired before reloading the program.

Each instruction when being executed must therefore result
in one of the following mutually exclusive events.

H(c) The instruction is completed successfully (without
retry) when first executed and there is no undetected
fault in the system.

H(j) The instruction fails, is correctly identified and the jth
retry is the first successful one;

j= 1, 2, -*, KT.

H(RB,j) The instruction fails and is correctly identified; all
KT retries fail but the instruction is completed
successfully after the jth program rollback;

j= 1, 2,9**, KB.
H(ERB,i) The instruction fails and is correctly identified; all

KT retries and all KB rollbacks fail, but the
instruction is completed successfully after the jth
program rollback to an earlier checkpoint;
j= l, 2, * a a , KE.

H(PF) The instruction fails and is correctly identified but the
KT retries and the program rollbacks fail, resulting in
aprogramfailure after which the program is reloaded
and restarted.

H(RBL,j) A fault occurs while executing the instruction and,
due to a latency period, a wrong instruction is
repeated KT times. The instruction is completed
successfully after the jth program rollback:
j=l, 2, * e, KB.

704

KOREN et al.: ANALYSIS OF A CLASS OF RECOVERY PROCEDURES

H(ERBLJ) A fault occurs while executing the instruction and,
due to a latency period, a wrong instruction is
repeated KT times. KB rollbacks fail but the
instruction is completed successfully after the jth
program rollback to an earlier checkpoint;

j= 1, 2, * - *, KE.

H(PFL) A fault occurs while executing the instruction and,
due to a latency period, a wrong instruction is
repeated KT times. The program rollbacks fail,
resulting in a program failure after which the
program is reloaded and restarted.

Due to the large number of possible events and the
complexity of the formulas in the general case, we will
consider the following special cases. First the (k, 1, 0)
procedure is analyzed in Section III. Next, the procedures (k,
2, 0), i.e., two rollbacks, and (k, 1, 1) i.e., one rollback and
one rollback to an earlier checkpoint, are analyzed in Sections
IV and V, respectively.
Once these three procedures have been analyzed, they can

be compared for various values of system parameters in order
to determine the best one for a given computing system. This
comparison is presented in Section VI.

III. THE (k, 1, 0) PROCEDURE
In the (k, 1, 0) recovery procedure we first repeat the

instruction identified as the failing one up to k times, and if all
k retries fail we rollback the program only once to the last
checkpoint. Our objective in analyzing the procedure is to
determine the optimal values of k and of the number of
instructions executed between two successive checkpoints
(denoted by M) so as to minimize the average time spent per
instruction. We derive next the probabilities of the H events
for the (k, 1, 0) procedure. Denote by

PO(X, t)=ext (3.1)

the probability of no fault occurrences during the time interval
(0, t), for a failure rate X.

In addition,

Poo(X, l, t)=A + e(X±M)t (3.2)
X+1x X+/L

is the probability of a transition from the fault-free state of the
system at time 0 to the fault-free state at time t, for a model
with failure rate X and "repair" rate ,u.

Finally,

POO(, A, ti,)=POO(X, ,u,)-e-xtjPO(X, U, t-ti)
(3.3)

is defined similarly to P00 except that at least one fault occurs

in (0, t1).
Using these definitions we can derive the probabilities of the

events H(c), H(i)(j = 1, 2, ..k), H(RB), H(PF), H(RBL), and

H(PFL), denoted by p(c), p(i)(j = 1, 2, , k), p(RB), p(PF),
p(RBL) and p(PFL), respectively. These probabilities clearly
satisfy

p(c) +E p(j) + p(RB) + p(PF) + p(RBL) + p(PFL) = 1 (3.4)

j=1

Let pOc), P9i)(j = 1, 2, * , k), p(RB) p(PF) p(RBL) and
p(PFL) for i = 1, 2, * N denote the conditional probabilities
of the above events, given that the instruction is of type i.
These probabilities satisfy

k
p(c) + IE p(j) + p(RB) + p(PF)

j=1

+ p(RBL) +P(PFL)= 1; i=1, 2, ... , N.

Once these conditional probabilities are calculated, the uncon-
ditional probabilities can be found by averaging over i with
respect to fl, * * *,fN, e.g.,

N
p(c)= jfip(c)

i=l

(3.5)

P(i)(j = 1, 2, * , k), p(RB) p(PF) p(RBL), and p(PFL) are
obtained similarly.
We proceed now to calculate these conditional probabilities.

Since a Poisson process is assumed for the faults, we have

p(c) = e-)XiTi. (3.6)

POi) is the probability of a successful jth retry given a type i
instruction and is calculated as follows:

PiD)=P(H(i)/type i instruction)

-Po(X,-X)ai, Ti+61) * Po(X(')a,i Ti)
* [POO(x(Wai, H, Ti', j(Ti+ 6))

* Po(X,-X()cx,, jTi+(j - 1)

j-1

- PpY') * Poo(W1)clis >,, (j-l)6+(j-I- 1) T,)
1= 1

*OPok- X(Oaj, (j-4l- 1)(Ti+ 1))] j= l, * k

(3.7)

where 6I is the set up time needed to initiate an instruction
retry.
The first two terms within the brackets constitute the

probability of the system operating correctly at the end of the
jth retry, from which we subtract the probability of any
successful retry prior to the jth one. The first two terms
multiplying the brackets are the probability that no other than a
nonlatent fault of type 1 occur during the recovery period, and
the probability that no faults occur during the last retry,
respectively.
To obtain PfRB), the probability of a successful rollback, we

denote by m the number of program instructions between the
last checkpoint and the failing instruction. The variable m is
random, assuming the values 1, 2, - * *,M with probability 1/
M each (recall that M is the number of instructions between
two consecutive checkpoints).
We denote by P(.RB) the conditional probability of a

successful rollback, given the values of i and m, i.e.,

p (RB) P(H(RB)/type i instruction
n m instructions since last checkpoint).

705

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 8, AUGUST 1986

p(RB) iS the probability of the system recovering after the
rollback but not earlier than that. Hence, in order to calculate
it, one must subtract the probability of any successful
instruction retry from the probability that the system operates
correctly at the end of the rollback. The expression derived for
p(RB) is therefore,

(RB) [P[(XiPo((l)+ (2) Ail Til kbl+(k+l)Ti)
* PO(XM3), k6l+(k+ 1)1Ti)

k

-ppQ) * poo(X(l) + X(2), I,, (k-l)(61 + T7))
1= 1

* Po(X(3), (k- 1)(61 + Ti))]

PO(Xi,, 62)[p(C)]m- p(c) (3.8)

where 62 is the setup time needed to initiate a program rollback
including the time needed to load the information saved in the
last checkpoint. The last two terms in (3.8) constitute the
probability of no faults during the rollback period including
the setup time.

Clearly,

p IRB)=± B)

M=
(3.9)

Substituting (3.8) into (3.9) yields

PiRB [IaiPoo(')+i) yi Ti, k6I + (k+ 1)7T')

* P0(I(3), k6l + (k + 1) T7)
k

-Ep1) * po(X(1) + (2) It.
1=1

* Po(X(3), (k -1)(61 + Ti))]

p(iC) 1- [p(C)]M
* PO(N,, 62) *

I _(. (3.10)

We next obtain an expression for p(RBL) the probability of a
successful rollback for a latent fault. Denote by I the length of
the latency period of the fault, i.e., the number of instructions
between the occurrence of the fault and its manifestation. Note
that although I can assume any integer value, the rollback will
not succeed for I greater thanM - m since, in that case, the
information saved at the last checkpoint is erroneous. Conse-
quently, for calculating the probability of a successful roll-
back, we consider only the values I = 1, 2,9.., M - m with
probabilities

(1-C&)''&!; (1=1, 2, , M-m)

where ci is the average probability that a latent fault is

detected, i.e., ai = EN 1fiai. For given values of i, m, and I
denote

p(RBL) P(H(RBL)/type i instruction

n m instructions between the last
checkpoint and the failing instruction

n latency period of 1).

Note that for a latent fault, instruction retry is never successful
since a wrong instruction is repeated. Thus, for a rollback to
succeed the following events must take place. First, all
intermittent faults have to be inactive at the beginning of the
rollback, no permanent faults should occur, and, finally, no
faults of any type should occur during the rollback itself.
The resulting expression is

p(RBL = (I ai)PoO(X 1) + X(2)

lAi, Ti, Ti+1T+k(T+6j))
* PO(X(3), T,+lT+k(T+&6)) * PO(X,, 62) * (p(c))m.

(3.11)

Averaging P,(4RB) using the probabilities ofm and 1, we obtain

M M-mp(RBL) = I
-I (RBL)

m=l 1=1

(3.12)

To derive an expression for the remaining two probabilities
note that ai(I - pOc)) = a,(l - e - iTi) is the probability of a
nonlatent fault occurring in a type i instruction and is therefore
equal to

k
pP) + p(RB) + piPF)*

j=1

Consequently

(3.13)pPPF) = oi (I -e- xi Ti) _f p(j) p(RB).
I I I

j=1

p(PFL) is calculated in a similar way, using the fact that the
probability of a latent fault occurring in a type i instruction is
(1 - ai)(l - e-XiTi), it follows that

(3.14)p/PFL) = (I- Ui)(-e-XiTi) p(RBL)

The calculation of p(c) and the rest of the unconditional
probabilities is now straightforward using (3.5).
Our objective is to determine k andM so as to maximize the

number of instructions executed per unit of time. This is
equivalent to minimizing the average time spent per instruc-
tion, denoted by wv. It consists of the average time required to
successfully execute an instruction (denoted by ?) and the time
lost per instruction due to checkpointing, i.e.,

TS
17= +M (3.15)

706

KOREN et al.: ANALYSIS OF A CLASS OF RECOVERY PROCEDURES

where T, denotes the time needed to store the information at
each checkpoint and is called checkpointing time.
To derive an expression for X we introduce the following

notations. Let T be the average execution time of an
instruction, i.e.,

N

T= fiTi.
i=l

(3.16)

Let P(i)(j = 1, , k), TPRB), and (PF) be the conditional
expectations of an instruction execution time given the events
H(j)9 H(RB), and H(PF), respectively. For example,

(3.17)

N

E f,P(i) T,
T(i)=-i=l (j= 1, * * , k3.

The formulas for T(RB) and T(PF) are similar to (3.17).
Denote by 63 the average time required to diagnose and

repair the system and by L the average number of instructions
per program; T can be expressed as

k
r+ I P(j)[i (i() + 61)]

j=1

+p(RB) [k(T(RB) + 61) +62+ T]

W=
L+I1

1-_ (P(PF) + p(PFL)
2

, k
T+ P(i)I[j(Tfj) + 61)]
j=l

+ p(RB) [k((RB)+M60+62+1 T

M+1 -
+ p(PF) [k(!T(PF) + 61) + 62+ T+631

+ p(RBL) [k(T+61)+-+62+ M+ T

+p(PFL) [k(T+61)+-+62+ 1T+ T+-+[~~+ 1J2~ 2 3]

(3.19)

Expression (3.19) can be minimized with respect to k andMto
find the optimal recovery procedure parameters kopt and Mpt.
The numerical search for kopt proved to be simple and kopt was
found to be less than 20 for all cases examined. To find an
initial value for the numerical search for Mopt we derive an
approximate expression for w-v by replacing the denominator in
(3.19) (which is nearly 1) by 1. By taking the derivative of the
remaining expression with respect toM and letting it equal 0,
we obtain

2+ L+l]-+p(PF) [k(T(PF) + 61) + 62+± T+ 63 + 2 w]

+p(RBL) [k(+ 1) +T+ 6+M 1 T]

+ p(PFL) k(T+ 61) +-

M+1
+62+ 2 TL+3L+ w

Each of the terms in the square brackets multiplying the
different probabilities is the time, in addition to , that is
needed to complete the execution of the instruction for the
corresponding event, e.g., j(T(i) + 61) is the additional time
needed when the jth instruction retry succeeds. The term
(M+ 1)/2 is the average number of instructions reexecuted
whenever the program is rolled back; hence, (M+ 1)/2- T is the
average rollback time. The term Ti/ is the average latency
period since I/it = 11(1 -()'I 1a is the average number
of instructions executed until the detection of a latent fault.
Finally, the term (L + 1)/2 iw is the average time required for
reexecuting the program whenever a program failure occurs.

Substituting (3.18) in (3.15) and solving for w yields

M0~t=~~\jT((RB) +

27Ts (3,20)
mo

T(p(RB) + p(PF) + p(RBL) + p(PFL))
which resembles the expressions derived in [1] and [10].

IV. THE (k, 2, 0) PROCEDURE

In this recovery procedure, we first retry the failing
instruction (or the one that we believe is the failing one due to
latency of the fault) up to k times. We then roll the program
back to the last checkpoint up to two times and only if all these
attempts of recovery fail, we declare a program failure.

It is clear that by adding a second rollback, the probability
of a system failure decreases compared to the (k, 1, 0)
procedure. However, the (k, 2, 0) procedure is not always
superior to the previous one. Although it may take longer to
reach a program failure, part of this time may be wasted on a
useless additional rollback. In Section VI we present numeri-
cal examples in which this procedure is preferred over the
single rollback procedure.
To analyze this procedure and derive the optimal values of k

andM (using the same cost function as in Section III) we have
first to calculate the probabilities of the following events.

H(c); H(j)[j=,I * k]; H(R,)
H(RB,2); H(RBL,1); H(RBL.2); H(PF); H(PFL).

Since the success of any instruction retry or of the first
rollback are independent of the following steps of the recovery

707

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 8, AUGUST 1986

procedure, the probabilities P(C) Pij)(j = 1, * k) are the
same for the (k, 2, 0) procedure as for the (k, 1, 0) one.
Similarly, p(RB1) = p(RB); p(RBL1) = p(RBL)
As in Section III,

k
i i(J) p(RBl) p(RB,2) (4.1)
j=1

Pi1 = (I1- ai)(I -e iTi) pi(RBL, I) _p(RBL,2). (4.2)

In order to calculate p(RB,2) and p(RBL,2) the probabilities of
success in the second rollback, for a nonlatent and latent fault,
respectively, denote

p(RB,2)= P(H(RB,2)/type i instruction
n m instructions since last checkpoint)

Hence,

p (RBL=2) (1-oi)PO(Xi, 62)(P(c))m

* PO(Xi3), Ti+IT+k(T+61))
* {P°(X(1)+X(2) Hi, Ti, Ti

+1T+k(T+61)+62+mT)
* P0(X(3), 62+mT)-POO(X 1)+ li, Ti, Ti
+ IT+ k(T+ 61)) * Po(X1, 62)(P(c))m }-

Averaging (4.5) over m and I yields

p(RBL,2)= I Mj _(1jI-Ip(RBL,2)
m=1 1=1

and

p(RBL,2) P(H(RBL 2)/type i instruction

n m instructions between the last checkpoint
and the failing instruction

n latency period of 1).

To derive an expression for p(RmB2) note that for the event
H(RB,2) to occur, all k retries and the first rollback must fail.
We therefore subtract the probabilities of a successful retry or

a successful first rollback, from the probability that the system
is operating correctly at the end of the second rollback. This
yields

(RB,2) [aPoo(X\1() + ,
i-

(2

t(k+ l)Ti+62+mT)

k

* Po(X(3), k(T +6j)+ Ti+62+mT)-E P(I)
1=1

*Poo((') + 2) ti, (k - l)(T, + 6b) + 62 + mlT)

* Po(XI3), (k-1)(Ti+61)+62+mT)

-P.m 3 PON, 62) * (P(C))M (4.3)

and clearly

p(RB,2) = E' I
p (RB,2)

mp= m

Im
(4.4)

To calculate p(RBL,2), we subtract from the probability that a

latent fault occurred but there were no faults present at the end
of the second rollback, the probability of a successful first
rollback. Since for a latent fault no instruction retry will
succeed, these probabilities need not be subtracted.

As in Section III, the cost function to be minimized with
respect to k andM was chosen to be wv, the average time spent
per instruction. The expression for wv is,

(4.7)w = +
M

To obtain the formula for T, the average time required to
successfully execute an instruction, note that some of the
recovery periods remain the same as for the (k, 1, 0) model,
namely, the periods associated with a successful retry or a

successful first rollback. There is an additional time of 62 +

(M + 1)/2aT (which is the time needed for the second
rollback) whenever one of the events H(RB,2), H(RBL 2), H(PF)
and H(PFL) occurs. Substituting the resulting expression for

in (4.7) and solving for w yields
1

w=
L+L1- 1

(p(PF) + p(PFL))
2

T+E P(i)[j(T(i) + 61)]
Ij=l

+ p(RB 1) [k(PRB 1) + 6)+62

+ p(RB 2) k(T(RB,2) + 61) +2(62+

+P(PF) [k(T(PF) + 61)+ 2 (62 +) +63]

+p(RBL,1) [k - M2T

+ p(B2) [k(+ 61)++2(62+M)2T)]

+p(PFL) k(T+ 61) +

+262+M; T)+63] +}S (4.8)

(4.5)

(4.6)

708

KOREN et al.: ANALYSIS OF A CLASS OF RECOVERY PROCEDURES

A numerical search should now be performed to yield the
optimal values of k and M that minimize wv.

V. THE (k, 1, 1) PROCEDURE

In this recovery procedure, after all k instruction retries and
the program rollback to the most recent checkpoint have
failed, the program is rolled back to an earlier checkpoint.
This policy seems hardly worth considering, since the last
checkpoint is assumed to contain all the relevant information.
Yet it may prove useful to roll the program back to an earlier
checkpoint rather than to the most recent one whenever there
is a chance of latent faults with long latency periods. Consider,
for example, a fault occurring shortly before the last check-
point and whose resultant error is detected only after it. The
information saved at the checkpoint in such a case might be
erroneous and a simple rollback may not succeed, while a
rollback to an earlier checkpoint may succeed and avoid the
need to reload and restart the program. In Section VI we will
present some numerical values of system parameters for which
the (k, 1, 1) procedure is preferable to the two procedures
discussed before, although such cases are very rare.

The analysis of the (k, 1, 1) procedure is similar to that of
the previous two procedures. We enumerate the possible
outcomes of an instruction execution, calculate the probabili-
ties of these outcomes, find the formula for the average time
spent per instruction and minimize it with respect to k and M.
The possible H events for the (k, 1,- 1) procedure are

H(c), H(I)(j= 1, * ., k), H(RB)

H(RBL) H(ERB), H(ERBL), H(PF), and H(PFL).

Since this procedure and the (k, 2, 0) procedure start with the
same recovery steps (i.e., k instruction retries and a rollback),
both have the same probabilities for the events H(c), H(j)(j =
1, * -*, k), H(RB), and H(RBL).

Similar to (3.13) and (3.14), we obtain

k

P<i f = oe(-e X1iit)-_Epi p(RB) _p(ERB) (5.1)
j=1

p(PFL) = (I-ai)(I-e-XiTi) p(RBL) _pERBL) (5.2)

To calculate p(ERB) note that in the case of a nonlatent fault,
a rollback to an earlier checkpoint succeeds if and only if a
rollback to the last checkpoint would have succeeded, and in
addition all M instructions between these two rollbacks are
executed correctly. Thus,

p(ERB)=p(RB,2) * (p(c))M
I (5.3)

where p(RB,2) is defined in (4.4).
It is clear from (5.3) that for a nonlatent fault, returning to

an earlier checkpoint decreases the probability of recovery and
is only a waste of time. However, it increases the chances of
recovery for a latent fault that occurred shortly before the last
checkpoint. To calculate p(ERBL) we define for given values of

m and I the conditional probability

(ERBL) p(H(ERBL)/type i instruction

n m instructions between the last
checkpoint and the failing instruction

n latency period of 1).

We have to distinguish between faults occurring before the last
checkpoint (for which M - m < I c 2M - m) and those
occurring after the last checkpoint (for which 1 < I s M -
m). For the first case, we have

p (ERBL) p (RBL,2) *
Ii,mj i,m,! (,J-')m (5.4)

where p(RBL2) is defined in (4.5).
For the second case, we obtain

p (ERBL) =(1 __ Cli)poo(XF) + X(g2),y,T,T

+lT+k(T+61)+62+(1+im-M)T)
* PO(XA3), Ti+lT+k(T+&1)
+ 62 + (l+ m -M) T) * Po(Xi, 62)(P(c))m. (5.5)

Note that values of I greater than 2M - m need not be
considered since in this case even a rollback to the earlier
checkpoint will not succeed.

Averaging PLBL) over m and I results in

p(ERBL) - p(RBL,2) * (p(c))M

M, im M o(-l 1-(i
m=1 I=M-m+1

* Poo(Xi)+Xk29, A,, Ti,Ti+IT+k(T+61)
+62+(l±M-M)T)*PO(X(), T.+lT

+ k(T+bl)+62+ (1+iM-M)T)

*PO(Xi, 62)(P()), (5.6)

where p(RBL,2) is defined in (4.6).
The only difference in the cost function between this

procedure and the previous one is that the recovery periods
associated with the events H(ERB), H(ERBL), H(PF) and H(PFL)
are increased by MT as compared to the respective quantities
in Section IV.

Applying the same method as in the previous two sections,
we derive the following expression for w:

L1- 1 (p(PF) + p(PFL))
2

lp(B' [k
T+ P(j)[j(Tfj) + 61)]

j=l

+ p(RB) * [((RB) + 1+ 2+ _ T

709

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 8, AUGUST 1986

M+ I corresponding ones in case a. The value of 62 is lower and the
+ p(ERB) k((ERB)+ 61) +2 62+ 2 +M value of 63 is higher. These changes make the second rollback

worthwhile and the (k, 2, 0) procedure is optimal.
Case c [Fig. 1(c)] is characterized by an extremely high

+ p(PP) | k(T(PF + 61) + 2(+2+ TA + MT-+63 | percentage of latent faults resulting in long latency periods. In
2) addition, it is assumed that the number of permanent faults is

small. In this case we can profit from a second rollback to an
[p(RL)kT M)+- _ 11+l earlier checkpoint, hence the (k, 1, 1) procedure should be
(RBL)[k(T+1i)++6+ Tj22 preferred over the other two.

The best recovery procedure for a system is determined by
T / M+ 1 \ l the entire set of system parameters, yet some of these

+ P(ERBL) k(T+61)+-+2(62 + M 1 +MTr parameters have a greater impact than the others. Numerical
2 1 calculations have shown that the selection of the optimal

procedure is not very sensitive to changes in Xi, ,, ri, or 61. It
I' is more sensitive to changes in 62, 63, and Ts; but the

+p(PFL) [k(T+61)+-T parameters most affecting the choice of a recovery procedure
are s, the percentage of permanent faults, and O!i, the

/M 1 1 TS percentage of nonlatent faults.

+ 2(62 + + T + MT+63 + -4 (5.7) The dependence of the optimal procedure on ai for a given
2 / 6 M set of system parameters, is depicted in Fig. 2. For simplicity

of presentation we assume that all (i's are equal. In the graph,
A numerical search can now be performed to yield the the interval 0 :!:: a' 1 is divided into three optimality

optimal values of k and M that minimize w. regions. Small values of cii, indicating a high percentage of
latent faults result in the optimality of the (k, 1, 1) procedure.

VI. NUMERICAL RESULTS As ai increases, the (k, 2, 0) procedure becomes optimal since
For the numerical comparison of the three recovery a rollback to an earlier checkpoint is no longer useful. For

procedures, we consider the following computer system. Let very large values of cai, the (k, 1, 0) procedure becomes
the instruction set of the computer be partitioned into three optimal.
subsets. The first subset consists of relatively simple instruc- Similar dependence on a, is obtained for other sets of system
tions with execution time T' and failure rate XI. The parameters, although in some cases any one of the last two
instructions in the second subset have an execution time of 2T1 regions (corresponding to the (k, 2, 0) and the (k, 1, 0)
and a failure rate of 2X1. The third subset consists of complex procedures) may be missing. The first region will always exist
instructions with execution time 4T1 and failure rate 3X1. The since for values of ai near 0, the (k, 1, 1) procedure is always
percentages of intermittent faults not recoverable by instruc- the best, regardless of the other parameters' values.
tion retry for the three instruction subsets are 10, 30, and 20 The dependence of the optimal procedure on s can be
percent, respectively. For convenience, we choose the execu- illustrated in the same way. Similarly to Fig. 2, the interval 0
tion time T1 as our basic time unit, thus all time periods are C s < 1 is divided into three regions with the (k, 1, 1)
measured with respect to this time unit. If for a given procedure optimal in the first region, the (k, 2, 0) in the
instruction mix, the relative frequencies are fi = 0.5, f2 = second, and the (k, 1, 0) in the third. Any of the first two
0.3 and fA = 0.2, then the average net execution time of an regions may be missing but the third one always exists.
instruction is T = E i3=1 Ti = 1.9 T1.
The other parameters, namely, XI, s, a,, 61, 62, 63, T, have VII. CONCLUSIONS

been changed over a large number of different values. For A general recovery procedure consisting of instruction
each set of parameter values we have compared the optimal retries and program rollbacks to the last or the earlier
values of wv corresponding to the three procedures, thus checkpoint, has been presented in this paper. Due to the
selecting the best procedure to be employed in the given case. complexity of the general procedure only three special cases of
Figs. 1(a), (b), and (c) depict three special cases for which the it have been completely analyzed, namely, the (k, 1, 0), the
procedures (k, 1, 0), (k, 2, 0), and (k, 1, 1), are optimal, (k, 2, 0), and the (k, 1, 1) procedures. Exact formulas for the
respectively. probabilities of all possible events have been derived enabling

Case a [Fig. l(a)] is characterized by a high probability of the calculation of the average time spent per instruction. The
permanent faults and a low percentage of latent faults. If most latter can then be minimized with respect to the recovery
faults are not latent, a rollback to an earlier checkpoint is procedure parameters M (the number of instructions between
unlikely to result in a system recovery. Similarly, if most two consecutive checkpoints) and k (the number of instruction
faults are likely to be permahent, a second rollback to the last retries).
checkpoint might be just a waste of time. Consequently, a Finally, the three procedures have been numerically com-
single rollback to the last checkpoint is sufficient and the (k, 1, pared illustrating the existence of regions of system parame-
0) procedure is the optimal one. ters for which each one of these procedures is superior to the

In case b [Fig. 1(b)] the values of s and ai are lower than the other two.

710

KOREN et al.: ANALYSIS OF A CLASS OF RECOVERY PROCEDURES

. w
r
F

10B% -

116%

114%

t ~~~~~~~~(k,1,) J

\;t,,^s ,,,~~/,, / (t.1,o)a;d Lv~~~~~ 112%

110% 0

M

56108 5'109 1o7

(a)

uI
t I

108%

106%

104%

102%

(C)

Fig. 1. (a) Percentage of time spent per instruction for the three recovery procedures as a function of the checkpoint interval in case
a: XiT1 = 10 1, jz1T1 = 0.1, aei = 0.99, (i = 1, 2, 3), 61 = 10, S2 = 2.54107, 63 = 109, Ts = 34-107, s = 0.4.(b) Perentage of
time spent per instruction for the three recovery procedures as a function of the checkpoint interval in case b: XiT' = 1.8 10-10,
AiTj = 0.1, aj = 0.01, (i = 1, 2, 3), 81 = 10, 62 = 105, 63 = 5-109, TS = 5.106, s = 0.005. (c) Percentage of time spent per
instruction for the three recovery procedures as a function of the checkpoint interval in case c: XiT1 = 10- 10, piT1 = 0.1, ai =

10-5, (i = 1, 2, 3), 61 = 10, 62 = 105, 63 = 109, T-= 105, s = 0.05.

I

I

I

.4.
!I
.1

.4.' /

.

/ (k.1.0)

' (k.1,1)
I
I

I

I
I

J(k,2,0)
.

M

108

(b)

(k, 1,0)

/(k.1.1)

\ /o~~~~~~~~~~~~~~~~~~~~~~~ .'(k ,2,0)

s \//

AU

711

113
T

112%

110%

105% i

106%.

104%

0

loglo"

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 8, AUGUST 1986

7Tr

110% f

110%

(k.~~~~~~~~~k I.0 *I) --.

1068%

(k ,1,0)

1o0 104 i0- 1

Fig. 2. The dependence of the optimal procedure on a, for the following
case: X,T1 = 5 10",p-T1 = 0.1, (i = 1,2, 3), bi = 10, 62 = 108, 3 =
2.5 *109, Ts = 5 *08,s = 0.1.

REFERENCES

[1] K. M. Chandy, J. C. Browne, C. W. Dissly, and W. R. Uhrig,
"Analytic models for rollback and recovery strategies in database

systems," IEEE Trans. Software Eng., vol. SE-I, pp. 100-110, Mar.

1975.
[2] D. Droulette, "Recovery through programming system/360-system/

370," in Proc. Spring Joint Comput. Conf., 1971, pp. 467-476.

[3] E. Gelenbe, "On the optimum checkpoint interval," J. Ass. Comput.
Mach., vol. 26, pp. 259-270, Apr. 1979.

[4] I. Koren and S. Y. H. Su, "Reliability analysis of N-modular systems
with intermittent and permanent faults," IEEE Trans. Comput., vol.

C-28, pp. 514-520, July 1979.
[5] G. H. Maestri, "The retryable processor," in Proc. FJCC, 1972, pp.

273-277.
[6] J. J. Shedletsky and E. J. McCluskey, "The error latency of a fault in a

combinational digital circuit," in Dig. 5th Int. Symp. Fault-Tolerant
Comput., June 1975, pp. 210-214.

[7] S. Y. H. Su, 1. Koren, and Y. K. Malaiya, "A continuous parameter
markov model and detection procedures for intermittent faults," IEEE
Trans. Comput., vol. C-27, pp. 567-570, June 1978.

[8] A. N. Tantawi and M. Ruschitzka, "Performance analysis of check-

pointing," Ass. Comput. Mach., Trans. Comput. Syst., vol. 2, pp.
123-144, May 1984.

[9] S. Toueg and 0. Babaoglu, "On the optimum checkpoint selection

problem," SIAM J. Comput., vol. 13, pp. 630-649, Aug. 1984.

[10] J. W. Young, "A first order approximation to the optimum checkpoint
interval," Commun. Ass. Comput. Mach., vol. 17, pp. 530-531,
Sept. 1974.

Israel Koren (S'72-M'76) was born on June 23,
1945. He received the B.Sc. (Cum Laude), M.Sc.,
and D.Sc. degrees from the Technion-Israel Insti-

tute of Technology, Haifa, Israel, in 1967, 1970,
and 1975, respectively, all in electrical engineering.
From 1968 to 1971 he was with the Computer

Center, Israeli Ministry of Defense. In 1972 he

joined the Department of Electrical Engineering,
Technion-Israel Institute of Technology, Haifa,
where he became a Lecturer in 1975. From 1976 to
1978 he was an Assistant Professor in the Depart-

ment of Electrical Engineering and Computer Science, University of
California, Santa Barbara. In 1978 he was an Assistant Professor in the
Department of Electrical Engineering - Systems, University of Southern
California, Los Angeles. Since 1979 he has been with the Department of
Electrical Engineering at the Technion-Israel Institute of Technology. In
1982 he was with the Computer Science Division, Department of Electrical
Engineering and Computer Sciences, University of California, Berkeley, on

leave from Technion-Israel Institute of Technology. Since 1985 he has been
the head of the VLSI Systems Research Center at the Technion. His current
research interests are fault-tolerant VLSI and WSI architectures, models for
yield and performance, reliability evaluation of computer systems, and
computer arithmetic.

Zahava Koren was born on September 12, 1946.
She received the B.A. and M.A. degrees in mathe-
matics and statistics from the Hebrew University,
Jerusalem, Israel, in 1967 and 1969, respectively,
and the D.Sc. degree in operations research from
the Technion-Israel Institute of Technology,
Haifa, Israel in 1976.
From 1967 to 1968 she was a Teaching Assistant

in the Department of Statistics, Hebrew University,
Jerusalem, Israel. From 1969 to 1974 she was a

Teaching Instructor in the Department of Industrial
Engineering, the Technion-Israel Institute of Technology, Haifa, and from
1975 to 1976 a Teaching Instructor in the Department of Statistics, University
of Haifa, Israel, lecturing on statistical inference, queuing theory, inventory
theory, and stochastic processes. From 1972 to 1976 she was a Consulting
Statistician in medical and psychological experiments performed at the
medical school of Tel-Aviv University, Tel-Aviv, Israel. In 1979 she was an

Assistant Professor in the Department of Business and Economics, California
State University, Los Angeles, lecturing on statistics and operations research.
From 1980 to 1984 she was a Lecturer in the Department of Statistics,
University of Haifa, Israel, and a Consultant to SHAHAF, a public opinion
research institute. Since 1985 she has been with the Department of Computer
Science, the Technion-Israel Institute of Technology, Haifa. Her main
interests are optimization in queuing processes, reliability, and communica-
tion networks.

Stephen Y. H. Su (S'65-M'67-SM'77) received the
BSEE degree from National Taiwan University, Tai
Pei, in 1960, and the M.S. and Ph.D. degrees from
the University of Wisconsin, Madison, in computer
engineering in 1963 and 1967, respectively.
He is currently a Professor in the Computer

Science Department and the Head of the Research
Group on Design Automation and Fault-Tolerant
Computing at the State University of New York,
Binghamton. He has done extensive work in the
areas of fault-tolerant computer architecture, diag-

nosis and reliable design of digital systems, logic/system design automation,
as well as computer hardware description languages and their applications. He
has published over 80 papers in these areas. His interests include fault-tolerant
design, computer-aided logic/system design, testing and simulation, computer
architecture, and software engineering. From 1974 to 1977, Dr. Su was the
Associate Editor of the IEEE TRANSACTIONS ON COMPUTERS in charge of
fault-tolerant design, design automation, logic design, and combinatorial
theory. He was the Guest Editor for Computer's Special Issue on Hardware
Description Language Applications. He was the Chairman of the 1976
International Symposium on Multiple-Valued Logic and the 1975 Interna-
tional Symposium on Computer Hardware Description Languages and Their
Applications. He has been an invited speaker at computer seminars at over 80
institutions world-wide.

Dr. Su received the 1981 Engineer of the Year Award. He was included in
Who's Who in Technology, American Men and Women of Science, in
1982, and Who's Who in Computer ScienceAmong University Professors
in 1984-1985. He is an Advisor for the IEEE Distinguished Visitor Program.
He is a member of Eta Kappa Nu, Tau Beta Pi, and Sigma Xi.

712

