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Abstract 
The recent increases in the size of memory ICs have made designers realize that there 
exists a need for new defect-tolerance techniques, since the traditional methods are no 
longer effective. One such new technique, the Flexible Multi-Mucro (FMM) technique, 
has recently been suggested and implemented in a 1 Gb DRAM circuit. In this paper 
we present a yield analysis of the FMM design and compare its yield to that of the most 
common defect-tolerance technique of adding spare rows and columns to the memory 
array. 

1. Introduction 
The traditional method for incorporating defect-tolerance in memory ICs through 

redundant rows and columns has been extremely successful for more than 15 years. This 
technique has even been incorporated in the design of large cache units in microprocessors 
in the last five years. The advantage of employing redundant rows and columns has been 
especially significant in the early stages of production when the yield is still low, allowing 
for earlier introduction of new products into the market. 

Further increases in the size of the memory array made it necessary to partition the 
array into several sub-arrays in order to decrease the current and reduce the access time 
by shortening the length of the bit and word lines [5]. Using the conventional redundancy 
methods implied that each sub-array should have its own redundant rows and columns, 
leading to situations where one sub-array had an insufficient number of spare lines to 
handle local defects while other sub-arrays still had several unused redundant lines. 

As memory ICs become denser, the sub-micron process technology becomes more 
complex and the manufacturing yield is expected to decrease [5]. As a result, defect- 
tolerance techniques are important not only in the early stages of the production but 
also in the mass production stages. It becomes apparent, therefore, that new and more 
efficient redundancy techniques must be developed. One obvious appro 
some (or even all) of the local redundant lines into global redundant lines, 
more efficient use of the redundant lines at the cost of higher silicon area o 
to the larger number of required programmable fuses. This approach has been followed 
in [5],  where the design of an experimental 4 Mb SRAM was presented. A 
in the area overhead and up to 61% increase in effective yield have been rep 

A different approach was presented in [4]. Here, fewer (compared t 
tional technique) redundant lines were used and they remained local. For a 
tolerance, the individual sub-array (called Macro in [4]) was fabricated in such a way that 
it could become part of up to four different memory ICs. The proposed technique was 
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named the Flexible Multi-Macro (FMM) technique and was applied to a 1 Gb DRAM in 
0.25 pm CMOS technology. 

In what follows we present a yield analysis of the FMM design, and compare its yield 
to that of the conventional defect-tolerant wafer design using spare rows and columns. 

2. Y ~ e l ~  ~ ~ a l y $ i s  
The 1 Gb DRAM described in [4] was partitioned into four 256 Mb modules (macros). 

Had the researchers adopted the traditional technique of adding redundant rows and 
columns to each module, the 8" wafer would contain 24 ICs, as shown in Figure 1. To 
implement the proposed FMM technique allowing each module to be included in any one 
of up to four ICs, the area of the basic module had to be increased by 2%. In order to keep 
the overall area of the module identical to that in the conventional design, row redundancy 
was eliminated, thus saving about 2% of the total area. The column redundancy was 
still implemented, consuming approximately a 2.5% overhead. The resulting floorplan of 
the wafer is depicted in Figure 2. The chip boundaries are not shown, since these are 
determined only after testing all modules and partitioning into subsets, each consisting 
of the four modules needed for a 1 Gb DRAM IC. Note that since the chip boundaries are 
not predetermined, four additional modules were fabricated at each corner (for a total of 
16 modules) allowing further flexibility in combining modules to form ICs. 

The yield of the designed memory chip was estimated in [4] using a Monte-Carlo 
simulation. Estimating the yield through simulation is always time-consuming (compared 
to analytical alternatives), making a complete analysis of any proposed scheme very 

We present a yield comparison of the conventional wafer design and the FMM design, 
based on three widely-used analytical fault models: The Poisson distribution, and the 
large-area and medium-area clustering negative binomial distributions [2]. We distinguish 
in our analysis between defects and faults - a fault being a defect which actually affects 
the proper operation of the chip, thus reducing the yield. We ignore defects which do 
not turn into faults. 

The two yield measures which can be used for comparing different chip designs are 
G, the expected number of operational (good) chips out of a wafer, and Y ,  the expected 
proportion of operational chips out of a wafer. The two measures are related through N 
- the maximum number of chips that can be extracted out of a wafer: 

costly. 

G y = -  
N 

We denote by G("), Y('), N(') and by G(f), Y ( f ) ,  N ( f )  the values of the above-defined 
measures for the conventional chip and the FMM chip, respectively. We deal with the 
conventional chip first. Since the boundaries of the chips on the wafer are fixed, Y(') can 
be calculated as the probability that a given chip is operational, or that a fixed area of 
four adjacent modules is operational. Thus, 

and 
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Figure 1: An 8” wafer containing 24 1Gb DRAMS with conventional redundancy. 

Figure 2: An 8” wafer containing 112 256-Mb macros. 
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To calculate Y("),  we first calculate Y$) - the probability that a selected module, out 
of the four in the chip, is operational. Denote by n the number of columns (or rows) 
in a module and by d the number of spare columns (which is equal to the number of 
spare rows). Since d is very small compared to n, we can assume that all 2 .  d spares are 
columns. In addition, the module has a chip-kill area in which a fault cannot be recovered 
from by redundancy and is, therefore, fatal. Denoting by L(") the fault density (average 
number of faults) per column, the fault density for the chip-kill area is K . L("), where K 
is the ratio between the chip-kill area and the area of a column. The probability of an 
operational module is the probability that no more than 2d of its columns are faulty and 
that the chip-kill area is completely fault-free. Assuming the Poisson distribution for the 
faults on the chip, we obtain 

Y$) = Prob(a given module i s  operational) (3) 

The probability of an operational chip is 

As is well-known by now [3], the negative binomial distribution can be obtained by 
compounding the Poisson distribution, which means averaging over the parameter L("). 

Assuming that L(") is a random variable with a Gamma(a,  f )  density function, i.e., 

and integrating the Poisson probability function with respect to this density, yields the 
negative binomial distribution with a fault density of X and a clustering parameter of 
a. The equations resulting from integrating (3) and (4) with respect to ( 5 )  are very 
complicated and will not be presented here. However, we need to emphasize that both 
the large area clustering and the medium area clustering distributions can be obtained 
using the procedure of compounding the Poisson distribution. The difference is in the 
order of integrating and raising to the 4th power in (4). If Y$) is integrated and the 
result raised to the 4th power, we get the medium area negative binomial distribution, 
with clusters similar in size to the module. If, on the other hand, (Y$')4 is calculated 
first and the result is integrated, we get the large area negative binomial distribution. 

The yield analysis of the FMM wafer is more complicated. Since the boundaries of 
the chips are flexible and each operational module can be included in more than one chip, 
the yield Y ( f )  is not equal to the probability that a given area of size 2 . 2 modules is 
operational. Instead, the inclusion and exclusion formula needs to be used. Let g ( f )  be 
the number of (disjoint) operational chips that can be extracted out of an FMM wafer, 
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and let denote the number on the wafer of (not necessarily disjoint) operational 
rectangles consisting of i x j modules. Note that g ( f )  is a random variable, and that G(f) 
defined above is its expected value. Then, 

or 

and 

where E ( X )  denotes the expected value of the random variable X. 

Denoting by N;,j the number of (not necessarily disjoint) i x j rectangles in a wafer, 
Since the I;,j rectangles are not necessarily disjoint, it is easy to calculate E(Zi,J). 

E( l i , j )  = N;,j . Prob(a given i x j redangle i s  operational) (8) 

We calculate this last probability similarly to the way Y(') has been calculated earlier. 
Assuming the Poisson distribution for the faults on the wafer, we first calculate the prob- 
ability of an operational module. Due to the overhead required for the added flexibility 
in the new design, the redundancy has been reduced to d columns and the chip-kill area 
has been increased by a factor of R (R > 1). Therefore, 

Y g )  = Prob(a module i s  operational) (9) 

where n is the number of columns, d is the number of redundant columns and L ( f )  is the 
fault density of a column in the new chip. Now, 

(10) 
13 

Prob(an i x j rectangle i s  operational) = (Y#)) 

and substituting (10) into (8) and then into (7), results in 

and since N ( f )  = 26, 
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Figure 3: An 8" wafer containing 26 1Gb DRAMS. 

Again, to obtain the yield for the negative binomial distribution, we average over the 
parameter L ( f )  with respect to the Gamma distribution ( 5 )  with the parameters Xf 
and af, the the average number of faults per column and the clustering parameter, 
respectively, for the FMM chip. We will get results for the large area model or for the 
medium area model, according to whether the raising to the i j th  power in (10) precedes 
the integration or vice-versa. 

In comparing the yield of the two chip designs, we need to take into account several 
factors: The FMM chip has less redundancy per individual module and a larger chip- 
kill area, but on the other hand has a much higher flexibility in combining operational 
modules into complete chips. Another point that needs to be considered is that the FMM 
design has more modules on the wafer, and there is, therefore, a potential of 26 chips 
that can be extracted out of one wafer compared to the maximum number of 24 chips in 

on that needs to be asked in comparing the two designs is which of the two 
or Y ,  should be used. The two comparisons are not identical, since Y(') 
by dividing G(") by 24, while Y(') is calculated by dividing G ( f )  by 26. 

Comparing the Gs reflects the full advantage of the new design, while comparing the Ys 
isolates the effect of the flexibility of the FMM chip, and ignores the fact that the wafer 
has a potential of 26 good chips (or assumes that even in the conventional design we can 

ips per wafer by adding 8 extra modules in the corners as depicted in Figure 

Since $ = $ .%, it is possible to find a case in which G ( f )  > G(") but Y ( f )  < Y('), 
cating that the flexibility of the FMM design alone is not enough to offset the decrease 
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in redundancy and increase in the chip-kill area. In the numerical results which follow, 
we show one example of comparing both the Gs and the Ys, and then proceed to compare 
the Gs, thus capturing the full impact of the FMM design. 

3. Numerical Results 
The main system parameters which need to be considered in the numerical analysis 

are n - the number of columns (and rows), d - the number of redundant columns (and 
rows, in the conventional design), A, and X j  - the fault densities per column in the con- 
ventional and the FMM designs, respectively, a, and cy1 - the corresponding clustering 
parameters, K - the ratio between the chip-kill area and the column area in the conven- 
tional design, and R - the increase in the chip-kill area for the FMM design, compared 
to the conventional design. 

Based on the information provided in [4], n = 214 and d is about 2% of n. We can 
assume that A, = X j  = X and cyc = c y f  = a, and denote X k  = K X .  We calculated the 
values of G and Y for the two chip designs, for several values of the parameters A, cy, K 
and R, and for the three fault distributions - Poisson, medium area negative binomial 
and large area negative binomial. The results are depicted in Figures 4 - 6. 

Figure 4 compares Y(') = G(')/24, y( j )  = G(f)/26, and G(f)/24 as functions of Xk, 
for the large area negative binomial distribution with X = 1, a = 0.25, and three values 
of R - 1.1, 1.4 and 1.8. As seen in Figure 4(a), if the chip-kill area is increased by only 
lo%, both G(f) > G(") and Y ( f )  > Y('). Figure 4(b) shows that if the chip-kill area is 
increased by 40%, G(f) > G(") but Y ( f )  < Y('), while if it is increased by SO%, we see in 
Figure 4(c) that both G(f) < G(") and Y ( f )  < Y(.). Similar results are obtained for the 
other two distributions. 

Figure 5 compares G(")/24 and G(f)/24 as a function of Xk, for a = 0.25, R = 1.3 and 
the three fault distributions. We see in Figures 5(a), 5(b) and 5(c) that for the Poisson 
distribution there is practically no advantage in using the new design, there is a small 
improvement when the large area negative binomial distribution is assumed, and the 
largest increase in yield occurs for the model using the medium area negative binomial 
distribution. A possible explanation to this phenomenon is that in this last model we are 
more likely to find operational areas of size 2 x 2 modules (rather than smaller or larger 
fault-free areas), enabling us to use the flexibility provided by the FMM design. 

Figure 6 depicts G(")/24 and G(f)/24 as a function of R, for X = 1, K = 0.2, the 
medium area negative binomial distribution, and two values of cy - 0.25 and 5. Figures 
6(a) and 6(b) show that the larger improvement in yield when using the FMM design 
occurs for the smaller value of a (the range of R values for which the FMM design is 
better is larger for a = 0.25). The lower a indicates higher clustering, and again, we are 
more likely to encounter medium sized fault-free areas on the wafer which can be used 
by the FMM design. 

4. Conclusion 
Designers of memory ICs have recently realized that the traditional method for incor- 

porating defect-tolerance (through redundant rows and columns) is no longer effective in 
sub-micron process technologies. Consequently, new techniques for defect-tolerance have 
been recently proposed and implemented. In this paper we analyzed one such design 
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(a) a = 0.25. (b) a = 5. 
Figure 6: Yield as a function of R, for Xk = 0.2, the medium area negative binomial 
distribution, and two values of a. 

(the FMM chip [4]) and our most important conclusion is that the advantage of the new 
technique over the traditional one cannot be guaranteed. A very careful yield analysis 
must be performed since, depending on the system parameters, the new design can have 
a higher or a lower yield than the conventional design. 
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