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Abstract—Cyber-physical systems are increasingly used in life-
critical applications, where the probability of catastrophic failure
has to be kept below very low levels. Massive fault-tolerance
has been used to mask failure to achieve such low levels.
However, fault-tolerance is expensive. We argue here that the
fault-tolerance needs of an application change depending on
its current position in its state space and the range of control
inputs that can be applied. We illustrate the applicability of such
an approach using the inverted pendulum as a case-study, and
discuss its potential benefits.

I. INTRODUCTION

Life-critical systems such as aircraft, nuclear and chemi-

cal reactors, power generation systems, and automobiles are

increasingly being controlled by computer. The field of cyber-

physical systems has expanded its application set tremendously

over the past two decades. Controlling by computer allows for

far more complex and efficient control algorithms to be used

in comparison to the traditional hard-wired analog controller.

With a more complex control system comes the need for

effective fault-tolerance. Fault-tolerance has long been a major

concern for cyber-physical systems [2], [7]. In cyber-physical

systems, it often takes the form of massive redundancy, with

voting to mask component failures.

Our main claim in this paper is that while massive hardware

redundancy is required, its actual runtime deployment can be

done adaptively, based on the current state of the controlled

plant. In many, if not most, instances, the plant is in a state

which allows for a lowered level of fault-tolerance. Such a

lowered level can be useful in several ways:

• A reduced computational load allows power management

techniques to be used to reduce the amount of energy

consumed by the computing system. Given that many

cyber-physical applications are energy-constrained, this

is often very useful.

• Reducing the energy consumed leads to a reduction in

the amount of heat generated; processors can be run

cooler under a lighter load. Since temperature is strongly

correlated to the rate at which processors age, running

cooler itself contributes to an increase in reliability.

• Reducing the computational load associated with critical

tasks can often allow the system to devote more resources

to non-critical tasks which improve the quality of control.

In this paper, we use the case study of an inverted pendulum to

illustrate some of the key issues associated with implementing

adaptive fault tolerance. An inverted pendulum has often been

used in the cyber-physical community to act as a proxy for

higher-order systems; for a detailed justification, see [14]. We

use this case study as a means to identify the operational

choices that are available when adapting fault-tolerance levels

to current system state.

The rest of this paper is organized as follows. In Section II,

we subdivide the state-space of the controlled plant according

to how much fault-tolerance is required in each of them.

Section III discusses the implications on scheduling of an

adaptive fault-tolerance approach; in particular, the fact that

the computational burden is no longer linearly related to the

task dispatch frequency as is conventionally the case. Sec-

tion IV covers the impact on processor reliability. In Section V,

we use the inverted pendulum as a case study to illustrate

our ideas. The paper concludes with a brief discussion in

Section VI.

II. ADAPTIVE FAULT-TOLERANCE

We will consider a single control task. Later in this paper,

we briefly mention how this scheme might be extended to

multiple, interacting, control tasks. We assume that control

tasks are executed repeatedly. They could be periodic or quasi-

periodic (i.e., where the periods vary a bit from one iteration

to the next).

We start with the well-known notion of the allowed state-

space. The allowed state-space of a plant is where it is

functioning within acceptable limits. For example, in [12], we

have an example of the allowed state-space of an aircraft in the

final phase of landing for the altitude, descent rate, pitch angle

and pitch angle rate. So long as the plant remains within the

allowed state-space, it is defined as not having failed. (Note

that this does not mean the plant performs optimally: that is

usually related to being in a much smaller subset of the plant

state-space.)

We distinguish between the state at sampling instants and

the rest. A sampling instant is when the control task is initiated.

We subdivide the allowed state-space at the sampling instant

(see Remark 2 below) of the controlled plant according to

the level of fault-tolerance required in each. The most basic

classifications are as follows:

• SN : No fault-tolerance is required. The controlled plant is

in a region of the state-space where even if the actuators

are held at their worst-case incorrect setting until the next

iteration of the control task, it will not leave the allowed

state-space. Of course, if this should happen, the plant is

likely to move closer to the edge of its allowed state-space

and may have to expend more energy or other resources

at the next iteration of the control task.

• SFS : It is sufficient for the computer to be fail-stop. By

fail-stop, we mean a system in which only two types
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of computer output are possible: correct or no (or zero)

output. A duplex is the most obvious fail-stop system:

two processors replicate the computation and compare

their results. If they agree, the output can be declared

correct; if they disagree by more than some margin, we

know that at least one of the outputs is wrong (but not

which is wrong).

• SF : Full fault-masking is required. That is, if the con-

troller produces an incorrect or no output, the plant cannot

be guaranteed to remain in the allowed state-space. A

triplex (also known as Triple Modular Redundancy) is an

example of such fault-masking: three processors replicate

the computation and vote on their results [6]. So long as

no more than one processor is faulty, a correct output is

produced.

Note that SN ⊆ SFS .

Note further that there is no need to concern ourselves about

what to do when the controlled plant is outside the allowed

state-space, since it is defined as having already failed. We do

not handle in this paper the issue of post-failure recovery of

the controlled plant.

What factors control the size of the subspaces? The most

obvious are the dynamics of the controlled process, as repre-

sented for instance by its state equations. This is not under our

control, so we assume these dynamics to be the given context

under which we have to operate. The most important factors

that we can control are the rate at which the control task is

executed and the range of outputs that the actuator is capable

of delivering. The greater the rate at which the control output is

updated, the greater the resilience of the system to an incorrect

output or no output at all. The lower the range of outputs that

the actuator can produce, the greater its resilience to producing

an incorrect output; however, lowering the actuator force can

increase the minimum possible rate at which the control task

needs to be executed.

Remark 1: We are assuming that the state of the controlled

plant is known correctly; in other words, we are assuming that

the sensors have not failed. Sufficient redundancy is always

required of sensor information so that any sensor faults are

fully masked. Since the entire response of the system depends

on the correctness (up to some designated level of precision)

of the values received from the sensors, this must be regarded

as an absolute requirement. (As an example, there have been

recent high-profile disasters caused mainly or partly by failures

of sensor input, most notably the AF 447 and Aeroperu 603

air-crashes.) Similarly, it is assumed that the computational

task dispatcher is sufficiently fault-tolerant. We concentrate

on the fault-tolerance level required by application tasks only,

not the system software.

Remark 2: The allowed state-space is the region in which the

controlled plant is deemed to be functioning satisfactorily. This

is purely based on the application requirements, not on the

capabilities of the controller.

In order to always remain within the allowed state-space,

the plant must be in some given subset of the allowed state-

space at sampling instants. That is, we can define a subset of

the allowed state-space, Sσ, such that if the state s ∈ Sσ at a

sampling epoch, it is guaranteed to remain within the allowed

state-space throughout the inter-sampling interval.

III. IMPLICATIONS FOR SCHEDULING

Let us start with the case where the control task is periodic.

To minimize the computational load on the controller, the

conventional approach would be to pick the maximum period

under which quality-of-control requirements are met, subject

to a given safety margin. Alternatively, one may trade off

computational load against quality of control. One can analyze

the dynamics of the controlled plant in order to obtain task

deadlines (and thus periods, for periodic control tasks): see,

for example, [10], [11], [12]. In every instance, when a tradi-

tional fault-tolerance scheme is used, the computational load

increases linearly with the control task dispatch frequency, i.e.,

with the inverse of the period.

When adaptive fault-tolerance is used, however, there is no

longer a monotonic relationship between the computational

load and the period. In other words, reducing the period by

a factor of k does not increase the load by the same factor;

the reason is that the required level of fault-tolerance may be

different for each of the cases.

To make this more precise, let us denote by ψFS(P )
and ψN (P ) the fraction of time that the system spends in

subspaces SFS and SN when the control task period is P .

(In this discussion, to begin with, we focus on the case of a

single control task with the period of the other tasks fixed.)

We can simulate the controlled plant to determine ψFS(P )
and ψN (P ). Then, if the control task execution time is e, the

average task utilization is given by

u(P ) =
e

P
{ψN (P ) + 2ψFS(P ) + 3(1 − ψN (P ) − ψFS(P ))} .

Compare this with the 3e/P utilization associated with using

non-adaptive fault-tolerance.

If, as is generally the case, we have n > 1 interacting

control tasks, an iterative approach can be used to pick the

appropriate periods, P1, P2, · · · , Pn. Pick an initial value for

each Pi. Optimize P1, keeping P2, · · · , Pn fixed. Then, with

this new value of P1, optimize P2 using the same approach,

and so on.

When the task is not dispatched periodically, but is sporadic,

the system must decide when to trigger a control task; this can

be done anytime the controlled plant enters some designated

subset, Sπ, of Sσ . Determining Sπ is an interesting problem

that is outside the scope of this paper: the extent of fault-

tolerance required depends on the plant state, as before. One

strategy may, for example, be to dispatch the task when it

is on the edge of the SN subset; this ensures that (barring

emergencies) no redundant copies of the control task are

required; in such a case, Sπ will be a region covering the

outer boundary of the SN subspace.

IV. IMPLICATIONS FOR RELIABILITY

It has long been held that task loading is positively corre-

lated with the failure rate [5], [9], [13]. This is increasingly

because of thermally-induced accelerated failure rates. For
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example, one analysis of electromigration-related failure of

VLSI interconnect suggests that the mean time to failure is

inversely related to the operating temperature [8]:

MTTF ∝
1

E

[

j(t)
exp

(

−Q

kT (t)

)

kT (t)

]

where E[] is the expectation operator, j(t) is the current at

time t, Q is the material activation energy, k is Boltzmann’s

constant, and T (t) is the absolute temperature at time t.
The temperature profile of a chip is obviously a function

of the task loading and can be greatly improved by reducing

redundancy levels. For example, if we only need to run one

copy of a task rather than the default of three, we can assign

them one by one to the processors in a round-robin fashion, so

that each of the three processors in a triplex is idle for two of

every three periods. This can allow for a significant reduction

in the chip temperature, with a consequent benefit to reliability.

This, in turn, can reduce the number of backup (cold-start)

processors that are needed to maintain a certain level of

reliability. Such a reduction can be especially beneficial in

applications where repair is either not possible or is very

expensive (e.g., space missions).

V. CASE STUDY: INVERTED PENDULUM CONTROL

We use an inverted pendulum to illustrate our ideas. An

inverted pendulum, as the term implies, is a rigid rod with

the bob at the top and attached by a hinge at the bottom.

Movement is restricted to one dimension by the hinge. The

hinge is affixed to a bogie which moves along just one

dimension: it is the acceleration of this bogie that is the single

control input. The objective is to keep the pendulum as close

to vertical as possible. Obviously, the pendulum is in either a

state of unstable equilibrium or of inequlibrium.

The system admits of a simple state-space model: the

state variables are θ(t) and θ̇(t), where θ(t) is the angle

the pendulum makes with the vertical (positive or negative).

Define x(t) = [θ(t) θ̇(t)]T . The state equations are as follows

[14]:

ẋ(t) = Ax(t) +Bu(t)

where we have the following notation:

g Gravitation constant, 9.81ms−2

ℓ Length of pendulum

J Moment of inertia, gℓ2

γ Friction constant (at the hinge)

A =

[

0 1
g/ℓ −γ/J

]

B =

[

0
ℓ/J

]

The control input is calculated every time the control task

is executed; a zero-order hold (ZOH) approach is taken

whereby the input is held constant until the next input becomes

available [1]. Define τ(t) to be the latest time prior to t
when a calculation of the control input is carried out and

Variable Value

m 1 kg

ℓ 1 m

K 20

ulim 1.0 N

θlim 0.5 rad

θ̇lim 0.5 rad/sec

γ 1E-4

TABLE I: Default Parameter Values
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Fig. 1: SN Subspace

ξ the time prior to this when the value of the system state

variables is last sampled. Then, the control input is given

by u(t) = −Kθ(τ(t) − ξ) where K is a given constant of

proportionality, subject to a maximum magnitude of ulim
1.

We start by plotting the SN , SFS , and Sσ subspaces for the

parameter values selected in Table I. These are determined as

follows. For SN , we must allow for the actuators to be placed

in the maximally wrong position and still not leave the allowed

state-space anytime until the next sampling instant. For SFS ,

we must allow for the actuators to be set to 0 (neutral setting

upon discovery of an error in the computation) without leaving

the allowed state space. For Sσ , we assume that the actuators

are always correctly set. Obviously, SN ⊆ SFS ⊆ Sσ.

The parameters of the inverted pendulum are shown in

Table I. The shaded portions of Figure 1 indicates the sub-

space where no fault-tolerance is required: even if the software

produces a wrong output of maximum possible magnitude

from the actuator, the system will stay within the allowed

state-space (|θ| ≤ 0.5 rad and |θ̇| ≤ 0.5 rad/sec). The shaded

region in Figure 2 shows the subspace where it is sufficient to

have just fault-detection, rather than full-blown fault-masking.

Finally, the shaded region in Figure 3 shows the subspace Sσ.

These subspaces are not convex. The reason is the control

algorithm that we use in this paper is based only on the

currently observed angle, θ(t) and not by its rate, θ̇(t).

Obviously, the controlled plant parameters and the fre-

1Note that we are not considering noise effects in this expository example.
If noise were to be included, since its amplitude is stochastic, the edges of
the various subspaces would be fuzzy. Except for this, everything would be
along the same lines.
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Fig. 3: Sσ Subspace

quency with which the pendulum-control task is dispatched,

together determine the subspaces. As an illustration, note how

much smaller the SN and SFS subspaces are when the period

is lengthened to 350 ms, from 250 ms. Related to this matter,

Figure 4 indicates the fraction of the allowed subspace that is

covered by the SFS and the SN subspaces. As the task period
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Fig. 5: Impact of ulim on Subspaces

drops, the fraction of the allowed subspace that requires fault-

tolerance drops as well. If the period is below about 150 ms,

for example, no fault-tolerance is required for fully 50% of

the allowed state-space; for the same percentage, if the period

is below about 200 ms, fail-stop is a sufficient level of fault-

tolerance.

Let us now consider the impact of ulim on the subspaces.

Figure 5 shows this for two values of control task period:

50 ms and 200 ms. An increase in ulim always causes SN

to decline: the more powerful the actuator, the greater the

worst-case impact of the actuator being applied incorrectly. As

ulim increases, Sσ initially increases, since an increase in ulim

widens the capability of the control (when applied correctly)

to keep the plant in the allowed state-space. Beyond a certain

point, however, the fact that the actuator is updated only once

every period and is held fixed between updates starts to have

a negative impact. This accounts for the reduction in both Sσ

and SFS beyond a certain point. (Note also how SFS starts to

decline earlier for a period of 200 ms rather than of 50 ms.)

All these simulations assumed that the task was lightweight

enough that computer response time was not significant. A

significant response time means that the system is essentially

increasing the effects of working with outdated sensor infor-

mation, and tends to further reduce the size of the SN and

SFS subspaces.

It is important to point out that these fractions do NOT

necessarily represent the fraction of time that the plant spends

in these subspaces, since not all points in the state-space are

equally likely to be visited (after all, the purpose of the control

is to keep the state at some optimal value, which in our present

example is θ = θ̇ = 0).

We now turn to the implications for task scheduling.

Starting the pendulum in an initial random state θ ∈
[−0.5θlim, 0.5θlim] and θ̇ ∈ [−0.5θ̇lim, 0.5θ̇lim], we run a

simulation of the pendulum control for up to 100 seconds

or until it leaves the allowed state-space, whichever comes

first. Data are collected for ψN (P ) and ψFS(P ); these are

presented in Figure 6. As the control task period increases,

an ever smaller fraction of the allowed state-space can be

handled without any fault-tolerance. Finally, this fraction goes

to 0. Correspondingly, the fraction of state-space requiring

fault-detection (but not correction) increases at first. Beyond

a certain point, however, this fraction starts to decline as an

increasing fraction of instances require full fault-tolerance.

Based on this, we then calculate the utilization, u(P ).
In Figure 7, we present the ratio of the task utilization of
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Fig. 6: Dependence of Subspace Size on Control Task Period
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Fig. 7: Ratio of Adaptive to Non-Adaptive Utilization

the adaptive scheme to the non-adaptive one (which always

uses a triplex). Note that for small periods, the utilization is

substantially less for the adaptive case. As periods drop (or,

equivalently, the control task dispatch frequency increases), an

increasing fraction of control task instances can be handled by

lower amounts of redundancy. This counteracts the increasing

task loading caused by an increased dispatch frequency. This

is better shown in Figure 8, which shows how the adaptive and

non-adaptive task utilizations change with the period: note how

much smaller is the increase in task utilization as the period

decreases. (These numbers were calculated assuming e = 1
ms).

VI. DISCUSSION

The traditional approach to dealing with the life-critical

nature of many cyber-physical systems is the use of massive

redundancy for fault-tolerance. Our aim in this paper has been

to point out that the cyber-side reliability requirements must

not be regarded as unvarying, but rather as a function of the
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Fig. 8: Relative Utilization of Adaptive and Non-Adaptive

Schemes

current state of the controlled plant. Indeed, since one would

normally expect the controlled plant to mostly operate deep

within its allowed state-space, one can expect that the actual

amount of redundancy required will be much lower than the

full fault-masking capability required in some cases. While this

does not reduce the need to use massive hardware redundancy

so that it can be put into operation if the plant approaches

the edge of its allowed state-space, it does allow us to reduce

the computational burden for much of its period of operation.

As explained above, this can significantly reduce the thermal

stress on the controller, which in turn can greatly improve

controller reliability. The benefits to energy consumption and

the thermal stress can be quantified using standard and well-

known processor energy and heatflow models.

Altering the level of fault-tolerance during runtime is not

difficult; it is just a matter of deciding how many copies to

dispatch.

The computational burden is no longer now directly pro-

portional to the task dispatch frequency. As this frequency

increases (or conversely the task period decreases), the plant

tends to operate deeper within its allowed state-space, thereby

reducing the need for redundancy and hence the computational

burden. We have also pointed out that the range of actuator

force also affects the subspaces. These tradeoffs must be

resolved by the designer.
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