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Incorporating defect tolerance for yield enhancement of memory ICs through redundant rows and
columns has been extremely successful for more than 20 years. A new approach requiring a smaller
design modification was recently implemented in [1], and is depicted in Figure 1. We present a
yield analysis of this approach and demonstrate the effect of the different system parameters on
the yield of the chip.

The memory IC consists of 16 banks, each of which has its own spares. Traditionally, each
gpare line (row or column) has its own set of fuses which are programmed so that it can replace
a defective line. These fuses are designed with a much larger feature size than the memory cells
and as a result, a spare line with its associated fuses consumes a much higher silicon area than a
regular memory line. The design in Figure 1 separates the spare lines from the sets of fuses and
makes the fuse sets globally available to all 16 banks. This allows for the use of a larger number
of local spare lines with fewer fuse sets, thus achieving the yield benefits with a much reduced
area penalty.
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Figure 1: A block diagram of the design in [1].

Our yield analysis is based on two widely-used analytical fault models: The Poisson distribu-
tion and the negative binomial distribution [2]. We use the following notations:
X - average number of correctable faults per row, « - clustering parameter (see [2]), # - number of
rows per bank, s - number of spare rows per bank, b - number of banks, t - total number of fuse
sets for all banks, ¥; - probability of no systematic (uncorrectable) faults.
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Figure 2 depicts the yield as a function of ¢ - the number of fuses - for the two distributions, with
A =0.0001, s = 4, and o = 0.5, and shows that the yield reaches its maximum at about ¢ = 14,



much lower than & X s = 16 x 4 = 64, and that the optimal ¢ is not very sensitive to c.
In Figure 3, the optimal ¢ was calculated for two distributions with the same a but different A’s.

The best t depends on A, and it increases with A.

Figure 4 depicts the maximum attainable yield as a function of s and shows that the optimal
s depends on both A and &. A smaller & (i.e., more clustering) and a larger A would require a

higher s to maximize the yield.
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Figure 2: Yield vs. number of fuse sets
for two distributions (A = 0.0001, s = 4).
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Figure 3: Yield vs. number of fuse sets for
two values of A (o = 0.5).
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Figure 4: Max. yield vs. number of spares per bank for several distributions.
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