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Abstract

Many factors contribule to the cost of manufacturing integrated circuits. These in-
clude the yield of the designed IC, the complezity of its testing, the packaging cost,
etc., and they all must be taken into account when designing a defect tolerant in-
tegrated circuit. We present in this paper a mathematical model which includes all
magjor factors contributing to the cost of manufacturing ICs. This model allows the de-
termination of the design which mazimizes the ezpected profit rather than mazimizing

the yield. Numerical examples illustrating the proposed model are also presented.

Introduction

With the advances in integrated circuit (IC) technology and the trend towards Very
Large Scale Integration (VLSI), a very large amount of research is being performed
concerning the different aspects of IC manufacturing. However, most of the published
research deals with one specific aspect of the general problem, and not enough effort
has been put into viewing the picture as a whole. Lowering the cost of Ewrzmmngiwm
integrated circuits (and consequently, increasing the profits) still remains one of the
most important and most challenging problems of circuit manufacturing, and the
need arises for a cost model which will take into account as many of the relevant
aspects as possible, rather than concentrating on one factor of the general problem.
In addition to the various cost factors, such a model must include an objective
function based on which the choice of an optimal design can be made. This objective
function will, in general, differ according to the specific function that the chip must

execute. However, in general terms, the objective of the ICs manufacturer is to



maximize the net profit, namely, the income from the sales of the operational chips

minus the cost of manufacturing all the chips.

Due to the complexity of the fabrication process, manufacturing defects (caused
by dust and undesired chemical particles) are unavoidable. Not all defects, however,
result in an actual damage to the circuit [3]. A manufacturing defect which interferes
with the proper operation of the chip (integrated circuit) is called a manufacturing
fault. This paper deals with circuits which have some amount of fault tolerance
incorporated into them.

The return from an operational chip depends on the type of the chip and is usually
a function of its size, but in the case of fault-tolerant chips it may depend on the size of
the fault-free portion of the chip. This reward may be monetary, or it may represent
some other measure of the chip’s performance (which eventually will be reflected in
the selling price of the chip).

The number of operational chips is determined by the yield which depends on the

complexity of the circuit, on it size, on the amount of redundancy incorporated in it,

and clearly on the density and distribution of faults on the wafer.

The manufacturing cost has several ingredients, yet most of them (e.g., the cost of
mantfacturing the wafer’s masks) are fixed (i.e., independent of the size of the chip),
and are, therefore, not included in the objective function. The two main variable
costs are the testing cost and the packaging cost. We assume that each manufactured
chip is tested and, if found to be good, is then packaged. The testing cost depends
on the function of the chip and on its size. The testing procedure is, however, not
always complete and an existing fault may not be discovered. The faulty chip will in
this case be packaged, and only after additional testing will be diagnosed as faulty.
The packaging cost is determined primarily by the number of external connections
that the chip has, which, in turn, depends on the function and design of the circuit,
and for a given design can be viewed as a function of the total area of the chip.

The goal of this paper is the development and analysis of a mathematical model for
enhanced manufacturability of fault tolerant integrated circuits. We suggest several
objective functions, each suitable for a different type of circuit. This enables us to
determine optimal values of chip size and redundancy for different integrated circuit
structures, and to analyze the sensitivity of the design to the choice of the specific

yield model and the set of system parameters.



The Mathematical Model

In our model, a chip consists of basic units named modules whose purpose is to execute
the functions of the chip, and an auxiliary circuitry which supports the modules. For
example, a memory chip consists of several storage cell arrays and address decoding
circuitry. The area of a module is assumed to be the unit area, and all the other
circuitry is measured in these units. The basic chip consists of N modules plus a
support circuitry whose area is S(N), where S(N) is a non-decreasing function of
N. Due to manufacturing defects, some of the modules in a chip may become faulty.
To achieve a degree of fault-tolerance, R redundant modules are added to the basic
number of N. The fault-tolerance capability requires an additional reconfiguration
circuitry whose purpose is to restructure the fault-free modules into an operational
chip, and whose area, denoted by C(N, R), is a non-decreasing function of N and
of R. Note that the auxiliary (support and Hmnou_mmswm‘moi circuitry has usually
no incorporated redundancy and must therefore be designed more conservatively to
make it less prone to defects.

Given the functions that the chip must execute, an appropriate objective function
should be constructed to fit the specific requirements of this type of circuit. This
objective function has N and R as decision variables and takes into account the four
main factors, namely, the testing cost, the packaging costs, the yield, and the income

from an operational chip.

Let A{N, R) denote the total area of the chip. It can be calculated as follows,
A(N,R) = N + S(N) + R+ C(N, B) W)

The cost of the initial testing of a chip is assumed to be a function T3(N, R) of N and
R while the cost of testing the final product is a function To(N) of N only. Similazly,

for a given design, the packaging cost of one chip is assumed to be a function K(N)

of N only.

The return from one operational chip can be assumed to be a non-decreasing
function V(n) of the number n of fault-free functional (i.e., non-auxiliary) modules in
the chip. Several special cases may be of interest here. We first make the distinction
between two main types of applications. In the first, the chip must have N fault-free
modules for proper operation, and any additional modules are just redundant spares.

In this case
UN for n> N

Vin)= 0 for n < N



where U(n) is a non-decreasing function satisfying U(n) > 0 for n > 0. In the other
type of applications (memory arrays, for example), any fault-free redundant modules
can be used to enhance the chip operation rather than being only stand-by spares.
In some of these applications, even a chip with less than N operational modules can

be used, though to a lesser degree. In this case

Ur) for L<n<N+R

Vin) = 0 for n< L

where L is the minimal number of modules required for operation of the “partially
good chip.”

The exact form of the function U(n) depends on the application of the circuit. For
memory chips, U{n) is the usefulness of having n storage arrays, and can, therefore, be
considered as being linear in n. Thus, U(n) = u-n for some constant u. For processors,
U{(n) should reflect the speed-up obtained by n modules and is therefore some concave
function of n, e.g., U(n) = u - log(n). If the chip’s function is interconnection, then
U(n) should be some measure of the throughput obtained with n modules, and can
be calculated once the design of the chip is known.

The design of the chip, combined with specific values for N and R determine the
area A(N, R), and the testing and packaging costs. The number of chips on a wafer,
denoted by I(N, R) is determined by

154 |54 (3)

I(NR) = R = N+ S(V) + R+ O(N, B)

where W denotes the wafer area, measured in modules.

As opposed to all the deterministic factors mentioned above, the number of oper-
ational chips on a wafer is a random variable, since it is affected by the number and
distribution of manufacturing defects which are random by nature. We will include in
our model the yield of the chip, which is the expected value of this random variable.

Another element which should be considered random is the outcome of the initial
testing of the chip. Let ¢, denote the coverage of the initial test, defined as the
probability that a faulty chip will be diagnosed as such. Then, 1 —¢ is the probability
that a faulty chip will be considered good, and only after the packaging and the
additional testing will be determined to be faulty. We assume that there are no “false

positives”, i.e., a non-existing fault will never be diagnosed and that the final testing

has a coverage of 1.



We now proceed to construct an objective function which includes all the elements
mentioned above, and represents the net profit obtained from one wafer for a given
circuit design and specific values of N and R. Let y(™)(N, R) denote the probability
that the chip can be restructured into an operational n-module chip. This implies
that the auxiliary circuitry is fault-free (since it has no built-in redundancy) and that
exactly n out of the N + R functional modules are fault-free. Let Y(")(N, R) denote
the probability that the reconfigured chip has at least n functional modules, i.e.,

N+R
H\?VQﬁ R) = M QEQﬁ R).
The yield of the chip, defined as the probability that it can be reconfigured into an
operational chip with at least N modules, can now be expressed as
N+R
YN, R) = 3~ yP(N, R). (4)
=N
To obtain the expected net profit out of one wafer, note that although all manufac-
tured chips are tested, only those passing the initial testing are packaged, and only
those passing the final testing can be sold. The expected net profit obtained from
one chip (denoted by EP(N, R)) can, therefore, be written in the form

EP(N,R) = 3" 4O, R)UG) — |1 - e - 3OV, B)| [K(N) + To(W)] - Tu(¥, R)
i=IL =0
= M+“ yO(N, R)U(4) — [K(N) + Ta(N)) T — o1 — YIENN, m:_ —Ty(N,R) (5)

and the expected net profit for all J{ N, R) chips on a wafer is
Z(N,R)=I(N,R)-EP(N,R). (6)

Equation (5) is general, and can be applied to those types of circuits in which partially
good chips are acceptable. In many applications, however, partially good chips cannot
be used. For proper operation, a chip must have at least N fault-free modules out
of the N + R and any additional fault-free modules cannot be utilized but serve as

spares. In this case, V(n) has the form as in (2) and consequently,

EP(N, R) HWJ_:% R)U(N)—[K(N) + To(N)] [1 - c(1- Y™N, R))| -To(N, R)
=N



= UN)YPYN,R) - [K(N) + To(N)} [1 - «(1 - YN, R))| - Tu(N,R)  (7)

The design of the chip includes finding basic design rules which include N and R as
parameters, and then choosing values for N and R which optimize the appropriate
objective function Z(N, R). Once the basic design and the objective function are
determined, the maximization problem can be solved in two steps. First, an optimal
R, RW™) is found for every value of N, and second, the value of N which maximizes
Z(N, R™)) is calculated.

Further investigation of the function Z(N, R) is required to determine which math-
ematical properties it possesses, so that the search for the optimal design of the circuit
can be facilitated. If the function is concave or unimodal, then a single optimum exists
and can be obtained by using differentials, differences, or some other known search
method. The shape of the function Z and the optimal design depend on the main
system parameters. These include the area of the auxiliary circuitry S (N)+C(N, R),
the yield YV)(N, R), the testing and packaging cost functions Ty(N, R), T5(N) and
K(N), the test coverage ¢; and the reward function U(n). Since, in practical situa-
tions, we can obtain only estimates rather than accurate values of the above functions,
we need to find how sensitive the solution is to the choice of the system parameters.
Most of these parameters can be modified (at some cost). The auxiliary area can
be decreased through a better design. The packaging cost can be decreased with a
different technology, and there is a trade-off between the testing cost and the test
coverage. The sensitivity analysis is a tool which helps in determining whether these

modifications are cost effective.

Examples

We illustrate the application of (6) for calculating the optimal redundancy R through
an example of a 16 bits defect-tolerant microprocessor similar to the design described
in [1]. A bit-sliced design style is followed for the data path of the microprocessor,
which enables the use of a straightforward redundancy scheme. One or more spare
slices are incorporated in the implementation allowing the replacement of defective
slices by good spares. Two choices for the design of these slices are investigated: one
is single bit wide slices, the second is two bit wide slices. Having a two bit wide
spare slice might prove to be more cost-effective than two single bit spare slices in the
case of clustered faults. Often two adjacent (single) bit slices will be faulty, and the

switching circuitry for a single two-bit spare slice is simpler and less area consuming



than that for two single-bit spare slices.

For the control part of the microprocessor we assume a (microprogram) control
memory with spare rows and columns for defect-tolerance (unlike the PLA-based
design in [1]). In this paper we examine, separately, the design alternatives of the

control memory and those of the data path. A similar, but slightly more complex,

analysis is required in order to find the combined optimal design of the system as a

whole.
For the data path we chose the following cost parameters. First, exactly 16 op-
erational bit slices are required. Any additional defect-free slices are useless. Also, a

chip with 15 or less defect-free bit slices is unacceptable. Thus,

16w  for n > 16

VM) =1 "0 for n<16

where u is a constant. The area of one bit slice is chosen as the unit area. The amount
of support circuitry in a bit sliced microprocessor is linear in the number of bits and

so is the packaging cost. Both are independent of the amount of redundancy added.
S(N) = sN, K(N)=FkN.

The complexity of the reconfiguration circuitry is linear in the number of required bits

but increases exponentially with the number of spare slices included in the design.
QAEV MNV = nuzmnub\p_

where [ is the width of the shce.
The cost of the initial testing of the N bit slices and the R spare bit slices is assumed
to be exponential in (N + R}, and the cost of the final testing is assumed to be

exponential in IV,
Ty (N, R) = die?™W+R) Ty(N) = feh?

Other variations of the above cost parameters can be analyzed.
The fault distribution model chosen is the negative binomial model under the
large area clustering assumption (4] with an average of A faults per unit area and a

clustering parameter . Using this model, the expressions for the yield become

-

/PN, R) = mz M J fméTQ. N+ w —n) (S + Szﬁw@ +7n+ ]2



and

. uzméﬁlsu. Q H wv A: + u.u.| HVA: Ez: QAZMKE +s+u._ »v d

=0
The numerical values for the different parameters for the data path have been chosen

as follows:
u=18=03,k=05ci=cc=d =d;=fi = , =01, ¢, = 0.9 and a = 0.25.

We first calculated the expected net profit per wafer, Z, as a function of A for three
redundancy schemes: No redundancy (R = 0), i = 1 single bit slice, R = 2 single
bit slices. The results are depicted in Figure 1. Clearly, the expected profit decreases
with A. For low values of A the optimal redundancy is zero while for high values of A
it is R = 2 single bit slices.

Figure 2 shows the optimal redundancy in the data path as a function of A for two
values of the parameter a, a = 0.25 and a = 2.5. Here, less redundancy is required

for lower values of a (which indicate higher clustering).
Figure 3 depicts the optimal redundancy in the data path as a function of A

(with a = 0.25) for three values of the reconfiguration area coefficient cz: ¢ = 0.1,
c; = 0.3, and ¢; = 0.5. We see that the higher the value of ¢; (which indicates that
the reconfiguration requires a higher area penalty), less redundancy is optimal. No
redundancy is the optimum for the highest value chosen: ¢; = 0.5.

The required size of the control memory is denoted by M; x M,. In our numerical
examples we assume a control memory of size 1K x 32 bits. Since M; > M;, we
assume that adding redundant rows is more cost-effective than adding redundant
columns. Therefore, we restrict our analysis to the case where R redundant rows
are added to the 1K required rows, and we chose the module, accordingly, to be a
row. Most of the cost factors for the control memory are assumed to have the same
functional form as before, except for the reconfiguration circuitry which is assumed
to be linear, rather than exponential, in R, i.e., C(N, R) = c2 L.

The numerical values for the different parameters for the control memory have

been chosen as follows:
u=258=01k=01¢=4d = f, =01, dy = 0.01, fo = 0.001, ¢, = 0.9 and

a = 0.25.
Figure 4 shows the optimal redundancy in the 1K x 32 bits control memory as a

function of A for two values of a. Here, unlike Figure 2, more redundancy is required

for the lower value of . This difference needs to be further investigated.

Finally, we compare (for the control memory) the optimal redundancy which max-



imizes the profit to that which maximizes the equivalent yield. The latter takes into
account the additional area due to the redundant modules but ignores all other factors
like testing and packaging costs. Figure 5 depicts these two optimal redundancies as a
function of A. The most important conclusion that should be drawn from this figure 1s
that there are values of the manufacturing parameters for which maximizing the yield
does not guarantee that the net profit is maximized. Therefore, it is worthwhile for
IC manufacturers to employ a comprehensive model that includes all relevant factors

affecting the cost of manufacturing an integrated circuit.

Conclusion

A mathematical model for enhanced manufacturability of defect tolerant inte-
grated circuits has been described in this paper. Such a model allows the determina-
tion of the optimal redundancy that maximizes the expected net profit rather than
the yield only. Numerical examples demonstrating the significance of the proposed
model have been presented. Further investigation of the suggested model and its

various cost factors is needed.

Acknowledgment: This work was supported in part by NSF under contract MIP-
8805586.

References

(1] R. Leveugle, M. Soueidan, and N. Wehn, “ Defect Tolerance in a 16 Bit Micro-
processor,” Defect and Fault Tolerance in VLSI Systems, Vol. 1, I. Koren (ed.),
pp- 179-190, Plenum, 1989.

[2] I Koren, Z. Koren and D.K. Pradhan, “Designing Interconnection Buses in VLSI
and WSI for Maximum Yield and Minimum Delay,” IEEE J. of Solid-state Cir-

custs, pp. 859-866, June 1988.

[3] I Koren and A.D. Singh, “Fault Tolerance in VLSI Circuits,” Computer, Special
Issue on Fault-Tolerant Systems, Vol. 23, pp. 73-83, July 1990.

[4] 1. Koren and C.H. Stapper, “Yield Models for Defect Tolerant VLSI Circuits: A
Review,” Defect and Fault Tolerance in VLSI Systems, Vol. 1, I. Koren (ed.),
pp. 1-21, Plenum, 1989.

[5] C.H.Stapper, F.M. Armstrong and K. Saji, “Integrated Circuit Yield Statistics,”
Proc. IEEE, Vol. 71, pp. 453-470, April 1983.



0.3

T

i

I 1 1 I I
0.28 @
DM@ B ........
e .o. R=0
R % . R =1 single bit slice
0.24 M .¢.. R =2 single bit slices
0.22 w
g
EXPECTED M
PROFIT 02 &
8.
-w-.
0.18 %,
G...ﬁ.
Ry
OH@ B Q.ﬁhﬂ
B, i,
0. ¥:0.
Q.@..m“w”
0.14 - o P .
O R,
©a. .?w“w.
O.@..@ ..wnﬁ_w.
OHM .@_.@. w\vww
Ga.,
6.y
OH ] ] ] ] | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
A
Figure 1: The expected net profit
(a = 0.25).

vs. A for three redundancy schemes



3 - .@:..}.:..*.::}::.»::*.:.}..:.».:..*::.*:.:*:&_1.:.»._:..* —

OPTIMAL 2r
REDUNDANCY
ﬁ Number of

single bit slices) : :
1 Frd @00

o
LR
[l

DO

0 lbo-é

1 1 | [

! 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
A

Figure 2: The optimal data path redundancy vs. ) for two values of .

OPTIMAL
REDUNDANCY m
Az.ﬁg_umh. O“m. 1F @@Q}.************ -
single bit slices) o, =01
I~ Lok, G = 0.3 1
L0, Cg = 0.5

O l@}@»&*i@.-ﬁ@.:Av.:.@....AV...@..:AV:..@...AV.:AV:.AV...Av.:Av::O

| ] | ! [

|
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
A

Figure 3: The optimal redundancy vs. A for three values of the reconfigu-
ration coefficient c,.




@ T I ! T T

m L. mv ...... Fo NP —

ﬂ - 0. Fo) —

6 .mv ...... Deennnn .O -

OPTIMAL 5 L ST F—

REDUNDANCY

(Number of rows) 4+ ger AT | -

w - O. ...... .ﬁ. ...... et ereeas * .

2+ I .Q., ..... Je 0 a = 0.25 —

*, ax=25
1r A
0 ! s ! ! !
0 0.0002  0.0004 0.0006  0.0008 0.001
. A
Figure 4: The optimal control memeory redundancy vs. X for two values of
o
I I T T f ! T I I
HM - O. ........ PO TR Tr Errrrnnns -
G0
10 - G--0 :
@ reeeees o)

OPTIMAL 8 00 £
REDUNDANCY o ook
(Number of rows) : :

@ - [oXTITTR Q uw. % & -
Qreeeees o  SIEREE ko rrereee *
h" - @...Aw * .* -
ot I ...0. Yield only
: ... % . All costs
M - B * -
| 1 ] | | | |

] ]
0 0.0001 0.0003 0.0005 0.0007 0.0009

A

Figure 5: The optimal redundancy vs. A for maximizing the net profit or
the yield only.



