A UNIFIED APPROACH TO YIELD ANALYSIS
OF DEFECT TOLERANT CIRCUITS !

Zahava Koren and Israel Koren

University of Massachusetts at Amherst
Department of Electrical and Computer Engineering
Ambherst, MA 01003

ABSTRACT

The dependence of the yield of defect tolerant VLSI circuits on the size of defect
clusters (relative to the chip size) has been recently recognized. Consequently, models
for yield analysis have been proposed for “large area clustering” and “small area
clustering”. By adding a new parameter, the block size, to the existing parameters
of the defect distribution we unify the analysis of the existing models and at the
same time add a whole range of “medium size clustering” models, thus increasing
the flexibility in choosing the appropriate yield model. We illustrate our approach
through several numerical examples and propose methods for estimating the newly
delined block size.

1. INTRODUCTION

When manufacturing defect tolerant VLSI circuits, the precise estimation of
the yield is crucial since it determines the amount of redundancy to be added to
the circuit. The accuracy of the estimated yield depends on the model selected to
describe the spatial distribution of manufacturing defects. For some time in the
past the Poisson distribution was used, resulting in simple yield calculations since
under the Poisson assumption the defects occurring in distinct areas are statistically
independent. Researchers today agree that the distribution of manufacturing defects
has more clusters than predicted by the Poisson distribution. Several distributions
that allow such increased clustering of defects have been suggested, most notably the
negative binomial distribution which was shown to have a good fit with actual defect
distributions.

The negative binomial distribution has two parameters, A - the average number
of defects, and « - the so called clustering parameter, which actually measures the
deviation from the Poisson distribution. The smaller the value of a, the larger the
deviation. However, these two parameters are not sufficient for yield calculations of
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circuits with redundancy. The assumption that the number of defects in an area of
size A has a negative binomial distribution with parameters (A4, a4) enables only the
calculation of the probability of having z defects in the given area, namely,

HJ T
Prob (z) = (a4 +2) (Aa/as)

! T(aa) (14 dafoy)oats

In particular, it enables finding the probability of zero defects which, if no redundancy
exists, constitutes the yield of the given area,

Yield = Prob (0) = (1 4+ Aa/os)™ 4

However, if the circuit has some redundancy in it, it is essential to calculate probabil-
ities pertaining to partial areas, a task which is impossible without some additional
assumptions regarding the clustering. This results from the fact that although the
parameter A4 can be extrapolated to an area of size A* by Ag- = Aa- ﬁ. , the param-
eter ay cannot be easily extrapolated to areas either larger or smaller than A. Such
an extrapolation would depend on the clustering pattern within A, a pattern which

the two parameters (A4, a,) fail to provide.

Most of the proposed models for estimating the manufacturing yield of defect
tolerant VLSI circuits have noticed this inadequacy, and therefore assumed “large
area clustering” [1], implying that « is constant for any sub-area of the wafer. Very
few technical papers have addressed the cases of small and medium sized clustering,
relative to the chip size, e.g., [4] in which a is assumed almost proportional to the
area. Some papers ignore the size of the clusters altogether. An attempt to deal with
the size of the clusters has been made in [2], however the approach there is impractical
due to the prohibitive number of parameters in the model.

In this paper we do not investigate the cluster behavior and its effect on the yield.
Instead, we view the size of the clusters as the result of the wafer area being divided
into sub-areas which we call “blocks”, such that the defects in distinct blocks are
statistically independent. The defects within each block (if any exist) are uniformly
distributed, hence the partial areas of the same block are statistically dependent. We
suggest the addition of the block size as the third parameter of the spatial negative
binomial distribution. This new parameter enables us to treat in a unified manner
“small area clustering” and “large area clustering” which until now have been treated
in two different ways, and “medium area clustering” for which, to the best of our
knowledge, no satisfactory model has been developed.

The notion of “block size” (to be defined in the next section) has several ad-
vantages over the previously used “cluster size”. It can be defined mathematically,
while we have not found any satisfactory definition of the cluster size. Due to the ex-
act definition, statistical properties of the fault distribution can be proven rigorously.
One such property which is significant for yield calculation is that a remains constant
as long as the considered area is confined within the same block and increases when
the area exceeds that of the block. The introduction of the block size enables also
the development of a unified approach to yield calculation for the different “cluster
sizes”. This provides more flexibility in choosing an appropriate yield model, and can
be used to find how sensitive the calculated yield is to the specific block size assumed.

The objective of this paper is therefore, to introduce a unified approach to yield
analysis by adding a third parameter, i.e., the block size, to the two parameters of



the negative binomial distribution and to demonstrate its use when calculating the
yield of defect-tolerant circuits. :

The paper is organized as follows. In the next section we describe the yield model
and define the suggested parameter - the block size. In Section 3 we demonstrate the
use of the block size in yield calculation for a relatively simple case, while in Section
4 the calculation is generalized to a more practical situation. Section 5 presents some
numerical results illustrating the use of the formulas of Section 4, and in Section 6
we propose statistical methods for estimating the block size for given empirical data.
Final conclusions are presented in Section 7.

2. THE MODEL DESCRIPTION

To illustrate the use of the suggested third parameter for the unification of yield
models we chose a relatively simple problem, namely that of calculating the yield of
a chip consisting of N equivalent modules, out of which M are needed for proper
operation and N — M are spares which can replace any of the M modules if they are
defective. The same analysis can be applied to calculating the yield of partially good
chips, i.e., chips which have no redundancy but can still be used {though to a lesser
degree) when some of their modules are faulty.

To further simplify the obtained expressions and to avoid complex geomet-
rical considerations we assume that the chip is, for computational purposes, one-
dimensional, i.e., its modules are arranged in a row whose height is equal to the
height of each module. The area of a module is defined to be the unit area. We
further assume that a wafer consists of § modules and that the number of defects
per wafer has a negative binomial distribution with parameters {Aw, aw). The yield
of the chip is the probability that at least M out of the N modules are defect-free.
Calculating this probability involves dealing with sub-areas of the chip, hence, as ex-
plained before, the two parameters {Aw, aw) are not sufficient and a third parameter
is required which would indicate which sub-areas within the wafer are statistically
independent with regard to the manufacturing defects. We suggest the use of a pa-
rameter called Block Size defined as follows.

Definition: The Block Size is the smallest number B such that the wafer can be
divided into disjoint areas of size B each, so that these areas are statistically inde-
pendent with regard to manufacturing defects.

The relationship between the block size and the vague “cluster size” is not very
clear. Though it seems that defect clusters will tend to be confined to areas of size
B, actual clusters can be either smaller or larger than B. It would be templing to
assume that B is equal to the average cluster size, however, we know of no formal
proof for that, mainly because there is no rigorous definition of the term “cluster
size”.

In the next theorem we state several properties of the block size. In particular,
we prove that the block possesses the same property once attributed to the cluster,
namely, that the parameter « is constant for all areas within the same block and is
increasing linearly with the number of blocks included in the given area.



Theorem: Let the number of defects in the wafer have a negative binomial distri-
bution with parameters (Aw, aw ) and block size B, and let S denote the wafer size
(measured in number of modules), then

1. The number of defects in a block has a negative binomial distribution with
parameters (Agr, @pr) where

w:e. QS‘
ABL= o7 = <7R 1
BL m\m, aBL m\m (1)

and the block size is B.

2. For any area of size A contained in a block, the number of defects has a
negative binomial distribution with parameters (4Apr, ap.) and block size A.

3. For any area consisting of C blocks, the number of defects has a negative
binomial distribution with parameters (CApy,Capy) and block size B.

Proof: The proof of all three parts of the theorem is based on the generating function
of the negative binomial distribution. Let P(z) denote the probability function of a
negative binomial random variable with parameters (), a), i.e.,

Fa+z) (Ma)

P(=) == T(a) (1+ M a)*t= (2)

Then,
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G(z2) = M P(z)2" = T + Ev - (3)

Let Gy(z), G2(2), Gs(z), and G4(2), denote the generating functions of the number
of defects in the wafer, in a block, in an area of size A contained in a block, and in
an area consisting of C blocks, respectively.

1. Since there are S/B independent blocks in the wafer,
Gi(z) = (Ga(2))¥/?

hence, B B
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The right most side of (4) is the generating function of a negative binomial distribution

with parameters Amwxsw_ Wm_mww. The block size is clearly B.

2. Let Pyy)(z), Ps)(z) be the probability functions of the number of defects in
the whole block and in area A, respectively. Since we assume a uniform distribution
of the defects inside the block, the probability of each block defect to fall within area

Ais A/B. Hence,
Poy(a) = 3 P (i) 5 hmva T - wvl

i=z

and,
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By interchanging the order of summation we obtain
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The last expression is the generating function of a negative binomial distribution with
parameters ﬁw»m?oﬁ&. Since B is the block size for the whole wafer and A < B,
the block size for the partial area must be A.

3. The C blocks are independent with regard to defects, each having a generating
function Gyg)(z), hence

(6)
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Cogy,

Gay(z) = AQ:;N:Q = A

which is the generating function of a negative binomial distribution with parameters
AQthqumhv. I}

apr

Corollary: The module parameters (Aar, car) can be obtained as follows,

ABL  Aw
Arg = —— == —— 7
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Proof: A module is a sub-area of a block, hence (7) and (8) follow directly from
parts 1 and 2 of the theorem. 7

We have so far found the block parameters and the module parameters based
on the wafer parameters and the block size B. In our model, the chip parameters
are not calculated since the relation between the chip parameters and the module
parameters depends on the exact location of the chip relative to the blocks. A chip
may lie entirely within one block or stretch over several blocks. Even when the block
is larger than the chip, the chip area may still be divided between two adjacent blocks.
In our calculations, only the module parameters will be used, but as can be seen from
(7) and (8) they are a function of the block size B.

Given the three parameters Ay, aw and the block size B, our aim is to calculate
the probability that exactly k out of the N chip modules are fault-free, denoted by
Py (k). This probability can be used to obtain the yield of chips with redundancy,

Y = aw Pn(k) (9)



or to find the equivalent yield (i.e., the expected number of operational modules) of
partially good chips,

Yoo = 3 3 Pwlk) | (10)

where J is the minimal number of modules that have to be fault-free for the chip to
be usable.

3. A SIMPLE CASE

We begin by discussing the simple case in which B is a divisor of NV, and the
chip covers exactly m blocks. This includes the case B > N which is equivalent to
B = N. We will deal with the general case in the next section.

The above includes the following special cases:

(@) Small size clustering. In this case, B = 1 and all modules are assumed to
be statistically independent.

(6) Large size clustering. In this case B = N, which implies that the delects
within the entire chip are uniformly distributed and that all sections of the chip
are statistically dependent. The probability Py (k) for this case has been researched
extensively and the equivalence of most of the proposed expressions has been proven
in |1].

(¢) Medium size clustering, ie., 1 < B <N.

In case (a), the fault distribution of a single module is considered, and then
the N modules are combined using the binomial distribution. In case (b}, on the
other hand, the defects in the entire chip are considered and distributed uniformly
throughout the chip. In case (c) we have to utilize an intermediate method, in which
each block is considered in its entirety, and the different blocks are then combined
relying on their statistical independence. This method includes (@) and (b) as two

extreme special cases.

Let J;, K be the random variables denoting the number of fault-free modules
in the i-th block and in the entire chip, respectively (¢ = 1,..., N/B). Ji,...,Jn/B
are independent and identically distributed random variables, and K = Mquu\ _m J;. For
each block, the distribution of J; can be obtained following the analysis of case (b),
i.e., finding the probability of m defects occurring in a block and then distributing
them uniformly among the B modules in the block. Once the distribution of J; is
found, the distribution of K can be obtained either by using convolutions, or as it is
done in this paper, by using generating functions. Let ®(5)(2) and ®cy)(2) be the
generating functions of J; and K, respectively, then

om(?) = (Bwy(2)" (11)

Note that the generating functions ®(z) are different from the generating functions
G(z) which were used in the previous section. The functions G characterize the
number of defects in a given area, while the functions ¢ pertain to the number of
fault-free modules in a given area.



It has been shown in [1] that for a block of B modules for which the “large area
clusters” assumption holds (i.e., the clusters are approximately the size of the block),
the probability Pp(j) of exactly j fault-free modules out of the B is equal to a;p
where

|Q:

B\ 87 B—j DA
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Op

(12)

a; p serves as the probability function for the random variable J; - the number of
fault-free modules out of the B modules in block ¢ (: =1, ..., .mv, and can be used for
calculating the generating function ®(5)(z). Since all J;’s are equivalent, the resulting

generating function will not depend on ¢ but on the block size B only.
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Summing over [ yields,

2 = 3 (2) (e (14 22) (13)

m=0 m Ops

The generating function of K (the number of fault-free modules in the entire chip),
®(c1)(2), can now be obtained from (11). Note that for the special case B = N (large
area clustering) we obtain,

|ﬁﬂg

N N m 3\(&
Bom(z) = () = 2 I (14)
while for B = 1 (small clusters},
N )\
M
Bem(z) = (Ble)) = [1+ (-1 {1+ (15)
Qnf

The generating function (¢ x)(2) can be used for calculating the probabilities Py (k)
by,

1 8

Pulk) = 11 5%

@cmyl2) / 2=0 (16)

Diflerentiating (14) k times and substituting in (16) yields,

Py(k) = sz zM.wT:w AE B J 1+ @.H@wzvéz (17)

k m=0



which is analogous to (12) and is the known result for large area clustering {1]. Dif-
ferentiating (15) k times and substituting in {16) we obtain,

- N—k _ k
N Ang ) "M A\ M
wisn?v 1- H+Mm.. H+% (18)

which is the known result for small area clustering {4].

For the special case k = N (i.e., the chip is fault-free) we have,

N
M) B\ My
%Nz enQEvHNv = b: 1 + ﬂ! A._.wv
which yields,
N
By M3
Py(N)=[1+=H o (20)
Qg
Substituting B = N we obtain,
N\~ ™M
Py(N) = [1+ zv (21)
4773
while for B =1, Ao\ N
Py(N)={1+M (22)
oM

which again are the well-known probabilities of a fault-free chip for large area clus-
tering and for small area clustering, respectively.

4. THE GENERAL CASE

In practice, the size of the chip is not necessarily an integer multiple of the
block size, nor are the chip boundaries identical to the block boundaries. We need
therefore, to generalize equation (11), which provides the generating function of the
number of fault-free modules in a chip, to this more realistic situation.

Assuming that the chip is placed randomly within the block, there are B possible
placements of the chip. The placement of the chip boundary relatively to the block
boundary determines how the chip is divided between the adjacent blocks. In general,
the chip will cover an integer number of full blocks and up to 2 partial blocks on both
sides (see Figure 1). Let R, be the number of chip modules contained in the first
(partial) block, F' the number of full blocks covered by the chip and R, the number of
chip modules contained in the last (partial) block. The chip area is thus divided into
(F + 2) areas (up to 2 of which may be empty) which are statistically independent
with regard to their defects.

For a given configuration (R, F, R;), the generating function for K - the number
of fault-free modules in the whole chip can be obtained as a product of (¥ + 2)
generating functions of the form derived in (13),

®em(z) = B(ry(2) ?E:Nzw D(r,)(2) (23)



Figure 1: A placement of a chip relative to blocks, F =1, R, =R;=2,B=3,N=T1.

where ®g)(2) = 1 for R = 0.

Assuming that the chip is equally likely to start at any of the B modules within
the block, (23) has to be averaged over all values of R,. Since R, is the sizeof a partial
block, clearly R, < B — 1. In addition, B, < N, hence 0 < E; < min(N,B — 1).
Given the value of B, F = T‘Wm; and R; = (N — R;) mod B. Note that for B < N,
R, =0,...,B—1 while for B > N, the first N values are R) = 0,..., N —1 and the last
B — N values of R, are all equal to V (indicating that the chip lies entirely inside the

block). Denoting £; = min(N, R;) and substituting the values of F and R; yields,

st = 5 v ()"

R =0 GQZINCEOQGV HNV ANAV

As in the previous case, Py(k) can be obtained by differentiating ®(cs)(2), and the
yield of a chip with M out of NV redundancy can be found using (9).

5. NUMERICAL RESULTS

To demonstrate the effect of using the concept of block size in yield calculation
we calculated the yield of a chip consisting of 10 modules within a walfer of size 1000
modules. The numerical results are depicted in Figures 2, 3 and 4.

In Figure 2 we assume a fixed redundancy, i.e., 2 redundant modules were added
for a total of 12. We show the dependency of the yield on the block size, for different
values of the parameters (Aw, aw). As can be seen, for fixed values of (Aw,aw), the
yield decreases as the block size increases. A possible explanation to this phenomenon
is that for a larger block size, the defect clusters tend to be larger and it is more likely
that more than 2 modules per chip will become faulty.

Figure 3 demonstrates the use of equation (24) for determining the optimal
redundancy once the parameters Aw, aw and B are given. For three sets of parame-
ters, the equivalent yield (i.e., the yield divided by the ratio between the area of the
chip with redundancy and its area without redundancy) is depicted as a function of
the amount of redundancy. As can be seen from this figure, the optimal amount of
redundancy (if any) depends on the three parameters Ay, aw and B.

We have further analyzed this dependency and our results are depicted in Fig-
ure 4. This figure shows the optimal amount of redundancy (to be added to a chip
consisting of 10 modules) as a function of the block size, for three sets of the parame-
ters (Aw, aw). The optimal redundancy increases with each of the three parameters,

Aw, aw and B.
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6. ESTIMATING THE BLOCK SIZE

As demonstrated in the previous sections, correct estimation of the block size is
essential for proper evaluation of the yield of circuits with redundancy. The problem
of determining the block size based on empirical data is not a standard statistical
problem. Simple estimation based on averaging the sizes of actual clusters is very
dillicult since, given a defect map, it is not always clear what the boundaries of the
clusters are. Moreover, even if the average cluster size can be estimated, its relation
to the block size is not clear at this point.

We suggest two methods for estimating the block size. The first measures vari-
ations in the parameter a, similarly to what is suggested in [4]. The other is based
on the statistical independence between adjacent blocks. A similar idea appears in
3] suggesting to check the correlation between adjacent blocks (or “regions” as they
are called there). However, statistical dependence is a much stronger property than
correlation and is much easier to detect.

Both approaches are based on a procedure called “the window method” [1] in
which the waler is divided into sub-areas (windows) which are increased at every step.
Given W wafers with § modules each, start from B = 1 and then increase B by 1
at each step until the appropriate value of the block size is reached. For each fixed
value of B, divide all the given wafers into windows of size B (thus having T = e__wm
windows) and then count the number of defects in each window denoting by X; the

number of defects in window ¢, {i = L,...,T).



The first approach estimates B by ci:&:m the fact that the clustering param-
eter « is fixed for all areas within a block while it increases when the area consists of
more than one block. For each fixed B, a is estimated using, for example, the follow-
ing moment-method estimator. When a random variable X has a negative binomial
distribution with parameters (X, @), its expected value equals A while its variance is
given by,

, A
ViX)=a(1+2 (25)
The parameter A is therefore estimated using
. 1N
X == X;. 26
) (26)
while the variance is estimated using
~ 1K _
V=3 Xx'"-X° (27)
T i=1

Equating (25) and (27), and substituting X for X yields the following estimator for
a, .
52
&= r+—= (28)
V-X

B is increased as long as & remains more or less constant, and the block size is reached

when @& starts increasing.

The objective in the second approach is to detect independence between adjacent
blocks. For each value of B, all T windows are divided into T/2 = W5 /2B pairs of
adjacent windows, counting the number of defects in each pair. Let f{a,b) be the
number of pairs with a defects in their first window and b defects in the second, and
let f{a,*) = ¥, f(a,b) be the number of pairs with a defects in their first window,
f(*,8) = 3, f(a,b) the number of pairs with b defects in their second window. If

adjacent windows were statistically independent, we would expect H%a.ﬂﬁ to be close

to a2 « L0 for all (a,b). A Chi-Square test can be used to test the goodness of

ﬁ\u ﬂ\u
fit. Denoting by E/(a,b) the expected frequencies, i.e., E(a,b) =T x h.m..m_ X @.ﬁf we

calculate

-y o) - Plo.) (29)

The block size is chosen as the first B for which the calculated value of x* goes below
some critical value (determined by the desired level of significance).

7. CONCLUSIONS

A unified approach to yield analysis of defect tolerant circuits has been presented
in this paper. By adding a new parameter, namely, the block size, lo the two existing
parameters of the negative binomial distribution, we have unified the yield analysis
for large area clustering, small area clustering and medium area clustering. We have



demonstrated through several numerical examples, the effect of the block size on the
projected yield and consequently, on the optimal amount of redundancy. Finally,
we have proposed methods for estimating the block size parameter of the defect
distribution.
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