
S

T

I
D

a

A
R
R
A

K
T
P
H
T
F
V
R

1

h
c
c
o
2

s
d
t
l
v
c

t
s
e
5
d
[

(

2
d

Sustainable Computing: Informatics and Systems 1 (2011) 46–56

Contents lists available at ScienceDirect

Sustainable Computing: Informatics and Systems

journa l homepage: www.e lsev ier .com/ locate /suscom

hort survey

emperature-aware computing

srael Koren ∗, C.M. Krishna
epartment of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, United States

r t i c l e i n f o

rticle history:
eceived 12 October 2010
eceived in revised form 26 October 2010
ccepted 27 October 2010

eywords:
emperature-aware
ower-aware

a b s t r a c t

Temperature-aware techniques have established themselves as crucial steps during the design and
operation of new complex ICs (e.g. dual-core microprocessors) in order to protect the ICs against high
temperatures that may drastically reduce their lifetime or even render them inoperable. These tech-
niques have been developed after it became clear that power-aware techniques and low-power design
are insufficient since they still allowed hotspots to develop in the chip with temperatures considerably
higher than the average temperature.

The goal of this paper is to provide an overview of the state-of-the-art of temperature-aware computing.
otspots
hermal models
loorplan
oltage scaling
un-time temperature management

After a brief introduction, we present the current approaches to measuring the temperature of a circuit
during its operation and to estimating, during the design phase, the maximum temperature that the
circuit will experience. We then survey the known techniques for designing a chip with lower maximum
temperature. This is followed by reviewing the currently employed run-time temperature management
techniques.

This paper presents a thorough review of the research done in the past decade or so in the field of
g and
thermal-aware computin

. Introduction

Over the past two decades, as the performance of processors
as steadily increased, their power consumption has increased
onsiderably as well. The power density of a high-end micropro-
essor chip today (in terms of Watts dissipated per square area
f surface) exceeds that of a hotplate. Power densities of up to
00 Watts/centimeter2 are projected (see, for example [31]).

Two technical challenges arise due to this increase in power con-
umption. The first is the stress it places on batteries in portable
evices such as laptops and phones. Here, the designer’s aim is
o control the overall power and energy consumption in order to
engthen battery life. Power- and energy-aware techniques such as
oltage and frequency scaling have been developed to meet this
hallenge.

The second challenge is the thermal impact of power dissipa-
ion, and is the focus of this survey paper. High temperature greatly
hortens the lifespan of a processor. It has been estimated that

very 10 ◦C increase in temperature reduces component life by
0% [1]. Mechanisms such as electromigration and time-dependent
ielectric breakdown increase exponentially with temperature
25]. Indeed, the time to failure has been shown to be a function

∗ Corresponding author. Tel.: +1 413 545 2643.
E-mail addresses: koren@ecs.umass.edu (I. Koren), krishna@ecs.umass.edu

C.M. Krishna).

210-5379/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
oi:10.1016/j.suscom.2010.10.004
lists most of the relevant journal and conference papers on this topic.
© 2010 Elsevier Inc. All rights reserved.

of the form exp(− Ea/(kT)), where Ea is the activation energy of the
underlying failure mechanism, k is Boltzmann’s constant, and T is
the absolute temperature [1]. Even if an immediate failure does not
result, detrimental permanent or intermittent changes can occur to
the electrical characteristics of the device.

Heating due to power consumption also participates in an insid-
ious positive feedback loop. Power consumption can be categorized
into dynamic and leakage components. Dynamic power is consumed
when devices switch from one logic level to another, and is related
to the level of computational (switching) activity. Leakage power
is power that flows from source to ground whenever a device is
powered up, and does not contribute to the required operation of
the device. In years past, the leakage component was but a small
fraction of the overall power consumption. However, as feature
sizes have dropped into the deep submicron range, this component
has emerged to be on a par with the dynamic component. Leakage
power grows exponentially with temperature. As a result, we have
the following vicious cycle: the chip’s temperature increases as it
functions; this results in an increase in leakage power, which in
its turn heats up the chip some more, and so on. Such an event,
called “thermal runaway” can, if not stopped by some active power
management technique, result in the failure of the chip.
One obvious approach to dealing with this problem is better
cooling techniques. Heat sinks have become bigger over the years
and air cooling is used (in desktop and laptop computers) to prevent
them from over-heating, but there is a limit to air cooling’s capa-
bility to dissipate heat. In general, cooling is expensive: designing

dx.doi.org/10.1016/j.suscom.2010.10.004
http://www.sciencedirect.com/science/journal/00000000
http://www.elsevier.com/locate/suscom
mailto:koren@ecs.umass.edu
mailto:krishna@ecs.umass.edu
dx.doi.org/10.1016/j.suscom.2010.10.004

uting:

a
c
t
a
s
t

t
a
n
s
(
a
o
m
a
i
i
m
r
t
c
(
t
t
t
d

s
m
m
e
a
c
i
t
m
a
c
c
c
s
t
e
a
A
r

2
s
w
p
c
a
t
i
5

2

w
a
e
a

I. Koren, C.M. Krishna / Sustainable Comp

system for the worst thermal case can add significantly to the
ost of a computer system. It is estimated to cost about $3 per Watt
o dissipate heat effectively [24]. For this reason, while heat sinks
nd fans are at the core of thermal management for high-powered
ystems, they must be complemented by a spectrum of additional
echniques. It is these techniques that we survey in this paper.

It might be thought that power-aware techniques should be able
o deal with the thermal impact of power dissipation as well. After
ll, it is due to power consumption that heating occurs. Unfortu-
ately, power-aware techniques by themselves are not sufficient,
ince logic blocks within the chip have different power densities
due, for example, to very different levels of switching activity) and
s a result, are not heated up uniformly. The thermal map of a chip
ften shows wide variations in temperature. For example, the cache
ay be cold while the register file is very hot. For this reason, the

verage temperature of a chip, which can be obtained by analyz-
ng its overall power consumption, cannot by itself be a sufficient
ndicator of a thermal crisis. Furthermore, localized heating occurs

uch faster than chip-wide heating and therefore monitoring the
ate at which the average temperature increases cannot provide
imely indication of a developing hotspot. In addition, the spe-
ific blocks that develop hotspots may change from one application
executing on the processor) to another or even from one compu-
ation phase of an application to another. In general, power-aware
echniques have only a limited effect on the maximum tempera-
ure of a logic block in a chip since they do not reduce the power
ensity of the hottest blocks.

Thermal-aware techniques span a wide range. At the design
tage of the chip, its floorplan can be set up in such a way as to
inimize the number and extent of hotspots. For example, one
ight place subsystems which give off a lot of heat close to oth-

rs that generally do not. This can be supplemented by effective
pproaches to managing overheating as and when it occurs. One
an place several temperature sensors throughout the chip to mon-
tor the temperature of its subsystems. If a subsystem becomes
oo hot, it can be throttled back to allow it to cool. A processor

ay reduce the level of aggressiveness in its pre-fetching as it
pproaches critical temperature levels. In multicore systems, tasks
an be migrated from one core to another. Sophisticated techniques
an be employed to estimate the thermal profiles of executing pro-
esses. Such profiles can be used by the operating system in its
cheduling. For instance, one might give hotter processes smaller
ime-slices than cooler ones; alternatively (or additionally), one can
nsure that hot processes are not scheduled one after the other but
re separated by cooler ones to reduce the chances of overheating.
lso, chip-wide voltage-scaling techniques (originally developed to
ender systems power-aware) can be used.

The remainder of this paper is organized as follows. In Section
, we describe techniques for thermal measurement with on-chip
ensors or performance counters as well as theoretical ways by
hich to model heat flow, a necessary component of schemes to
roject the temperature of individual blocks within a designed
hip. We follow this up in Section 3 with a description of thermal-
ware techniques in chip design. In Section 4, we outline runtime
hermal-aware management techniques, for use when the chip is
n operation. The paper concludes with a brief summary in Section
.

. Thermal measurement and modeling
To facilitate thermal management, we need techniques by
hich temperatures can be measured while the chip is in oper-

tion. We also require models of heat flow that can be used to
fficiently predict, during the design phase, the expected temper-
ture of the different chip blocks in order to modify the design if
Informatics and Systems 1 (2011) 46–56 47

necessary. These temperature projection models can be calibrated
using on-chip temperature sensors.

2.1. Temperature sensing

There are two ways in which to sense the temperature on a chip:
directly by means of temperature sensors and indirectly through
the use of performance counters. Clearly, a direct measurement by
an accurate sensor can be expected to provide better information
than an indirect estimate based on performance counters. However,
the former also has a few limitations: it may be too expensive to
populate the chip with a sufficiently high density of such sensors,
the sensor’s response (to changes in the chip temperature) time
may be too large, its precision may be insufficient, and the sensor
itself can contribute to further heating of the chip as a result of its
own power dissipation [48]. Furthermore, temperature sensors can
take milliseconds to access and obtain their readings in some cases
[45].

Temperature sensors exploit the fact that a large number of elec-
trical parameters of solid-state devices are temperature-dependent
[57]. One way to estimate the temperature is by measuring the
discharge time of a capacitor through leakage current. The sub-
threshold leakage current Ileak is approximately equal to:

Ileak(T) = Kae−Kb/T (1 − e−qVDS/kT) (1)

where T is the temperature, Ka and Kb are constants, q is the charge
of an electron, VDS is the drain–source voltage, and the gate-source
voltage is zero [40]. We can estimate this current by measuring the
time it takes to discharge a known capacitance. This can be done by
connecting the output of the capacitor to an inverter and charging
the capacitor by means of a pulse. It is then discharged by the leak-
age current of a transistor. When the capacitor voltage falls below
the switching threshold of the inverter, the inverter switches. The
duration between the input pulse to the capacitor and the transi-
tion instant of the inverter is a measure of the discharge time, and
thus, indirectly, of the temperature. The accuracy of this approach
depends, to a large extent, on the accuracy with which the discharge
time is measured.

Another approach exploits the fact that the difference in voltage
across two diodes depends on their respective diode areas, their
current ratios and the absolute temperature [75]:

Vd1 − Vd2 = KT

q
ln

(
I1A2

I2A1

)
(2)

where Vdi is the voltage across diode i (i = 1, 2), Ai is the area of diode
i, Ii the current flowing through it and K is a constant.

Yet another approach relies on the fact that circuit delays rise
with temperature in a quantifiable way (see Eq. (17) below) [54]. A
circuit comprising an odd number of inverters connected in a ring
will therefore oscillate at a rate linked to the propagation delay of
a signal around this ring. Measuring the frequency of oscillation
can yield an estimate of the temperature [90]. We can, for instance,
use a counter to count the number of oscillations in a prespecified
time period: a conversion table then associates a temperature with
each count. Studies in [90] suggest that the oscillator frequency
is approximately linearly decreasing with temperature; over the
range 0–125 ◦C, they observed the frequency drop by about 12%.
Furthermore, a study of the impact of process variation on the accu-
racy of this sensor indicates that when feature sizes are assumed
to be normally distributed with 3� = 20 % of the nominal value (� is
the standard deviation), the impact on sensor accuracy is extremely

small.

Performance counters are commonly found in high-end micro-
processors for the purpose of monitoring the performance of the
processor, and can provide an indirect means for estimating the
temperature [48]. These programmable counters count certain

4 uting: Informatics and Systems 1 (2011) 46–56

a
t
T

P

w
u
t
o
t
s
p
a
v
t
a

2

h
u
t
a
i
p
s
a
a
e
t
n
a
r

n
h

2

e
j
d
r
i
b
a
i
o
i
a
o

h
d
t
w
t
t
s

i
t
t
h

T
he

rm
al

 C
on

du
ct

iv
it

y

 0

 300

 400

 500

 600

 700

 800

 900

 100 150 200 250 300 350 400 450 500

 100

 200

the highest thermal conductivities of all materials). Above the heat
spreader is the heat sink.

The heat sink provides an isothermal layer, i.e. a layer with the
same temperature in all lateral directions. A resistance from a block

Sp
ec

if
ic

 H
ea

t C
ap

ac
it

y

 700

 750

 800

 850

 600

 650
8 I. Koren, C.M. Krishna / Sustainable Comp

rchitectural events (such as cache misses or branch mispredic-
ions) as selected by the user (normally, the system administrator).
he power consumption of a component C can be expressed as [39]:

ower(C) = AccessRate(C) × Scaling(C) × MaxPower(C)

+NonGatedClkPower(C) (3)

here AccessRate(C) denotes the access rate of that component,
sually derived from a combination of several performance coun-
ers, while the other terms (a scaling constant, the maximum power
f that component, and the non-gated clock power) are constants
hat can be obtained by experimentation on the chip or a power
imulator. The total power is the power consumed by all these com-
onents plus the idle power (i.e. that consumed when there is no
ctivity). Given the estimates of the power consumed by the indi-
idual blocks in the chip and a model of heat flow, one can obtain the
ime-dependent temperature distribution of the entire chip [27,48]
s is described in the next section.

.2. Thermal modeling

Simulation-based algorithms to estimate on-chip temperatures
ave been developed (e.g. [84]). The first step of the algorithm
ses a power simulator to generate a power trace, consisting of
he power consumption of the various subunits of the chip, taken
t specified sampling instants. For simplicity, power consumption
s assumed to be constant during each inter-sampling interval. The
ower consumed by each unit turns into heat, and in the second
tep of the algorithm the temperatures of the individual subunits
re estimated. To this end, a heat flow model that is equivalent to
n electrical RC circuit is used with the heat generation process in
ach subunit modeled as a current source. Standard circuit-theory
echniques can then be used to obtain the temperature at each
ode (i.e. chip subunit). The resulting equations are linear and as
result, linear system theory techniques can be used to ensure a

apid solution.
Power simulators, such as Wattch [10], are well known and will

ot be discussed here. We present next the widely used Hotspot
eat flow model [84].

.2.1. Hotspot heatflow model
The Hotspot model is based on an analogy between heat and

lectricity. Heat flow can be treated in the same way as current flow;
ust as the amount of current flowing from one point to another
epends on the voltage differential between those points and the
esistance of the path connecting them, the amount of heat flow-
ng between two points depends on the temperature differential
etween them and the thermal resistance of the heat-flow path. Just
s capacitance measures the charge-carrying capacity of a device
n terms of the volume of charge required to raise its voltage by
ne unit, the heat capacitance measures its heat-carrying capacity
n terms of the amount of heat energy required to raise its temper-
ture by one degree. We can therefore model heat flow by means
f an analogous RC electrical circuit.

The thermal resistance of a path is defined as the amount of
eat flow along the path that is required to create a temperature
ifferential of 1 ◦C across the path. It is proportional to the length of
he path, L, divided by its cross-sectional area, A, i.e. Rthermal = L/(kA)
here k is a constant of proportionality, called the thermal conduc-

ivity, that depends on the material of which the path is composed,
ypically expressed in units of Watts/Kelvin/Meter. Its values for
ilicon are shown in Fig. 1.
As can be seen, k is sensitive to temperature: as the temperature
ncreases, the thermal conductivity drops rapidly. This contributes
o the thermal runaway problem: as the chip heats up, its ability
o conduct away the heat drops, which can contribute to a further
eating up of the chip.
Temperature (K)

Fig. 1. Thermal conductivity of silicon (Watts/Kelvin/Meter).

Thermal capacitance is the amount of heat energy required
to increase the temperature of the given subunit by one degree.
The thermal capacitance of any quantity of material is propor-
tional to its mass, M, i.e. Cthermal = cM, where c is a constant called
the specific heat capacity. This is commonly expressed in units of
Joules/Kelvin/Kg. The heat capacity of silicon tends to increase with
temperature (see Fig. 2). Since the density of the material is known,
we can also express the thermal capacitance as a function of the
volume of the entity in question.

With this background, we now present the three heat flow mod-
els that are needed: one for lateral heat flow, and the other two for
vertical heat flow. Heat is modeled as being generated at the center
of each block (subunit) and flowing outward from there.

An example of the lateral model is shown in Fig. 3.
We have in this example four blocks, and the center of each

block is connected to the interface of each of its neighbors by means
of a resistance and a thermal capacitance. Ground represents the
ambient environment.

The primary model of vertical heat flow is similar, and an exam-
ple of it is shown in Fig. 4. The IC package has, atop it, a thermal
package consisting of a heat spreader which conducts the heat away
from the IC to a heat sink. It is obviously important that the heat
spreader be highly conducting. Examples of materials used in heat
spreaders include copper [2], diamond film [47], and (being stud-
ied for possible future use) graphene [85] (graphene has one of
Temperature (Kelvin)

 550
 200 250 300 350 400 450 500

Fig. 2. Specific heat capacity of silicon (Joules/Kelvin/Kg).

I. Koren, C.M. Krishna / Sustainable Computing:

Block 1 Block 2

R12 R21

R34 R43

R
13

R
31

R
24

R
42C

13

C
24

C
12

C
34

o
t
a
h
t

t
c
a

a
t
g
t

2

i
c
a
d
s
t

a
v

Block 3 Block 4

Fig. 3. Example of a lateral model of heat flow.

f the die (there are two lateral blocks in the example in Fig. 4)
o the isothermal layer represents the heat flow from that block
nd the capacitance associated with the block represents its heat-
olding capacity. A single resistance represents the heat flow from
he isothermal layer to the heat sink and to the outside world.

The second model of vertical heat flow evaluates the heat flow
hrough the on-chip interconnect and the ceramic substrate of the
hip to the printed circuit board. It follows the same general rules
s does the primary model: for details, see [32,33].

Given the parameter values of this RC circuit and the input from
power simulator indicating how much heat is generated at each of

he nodes (representing the chip blocks), the differential equations
overning the circuit can be solved and the temperature (which is
he thermal analog of voltage) at each node obtained.

.2.2. TILTS acceleration technique
If the system as modeled by Hotspot has a large number of nodes,

t can be time consuming to solve the differential equations asso-
iated with the equivalent RC circuit. Considerable speedup can be
chieved by exploiting the fact that the RC circuit results in linear
ifferential equations [28]; these can be considered as forming the
tate equations of a linear system, which can then be solved using

echniques from linear control theory.

An N-state-variable and M-input linear control system has
state variable vector x(t) = (x1(t), · · · , xN(t))T and an input

ector u(t) = (u1(t), · · · , uM(t))T satisfying the standard linear

IC Die

isothermal
surfaceHeat Sink

Heat Spreader

Fig. 4. Example of primary model of vertical heat flow.
Informatics and Systems 1 (2011) 46–56 49

system equation:

ẋ(t) = Ax(t) + Bu(t) (4)

where A and B are N × N and N × M matrices, respectively. This
equation has the solution

x(t) = eAtx(0) +
∫ t

0

eA(t−�)Bu(�)d� (5)

Denote now by M the number of units within the processor that
generate heat; their heat inputs to the system constitute u(t).
Denote by x(t) the temperature vector; that is the state vari-
able of our linear control system. Denote the thermal resistance
between nodes i and j by rij and the thermal capacitance of node
i by ci. For notational convenience, define rii = ∞ and let ũ(t) =
(u1(t), · · ·, uM(t), 0, · · ·0)T be an N-sized vector (M ≤ N is always
satisfied). Then, the Hotspot RC circuit equations reduce to the dif-
ferential equation

ciẋi(t) = −
N∑

j=1

1
rij

(xi(t) − xj(t)) + ũi(t) (6)

This can be written in matrix form as

Cẋ(t) = Dx(t) + ũ(t) (7)

where C is the diagonal matrix [�ij] with �ii = ci and �ij = 0 for i /= j.
Since C is a non-singular matrix, we can rewrite the equation in
standard linear form

ẋ(t) = C−1Dx(t) + C−1ũ(t) (8)

ẋ(t) = Ax(t) + Bũ(t) (9)

where A = C−1D and B = C−1.
The power trace input to the thermal model provides tempera-

ture samples taken every �t seconds. Over the period between two
consecutive samples, the power consumption vector is assumed to
be fixed, say at u. From the above expressions we can write:

x(�t) = eA�tx(0) +
[∫ �t

0

eA(�t−�)Bd�

]
· u (10)

Denoting F = eA�t and G =
∫ �t

0
eA(�t−�)B, we obtain the following

difference equation:

x(�t) = Fx(0) + Gu (11)

Assuming that for the time interval of interest the thermal capaci-
tances and resistances are approximately constant, the above linear
system is time-invariant and the difference equation is preserved
under time-translation:

x(n�t) = Fx([n − 1]�t) + Gu(n − 1) (12)

where u(n) is the input vector applied during the nth sampling
interval. To simplify the notation we remove �t and rewrite the
difference equation as follows:

x(n) = Fx(n − 1) + Gu(n − 1) (13)

Since F and G can be computed just once and stored, this leads to a
fairly rapid solution approach as compared to solving the differen-
tial equations every time.

This approach provides additional savings if we only need the
value of x(n) over a coarser time granularity, say every k�t seconds.
In such a case, we can use Eq. (13) to write:
x(n + k) = Fx(n + k − 1) + Gu(n + k − 1)
= F2x(n + k − 2) + FGu(n + k − 2) + Gu(n + k − 1)

=
.
.
.

= Fkx(n) + Fk−1Gu(n) + · · · + FGu(n + k − 2) + Gu(n + k − 1)

(14)

We can precompute Fi, FiG, i = 1, . . ., k, and use them repeatedly.

50 I. Koren, C.M. Krishna / Sustainable Computing: Informatics and Systems 1 (2011) 46–56

Thermal Simulator

Power Simulator

Convergence?
Yes

No

Tem
p &

 Pw
r E

stim
atesTemp Estimate

Initial Temp Estimate

Pwr Estimate

Temp Estimate

2

s
i
r
n
c

i

t
o
e
s
p
a

t
a

3

t
p
T
t
d
c
fi

t
b
o
r
a
(
t
a
o

m
c
f
a
e
d

t

Fig. 5. Iterative power and temperature estimation.

.2.3. Iterative use of thermal models
In the previous section, we assumed that a power simulator,

uch as Wattch, is used to generate a power trace that would be the
nput for the thermal simulator. However, this approach requires
efinement if we are modeling a technology where leakage is a sig-
ificant part of the total power consumption, since the leakage is
onsiderably affected by the temperature.

This can be done by placing both power and thermal simulators
nto an iterative loop as shown in Fig. 5 [8].

The power simulator starts with some initial estimate of the
emperature. It then computes the power consumption of each
f the blocks and inputs them to the thermal simulator, which
stimates their temperature. This value is fed back to the power
imulator, which refines its power estimate based on the new tem-
erature estimate. The computation iterates until convergence is
ttained.

For an alternative, non-iterative, approach that exploits the fact
hat the thermal time constant of the package (i.e. heat spreader
nd heat sink) is fairly long, see [68].

. Temperature-aware chip design

Several design techniques, that either reduce the maximum
emperature that the chip can experience or provide hardware sup-
ort for run-time temperature management, have been developed.
he first approach mainly focuses on the floorplanning phase of
he physical design process. An example of the second approach is
uplicating a block that is likely to become a hotspot. The second
opy of the block will become active when the temperature of the
rst copy exceeds a predetermined threshold.

The conventional goals of floorplanning are minimization of the
otal chip area and minimization of the wiring delays between
locks that lie on a critical execution path. However, the floorplan
f a chip also affects the maximum temperature that the chip blocks
each, because of the lateral heat transmission that occurs between
djacent blocks. Several researchers have made this observation
e.g. [11,18,29,37,74]) and most of them have presented techniques
o either modify an existing floorplan or modify the floorplanning
lgorithm to include the maximum temperature as an additional
bjective.

To illustrate the impact of a floorplan on the temperature, the
aximum temperature of the hottest block in an Alpha micropro-

essor chip has been studied in [29] for several different floorplans
or that chip. The results have shown that the maximum temper-

◦ ◦
ture can be as high as 132 C and as low as 95 C. These are the
stimated temperatures for the Integer Register File (IntReg) block
uring the execution of the gcc SPEC2000 benchmark.

However, the two floorplans that had these two extreme
emperatures would not necessarily be considered as candidate
Fig. 6. The original Alpha (EV6) floorplan.

floorplans in practice since the corresponding wiring delays were
higher than the smallest possible value of these delays. The max-
imum temperature of the IntReg block (for the gcc benchmark) in
the original floorplan of the Alpha chip (shown in Fig. 6) has been
estimated to be 120 ◦C. Fig. 6 shows only the processor core (the L2
cache unit is not shown) and indicates the maximum temperatures
of the individual blocks during the execution of the gcc benchmark.

Furthermore, even if all possible floorplans of a certain chip,
irrespective of the resulting wiring delay, are considered, the range
of the maximum temperature would not necessarily be as high as
95–132 ◦C. A similar study of the Pentium Pro processor has shown
[29] that the range of maximum temperatures for this chip is only
between 94 ◦C and 111 ◦C. The main reason for the much smaller
range is the more uniform distribution of the power densities of
the individual blocks in the Pentium Pro processor.

Floorplanning algorithms, which ordinarily have the objectives
of better performance (i.e. smallest weighted wire length where
wires on a critical path are assigned higher weights) and lower total
chip area, can be modified to also include reducing the maximum
temperature of a block in the chip. Since floorplanning, in general,
is an NP-complete problem, search algorithms such as simulated
annealing [29,74] and genetic [37] algorithms have been used,
requiring the estimation of the maximum temperature in every
step, using for example, a tool such as Hotspot. Even if an accelera-
tion scheme like TILTS is employed, the computational complexity
of the floorplanning process greatly increases. To reduce this com-
plexity, the calculation of the estimated temperature has been
replaced in [29] by a simpler-to-compute proxy called Total Heat
Diffusion. This proxy focuses only on the blocks with the highest
power density and estimates the increase in their temperature due
to the diffusion of heat from their neighboring blocks, calculated as
(di − dj) · shared length where di, dj are the power densities of block
i and j, respectively, and shared length is the length of the boundary
between the two blocks i and j.

Using this proxy within a simulated annealing procedure the
modified floorplan shown in Fig. 7 was generated [29] with a max-
imum temperature (of the IntReg block for the gcc benchmark) of
99 ◦C. This floorplan was generated with the objectives of mini-
mal wiring length and smallest maximum temperature. If the only
goal of the floorplanning algorithm is minimal wiring length, the
maximum temperature increases to 120 ◦C.

The reduction in the maximum temperature is sometimes

achieved during the floorplanning process by increasing the dis-
tance between two high power-density blocks that happen to lie
on a critical path of the pipeline, thus negatively impacting the
performance. Therefore, the final floorplan generated when both

I. Koren, C.M. Krishna / Sustainable Computing:

F
l

w
o
o
t
s

c
s
i
h
w
t
i
l
b
t
h
t
t
t

I
c
p
a
r
f

o
t
t
t
s
i
i

4

4

f

•

ig. 7. A floorplan for the Alpha (EV6) processor with both short wire length and
ow maximum temperature.

iring length and temperature are considered, represents a trade-
ff between the maximum temperature and the performance. Some
f these modifications that would increase the distance between
wo blocks can still be accepted after introducing dummy pipeline
tages as described in [11].

Design techniques to reduce the maximum temperature on a
hip should, however, not be limited to the floorplanning stage
ince floorplanning can only control the lateral heat transfer that
s expected to be smaller than the vertical heat transfer (to the
eat sink) [30]. Skadron et al. proposed Migrating Computation,
hereby a hot unit is duplicated and the backup unit is used when

he original unit becomes too hot [81]. To achieve a large reduction
n the expected maximum temperature, the backup unit should be
ocated away from the original one. Clearly, frequent migrations
etween the two copies of the hot block can better control the
emperature. On the other hand, performing such migration at a
igh frequency can greatly increase the performance penalty due
o too frequent copy operations [30]. Performing the migration at
he level of microseconds provides an acceptable tradeoff between
he two objectives.

Based on the observation (made in several studies) that the
nteger Register File unit (IntReg) is the hottest block in a micropro-
essor for many benchmark applications, a new register file access
olicy has been proposed in [4]. According to this policy, registers
re assigned (by the compiler) using a stride that is not equal to 1 to
educe the probability that two adjacent registers will be accessed
requently, thus resulting in mutual heating.

Another design technique to reduce the maximum temperature
f a hot block has been discussed in [19]. The authors have shown
hat increasing the silicon area allocated to hot blocks can reduce
he maximum temperature in multi-core and simultaneous multi-
hreading processors by 5–11 ◦C. Unfortunately, the granularity of
preading the extra silicon area within the block must be very small
n order to achieve the full benefits of this approach, thus greatly
ncreasing the resulting design complexity and area overhead.

. Runtime thermal management

.1. Motivation

Runtime thermal management techniques are motivated by the

ollowing considerations:

Runtime techniques offer control at a fine level of granularity.
Computational workloads vary in their demands on the processor
with time; for example, one phase of a program may involve very
Informatics and Systems 1 (2011) 46–56 51

heavy use of the floating-point unit while another may stress the
integer register file. The region of the processor that is thermally
stressed will therefore vary with time and thermal management
has to keep up with that. The thermal profile of the workload may
also be a very sensitive function of the input parameters: these
are very difficult to predict ahead of the execution.

• We can be much more aggressive with runtime thermal manage-
ment than with a purely static approach. In the latter, we have
to estimate the worst-case situation with respect to a given task
allocation and handle the processor accordingly. Such an esti-
mate must necessarily have a substantial safety margin built into
it. Because a runtime technique reacts to the actual thermal situ-
ation at any given moment, tasks can be scheduled aggressively
with the knowledge that when temperatures approach their safe
bounds, runtime control is available as a backstop.

• Modern high-end processors have a significant number of
“knobs” for the control of heat generation: we can control the pro-
cessor at different levels of spatial granularity. For example, fetch
throttling reduces the overall activity level of the chip by reduc-
ing the rate at which instructions are fetched. Fetch throttling
can be carried out by the hardware or directed by the compiler
(see [88] and the references therein). By contrast, clock gating an
individual unit produces a rather focused cooling of that unit (or
a set of units) [41].

• Both reactive and proactive approaches are possible. In a reac-
tive approach, the system is reacting to the system known to be
approaching its temperature bounds. In the proactive approach,
the system can learn about the thermal characteristics of its work-
load and manage computational resources in such a way that
overheating is avoided while keeping the performance impact
as low as practical.

All runtime approaches have to keep in mind the underlying
thermal time-constant of the hardware. This gives an indication of
how fast the temperature can change as a function of the heat dis-
sipation. Typical time constants quoted in the literature range from
hundreds of microseconds [79] to many milliseconds [54]. Consid-
erably less time is needed to raise the temperature of a processor
or even overheat it if a power virus code (e.g. [61,87]) is executing.

The amount of information available about the workload affects
the range of options available to the system. If no information
is available, the only recourse is to identify when a temperature
threshold has been crossed and then to slow down or stop the pro-
cessor. If we have at least some profiling information about a task,
this can be factored into the decision-making process. For exam-
ple, some tasks may be intrinsically “cold” and others “hot” [69].
Alternatively, a task may go through different phases of thermal
behavior. Such information may, in rare instances, be collected in
advance, or more commonly, be learned by the system itself during
operation [91,93].

In the rest of this section, we consider various ways in which to
dynamically manage resources to avoid overheating.

4.2. Dynamic voltage scaling

Dynamic voltage scaling is one of the first run-time power and
temperature management techniques to be implemented (e.g. [64])
and is still the one that is most commonly used. In this section, we
describe the relationship between the voltage level and the corre-
sponding heat dissipation, and indicate the performance reduction
that must be expected when the voltage is lowered.
The energy dissipated by a processor is a strong function of its
supply voltage. In CMOS devices, the dynamic power consumption,
Pd, is given by

Pd(v) = CLNswv2f (15)

5 uting:

w
t
[

d
b

P

w

t

ı

w
�
e
i
h
t
e
a

s

F
a
a
c
a
o
f
s
i
s
d
s

s
f

4

m
b

4

t
t
c
w

h
i
s
t
f
s

m
t
C
w

2 I. Koren, C.M. Krishna / Sustainable Comp

here � is the supply voltage, CL is the circuit load capacitance, Nsw

he number of switches per clock cycle, and f the clock frequency
44].

To obtain the total power consumption, we need to add to the
ynamic power the leakage power, P�, that can be approximated
y [54]

�(v) = AT2 exp
(

(av + b)
T

)
+ B exp(cv + d) (16)

here A, B, a, b, c, d are constants and T is the absolute temperature.
The circuit delay ı increases as the voltage drops and as the

emperature increases, according to the expression

(v) = CLvT�(v)
K(v − VT)˛ (17)

here VT is the threshold voltage, T(�) the temperature at voltage
, K is a constant, and ˛ and � are constants (a typical value for
ach is approximately 1.2) [54]. The steady-state temperature, T(�),
s that at which the rate of heat generation matches the rate of
eat dissipation. If the clocking is at the highest rate possible, when
he supply voltage drops so too must the clock rate, by the above
quation. Suppose �h is the maximum supply voltage, we can define
slowdown factor at supply voltage � as follows:

low(v) = v
vh

(vh − vT

v − vT

)˛(
T(v)
T(vh)

)�

(18)

rom these expressions, it is clear that the power consumption is
strongly nonlinear function of the supply voltage. At the cost of
roughly linear increase in the execution time, heat dissipation

an be dramatically lowered by reducing the supply voltage. The
ggressiveness with which the control voltage is lowered depends
n the tradeoff between reducing thermal stress and the desire
or performance. A small performance reduction can give rise to a
ubstantial reduction in heat dissipation. However, we should keep
n mind that the potential heat reduction depends on the range of
upply voltages that can be applied: as the upper voltage limit has
ropped from 5 V a few years ago to just over 1 V, the scope for
avings is diminished.

Experiments have shown that two levels of voltage are generally
ufficient for effective thermal management [78]. The time penalty
or switching voltage levels is typically several microseconds [78].

.3. Thermal-aware task assignment and scheduling

The operating system controls the scheduling of tasks, and in
ulticore systems, it also assign tasks to individual cores. Both can

e exploited to prevent excessive processor heating [15].

.3.1. Heat balancing
Heat balancing is analogous to load balancing in distributed sys-

ems [15]. As the term implies, it uses the thermal profiles of tasks
o assign them to individual cores (and to migrate them during exe-
ution) in such a way that no one core is disproportionately loaded
ith “hot” tasks.

One implementation of this approach is to use information on
otspot imbalance [20]. For any given core, its hotspot imbalance
s the difference in temperature between that core’s hottest and
econd-hottest subsystems. Cores are considered for thread migra-
ion in order of their hotspot imbalance; the operating system looks
or a thread that is likely to reduce the temperature of its hottest
ubsystem by the greatest amount.
Another approach, which uses a simple on–off approach to ther-
al management, is to classify a thread based on how quickly it

ook the core temperature to reach a predefined threshold [58].
all this time �i for thread i. If �i < 20toff, thread i is considered hot,
here toff is the duration for which thread i’s core had to be turned
Informatics and Systems 1 (2011) 46–56

off to cool down sufficiently. �i is used as a measure of the intrin-
sic hotness of thread i. The hottest threads can then be migrated
to the coldest cores. To prevent migrations from happening too
often, their frequency can be limited to, say no more than one per
millisecond.

4.3.2. Heat unbalancing
It might seem counter-intuitive, but it is possible to argue for a

policy (up to a point) of deliberately unbalancing the thermal load
associated with the task assignments.

Heat balancing can potentially cause frequent thermal cycling,
i.e. the repeated heating up and cooling down of subunits of the
core. Such cycling can itself reduce the lifetime of the chip. To avoid
this, while still keeping the chips from overheating, a more com-
plicated approach has been suggested [53]. Here, based on their
thermal profile, tasks are classified according to whether they are
intense enough to trigger overheating (these are called hot-hazard
tasks) and the rest. Hot-hazard jobs are assigned the coldest proces-
sors so as to minimize the need for throttling or voltage scaling. The
other jobs are assigned in such a way as to deliberately unbalance
the heat production: hotter (but not hot-hazard) jobs are assigned
to hot processors. The aim is to reduce thermal cycling with respect
to the non-hazard tasks while reducing the performance loss that
would be incurred by triggering excessive thermal management
measures with respect to the hot-hazard tasks.

A second argument for heat unbalancing is as follows: when
the subsystem of a processor crosses its safety threshold, the entire
processor often needs to be slowed down or even stopped (since
the overheating subsystem presumably is a necessary part of the
execution chain). In such a situation, it is all the same whether that
slowdown occurs because the temperature threshold was breached
by one subunit or several. Hence, it pays to have a group of threads
assigned to a processor with, preferably, complementary demands
on the processor, so that when it has to be slowed down or stopped,
multiple subunits are at, or close to, their thermal limits. This is the
Heat-and-Run approach [23].

4.3.3. Reducing execution rate of hot tasks
When a task (or thread) causes excessive heating, it can be

scheduled less often by the operating system. That is, a certain
fraction of its time-slices can be given up to a cooler task [15]. A
related approach is to always select, when the temperature exceeds
a certain limit, a task that causes minimum heating to the hottest
block on the chip [46]. Yet another approach is core idling. This can
be accomplished by inserting nops [15] or by fetch throttling or
voltage scaling. Another approach is chip-wide clock gating: when
the clock is frozen, the system’s state is preserved but no dynamic
activity takes place [20]. Such clock gating does slow down exe-
cution, however. In addition to such chip-wide gating, one can be
more focused, and identify circuit elements that are not being used
and clock-gate them. A study of such clock-gating in a superscalar
pipeline is provided in [49].

4.3.4. Adding a predictive component
In our previous discussion of task-migration approaches, tasks

were classified according to the temperature they produced. While
it is possible to make this classification based on a prior thermal
profiling of tasks or a simple extrapolation, more sophisticated
techniques can be used to predict the thermal contributions of a
task, given its recent history.

Such a prediction over at least the short term is aided by the

fact that the thermal time-constants of most chips are fairly long
(recall the 10–200 ms figure quoted earlier), i.e. temperatures can
be expected to change only slowly. Thus, the temperatures can be
regarded as the output of a frequency-limited process and as a
result, extrapolation techniques from signal theory can be used [6].

uting:

S
p
v
o

x

w
(
p
n
q
e

∑
w
t

T

w
ω
b

c
T
a

u
e
s
b

m

4

d
r
f
s
p
c
n
t
o
a
t
a
s

T
R

I. Koren, C.M. Krishna / Sustainable Comp

uch techniques allow us to write the predicted signal value (tem-
erature, in our case) as the weighted sum of prior recent signal
alues. More precisely, if x(t) is the temperature at some location
n the chip at time t, then we can write a prediction

(t) ≈
N∑

n=1

anx(tn) (19)

here ti = t − i�s (i = 1, 2, · · · N) are the N temperature sample points
for a suitable N) preceding time t. we assume here that these sam-
le points are taken at uniform intervals of �s, although that is not
ecessary. If most of the signal “energy” is contained within a fre-
uency range ˝, it can be shown that the coefficients of the best
stimate, an, follow the equation:

N

n=1

ansinc(2˝(tj − tN)) = sinc(2˝(t − tj)), j = 1, · · ·, N (20)

here sinc(x) = sin(x)/x. ˝ can be obtained through the thermal
ime-constant, �c: in [6], it is argued that, to a good approximation,

emp(ω) = Temp(0)√
1 + (ω�c)2

(21)

here Temp(ω) is the level of the temperature signal at frequency
. An appropriate level for the sampling interval, �s, can be obtained
y invoking the Nyquist sampling theorem yielding �s < 1/(2˝).

Calculation of the ai values depends on the thermal time-
onstant and can be done offline and stored in a lookup table.
emperature prediction at the next sampling point then becomes
fairly lightweight computation.

Other predictive approaches can be found in [17,45,91] which
se regression techniques. These temperature predictions are gen-
rally accurate to within a few percent. They allow the operating
ystem to act proactively, migrating tasks which are predicted to
ecome very hot to cooler cores.

Table 1 summarizes the key runtime approaches to thermal
anagement.

.4. Real-time systems

Tasks in a real-time system have deadlines and missing these
eadlines could either lead to an unacceptable outcome (for hard
eal-time systems like engine controllers) or to degraded per-
ormance (for soft real-time systems, e.g. streaming video). Such
ystems are generally provisioned with sufficient computational
ower to meet the deadlines of their critical tasks under worst-
ase execution time conditions. However, in most cases, tasks do
ot run to their worst-case estimates. As a result, power consump-
ion – and heat generation – can be lowered by taking advantage

f the extra time that becomes available and reducing the volt-
ge and frequency of the processor. Voltage scaling for reducing
he total energy consumption has long been an active research
rea in real-time systems [44,65,86]. Temperature constraints con-
titute an additional dimension in the scheduling of such tasks;

able 1
untime techniques.

Voltage scaling Change voltage levels to adjust power and energy
consumption. Clock rates are reduced to match the
increased circuit delay that results.

Heat balancing Spreads the thermal load among multiple cores to
approximately even out their temperatures.

Heat unbalancing Reduce thermal cycling effects: accept significant
temperature differentials between the cores as long as
specified temperature levels are not breached.

Throttling Reduce the rate at which heat is generated by
reducing instruction fetch rate and similar parameters.
Informatics and Systems 1 (2011) 46–56 53

they limit the maximum voltage that can be used for a given
task. Since this maximum voltage can be limited by the temper-
ature of the various blocks within the processor when the task
starts executing, thermal limits create an interaction between
tasks which is not accounted for in traditional real-time schedul-
ing.

Some work has been reported in thermal-aware scheduling in
real-time systems, although the field is still in its infancy. In [67],
the authors prove that using the lowest speed that guarantees that
all deadlines are met minimizes the maximal temperature. In [22], a
two-loop feedback control system is used to manage soft real-time
systems. The outer (periodic) loop uses temperature information
to set the processor utilization goal for the inner loop. The inner
loop adjusts the rate at which the tasks execute in order to meet the
utilization goal. The assumption is that the application task periods
can be varied within a given range. If, for example, the temperature
rises too high, the task iteration rate can be throttled back, within
limits.

In [89], the authors use reactive speed-scaling. When there
are tasks waiting to run and the temperature is below a pre-
defined threshold, the processor is run at full speed. When the
threshold is reached, the processor speed is reduced to that which
ensures that thermal equilibrium is maintained (i.e. the temper-
ature does not rise). Note that the temperature is regarded here
as a scalar, i.e. one measurement which applies across the chip.
Extending this algorithm to the more complex – and realistic –
case where each block has its own temperature should be quite
simple.

In [92], the focus in on scheduling to reduce the amount of
leakage. As we have seen, leakage current rises strongly with tem-
perature. Hence, it is better to run a processor when it is cold and
send it to sleep when it becomes hot (so long as deadlines are
not missed). A heuristic is used to obtain, for single-task work-
loads, the intervals over which the processor is to be active. The
time between the release of the task and its deadline is divided
into small subintervals; the heuristic specifies whether the pro-
cessor is to be awake or asleep in each such subinterval. Let Ts

be the steady-state temperature if the processor is running at the
specified voltage level (the assumption is that this temperature is
below the safety threshold). Let Ta be the ambient temperature
(we assume in this description that the steady-state temperature
when the processor is sleeping is very close to Ta). The heuris-
tic calculates the ratio, ri, of the remaining work on the task to
the available time in each subinterval, i. Whether or not the pro-
cessor sleeps during subinterval i depends on the value of ri and
how the current temperature relates to the temperature range
[Ta, Ts]. If the current temperature is T, then if ri < (T − Ta)/(Ts − T),
the processor sleeps during subinterval i, otherwise it executes
the task. Note that this heuristic also assumes the temperature
is characterized by one number rather than by a vector of block
temperatures.

Another heuristic for minimizing the maximum temperature
on a chip has been suggested in [12]. They do offline assign-
ment (to cores) and scheduling of periodic real-time tasks. Since
the tasks are periodic, one can compute the schedule over
a hyperperiod, i.e. the least common multiple of all the task
periods; the schedule will repeat every hyperperiod. The heuris-
tic in [12] consists of doing a binary search to minimize the
maximum block temperature. A simple list scheduling heuris-
tic accepts as input the range of maximum block temperatures
that are allowed and either returns an assignment/schedule

that falls within this range or else reports failure. This heuris-
tic can be used in a binary search algorithm (with a specified
maximum number of iterations) to find a task assignment and
schedule which approximately minimize the maximum temper-
ature.

5 uting:

5

l
h
l
h
l
p
s
r
d
a

a
d
p
s
d
s
S
s
c
r

p
s
o
t
i
(

s
o
o
f

A

F

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

4 I. Koren, C.M. Krishna / Sustainable Comp

. Discussion

Thermal dissipation is today a significant – and costly – prob-
em in processor design and operation. Thermal runaway effects
ave the potential to destroy a processor; even at temperatures

ower than those causing thermal runaway, high temperatures can
ave a debilitating effect, reducing the processor’s lifespan. To ame-

iorate the thermal stress on a processor while preserving high
erformance requires measures to be taken during both the proces-
or design phase and its operation. Implementing these measures
equires effective means of predicting the temperature during the
esign stage and of measuring it (directly or indirectly) during oper-
tion.

In this paper, we have outlined techniques to do so. We have
lso discussed design techniques to facilitate more effective heat
issipation. Since it is no longer feasible, in many instances, to
rovide a cooling infrastructure for the case in which all proces-
or subunits are generating worst-case amounts of heat, we have
escribed mechanisms to detect excessive heating during proces-
or operation and slow down or stop subunits to allow them to cool.
uch slowdown can be done at both the hardware and operating
ystem levels. It can be system-wide, core-wide, or focused on spe-
ific overheating subunits. Additionally, the operating system can
eassign threads to cores based on their thermal characteristics.

Variants of most of the techniques that we have presented in this
aper have been incorporated in current high-end microproces-
ors, especially the dual- and quad-core ones. Due to the complexity
f some of these techniques and the need for a very short response
ime, some processors include a custom on-die microcontroller that
s dedicated to the task of temperature and power management
e.g. [56,71]).

As transistor densities increase, we can expect thermal con-
traints to remain significant factors in processor design and
peration. The thermal-aware techniques surveyed here and new
nes that are yet to be developed, will likely play a major role in
uture systems.

cknowledgment

This work has been supported in part by the National Science
oundation under grant CNS-0931035.

eferences

[1] http://www.dibeneditto.com/resources/20011105/.
[2] N. Amin, V. Lim, F.C. Seng, R. Razid, I. Ahmad, A practical investigation on

nickel plated copper heat spreader with different catalytic activation processes
for flip-chip ball grid array packages, Microelectronics Reliability 49 (2009)
537–543.

[4] J.L. Ayala, A. Apavatjrut, D. Atienza, M. Lopez-Vallejo, Exploring temperature-
aware design of memory architectures in VLIW systems, in: Workshop on
Innovative Architecture for Future generation Processors and Systems, 2007,
pp. 81–88.

[6] R. Ayoub, T. Rosing, Predict and act: dynamic thermal management for multi-
core processors, in: International Symposium on Low Power Electronics and
Design (ISLPED), 2009.

[8] M. Bao, A. Andrei, P. Eles, Z. Peng, Online thermal aware dynamic voltage scaling
for energy optimization with frequency/temperature dependency considera-
tion, in: Design Automation Conference (DAC), 2009, pp. 490–495.

10] D. Brooks, V. Tiwari, M. Martonosi, Wattch: a framework for architectural-level
power analysis and optimizations, in: International Symposium on Computer
Architecture (ISCA), 2000, pp. 83–94.

11] A. Chakravorty, A. Ranjan, R. Balasubramonian, Re-visiting the performance
impact of microarchitectural floorplanning, in: Third Workshop on Tempera-
ture Aware Computer Systems (TACS), 2006.
12] T. Chantem, R.P. Dick, X.S. Hu, Temperature-aware scheduling and assignment
for hard real-time applications on MPSoCs, in: Design, Test and Automation in
Europe (DATE), 2008, pp. 288–293.

15] J. Choi, C.-Y. Cher, H. Franke, H. Hamann, A. Weger, P. Bose, Thermal-aware
task scheduling at the system software level, in: International Symposium on
Low-Power Electronics and Design (ISLPED), 2007, pp. 213–218.

[

Informatics and Systems 1 (2011) 46–56

17] A. Coskun, T. Rosing, K. Gross, Proactive temperature management in MPSOC,
in: International Symposium on Low Power Electronics and Design (ISLPED),
2008, pp. 165–170.

18] D. Cuesta, J. Ayala, J. Hidalgo, M. Poncino, A. Acquaviva, E. Macii, Thermal-aware
floorplanning exploration for 3D multi-core architectures, in: 20th Great Lakes
Symposium on VLSI, May, 2010.

19] J. Donald, M. Martonosi, Temperature-aware design issues for SMT and CMP
architectures, in: 5th Workshop on Complexity-Effective Design, June, 2004.

20] J. Donald, M. Martonosi, Techniques for multicore thermal management: clas-
sification and new exploration, in: International Symposium on Computer
Architecture, 2006.

22] Y. Fu, N. Kottenstette, Y. Chen, C. Lu, X.D. Koutsoukos, H. Wang,
Feedback thermal control for real-time systems, in: IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2010,
pp. 111–120.

23] M. Gomaa, M.D. Powell, T.N. Vijaykumar, Heat-and-run: leveraging SMT and
CMP to manage power density through the operating system, in: Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS),
2004.

24] S.H. Gunther, F. Binns, D.M. Carmean, J.C. Hall, Managing the impact of increas-
ing microprocessor power consumption, Intel Technology Journal March (Q1)
(2001) 1–9.

25] H.F. Hamann, A. Weger, J.A. Lacey, Z. Hu, P. Bose, E. Cohen, J. Wakil,
Hotspot-limited microprocessors: direct temperature and power distribution
measurements, IEEE Journal of Solid-State Circuits 42 (January (1)) (2007)
56–65.

27] Y. Han, I. Koren, C.M. Krishna, Temptor: a lightweight runtime tempera-
ture monitoring tool using performance counters, in: Third Workshop on
Temperature-Aware Computer Systems (TACS-3), June, 2006.

28] Y. Han, I. Koren, C.M. Krishna, “TILTS: a fast architectural-level transient ther-
mal simulation method, Journal of Low-Power Electronics 3 (April (1)) (2007)
13–21.

29] Y. Han, I. Koren, Simulated annealing based temperature aware floorplanning,
Journal of Low-Power Electronics 3 (September (2)) (2007) 141–155.

30] S. Heo, K. Barr, K. Asanovic, Reducing power density through activity migration,
in: International Symposium on Low power Electronics and Design, August,
2003.

31] http://www.hpl.hp.com/research/smart cooling.
32] W. Huang, M. Stan, K. Skadron, K. Sankaranarayan, S. Ghosh, S. Velusamy, Com-

pact thermal modeling for temperature-aware design, in: Design Automation
Conference (DAC), 2004, pp. 878–883.

33] W. Huang, M. Stan, K. Skadron, K. Sankaranarayan, S. Ghosh, S. Velusamy,
Compact thermal modeling for temperature-aware design, in: Technical
Report CS-2004-13, University of Virginia, Department of Computer Science,
2004.

37] W.-L. Hung, C. Addo-Quaye, T. Theocharides, Y. Xie, N. Vijaykrishnan, M.J.
Irwin, Thermal-aware floorplanning using genetic algorithms, in: Inter-
national Symposium on Quality Electronic Design (ISQED), March, 2005,
pp. 634–639.

39] C. Isci, M. Martonosi, Runtime power monitoring in high-end processors:
methodology and empirical data, in: International Symposium on Microarchi-
tecture (MICRO-36), December, 2003.

40] P. Ituero, J.L. Ayala, M. Lopez-Vallejo, Leakage-based on-chip thermal sensor for
CMOS technology, in: IEEE International Symposium on Circuits and Systems
(ISCAS), 2007, pp. 3327–3330.

41] S. Kaxiras, M. Martonosi, Computer Architecture Techniques for Power Effi-
ciency, Morgan and Claypool, 2008.

44] C.M. Krishna, Y.-H. Lee, Voltage-clock-scaling adaptive scheduling techniques
for low power in hard real-time systems, IEEE Transactions on Computers 52
(December (12)) (2003) 1586–1593.

45] A. Kumar, L. Shang, L.-S. Peh, N.K. Jha, HybDTM: a coordinated hardware-
software approach for dynamic thermal management, in: Design Automation
Conference (DAC), 2006, pp. 548–553.

46] E. Kursun, C.-Y. Cher, A. Buyuktosunoglu, P. Bose, Investigating the effects of
task scheduling on thermal behavior, in: Third Workshop on Temperature
Aware Computer Systems (TACS), 2006.

47] C. Lee, J. Ward, R. Lin, E. Schlecht, G. Chattopadhyay, J. Gill, B. Thomas, A.
Maestrini, I. Mehdi, P. Siegel, Diamond heat spreaders for submillimeter-wave
gaas Schottky diode frequency multipliers, in: International Symposium on
Space Terahertz Technology, 2009, pp. 43–46.

48] K.-J. Lee, K. Skadron, Using performance counters for runtime temperature
sensing in high-performance processors, in: International Parallel and Dis-
tributed Processing Symposium (IPDPS), April, 2005.

49] H. Li, S. Bhunia, Y. Chen, T.N. Vijaykumar, K. Roy, Deterministic clock gating
for microprocessor power reduction, International Symposium on High Per-
formance Computer Architecture (HPCA) (2003) 113–122.

53] L. Li, X. Zhou, J. Yang, V. Puchkarev, ThresHot: an aggressive task scheduling
approach in CMP thermal design, in: Workshop on Unique Chips and Systems,
2009.

54] W. Liao, L. He, K.M. Lepak, Temperature and supply voltage aware perfor-

mance and power modeling at microarchitecture level, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 24 (July (7)) (2005)
1042–1053.

56] R. McGowen, C. Poirier, C. Bostak, J. Ignowski, M. Millican, W. Parks, S. Naffziger,
Power and temperature control on a 90-nm Itanium family processor, IEEE
Journal of Solid-State Circuits 41 (January) (2006) 229–237.

http://www.dibeneditto.com/resources/20011105/
http://www.hpl.hp.com/research/smart_cooling

uting:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

F

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

I. Koren, C.M. Krishna / Sustainable Comp

57] G.C.M. Meijer, G. Wang, F. Fruett, Temperature sensors and voltage references
implemented in CMOS technology, IEEE Sensors Journal 1 (October (3)) (2001)
225–234.

58] P. Michaud, A. Seznec, D. Fetis, Y. Sazeides, T. Constantinou, A study of thread
migration in temperature-constrained multicores, ACM Transactions on Archi-
tecture and Code Optimization 4 (June (2)) (2007) (Article 9).

61] K. Najeeb, V.R. Konda, S.S. Hari, V. Kamakoti, V.M. Vedula, Power virus genera-
tion using behavioral models of circuits, in: 25th IEEE VLSI Test Symmposium,
2007, pp. 35–42.

64] T Pering, T. Burd, R.W. Brodersen, The simulation and evaluation of dynamic
voltage scaling algorithms, in: Int. Symp. on Low Power Electronics Design
(ISPLED), 1998.

65] P. Pillai, K.G. Shin, Real-time dynamic voltage scaling for low-power embed-
ded operating systems, Operating Systems Review 35 (October (5)) (2001)
89–102.

67] G. Quan, S. Ren, Leakage-aware real-time scheduling for maximal temperature
minimization, ACM SIGBED Review 7 (January (1)) (2010) (Article No. 3).

68] R. Rao, S. Vridula, Performance optimal processor throttling under thermal con-
straints, in: International Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES), 2007, pp. 257–266.

69] E. Rohou, M.D. Smith, Dynamically managing processor temperature and
power, in: 2nd Workshop on Feedback-Directed Optimization, 1999.

71] E. Rotem, A. Cohen, J. Hermerding, H. Cain, Temperature measurement in the
Intel Core Duo Processor, in: 12th International Workshop on Thermal Inves-
tigations of ICs (THERMINIC), September, 2006, pp. 23–27.

74] K. Sankaranarayanan, S. Velusamy, M. Stan, K. Skadron, A case for
thermal-aware floorplanning at the microarchitectural level, Journal of
Instruction-Level Parallelism (7) (2005) 8–16.

75] H. Sanchez, R. Philip, J. Alvarez, G. Gerosa, A CMOS temperature sensor
for powerPC RISC microprocessors, in: Symposium on VLSI Circuits, 1997,
pp. 13–14.

78] K. Skadron, Hybrid architectural dynamic thermal management, in: Proc. Des-
ignAutomation and Test in Europe Conference (DATE), 2004.

79] K. Skadron, T. Abdelzahar, M.R. Stan, Control-theoretic techniques and thermal-
RC modeling for accurate and localized dynamic thermal management, in:
International Symposium on High Performance Computer Architecture, 2002.

81] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, D. Tarjan,
Temperature-aware microarchitecture, in: 30th Annual International Sympo-
sium on Computer Architecture (ISCA), 2003, pp. 2–13.

84] M.R. Stan, K. Skadron, M. Barcella, W. Huang, K. Sankaranarayanan, S. Velusamy,
HotSpot: a dynamic compact thermal model at the processor-architecture
level, Microelectronics Journal 34 (2003) 1153–1165.

85] S. Subrina, D. Kotchetkov, A.A. Balandin, Thermal management with graphene
lateral heat spreaders: a feasibility study, EEE Intersociety Conference on Ther-
mal and Thermomechanical Phenomena in Electronic Systems (ITherm) (2010)
1–5.

86] O.S. Unsal, I. Koren, System-level power-aware design techniques in real-time
systems, Proceedings of the IEEE 91 (July (7)) (2003) 1055–1069.

87] R. Viswanath, V. Wakharkar, A. Watwe, V. Lebonheur, Thermal performance
challenges from silicon to systems, Intel Technology Journal Q3 (2000)
1–16.

88] H. Wang, Y. Guo, I. Koren, C.M. Krishna, Compiler-based adaptive fetch throt-
tling for energy-efficiency, in: IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2006, pp. 112–119.

89] S. Wang, R. Bettati, Reactive speed control in temperature-constrained real-
time systems, in: Euromicro Conference on Real-Time Systems (ECRTS),
2006.

90] Y.-W. Yang, K.S.-M. Li, Temperature-aware dynamic frequency and voltage scal-
ing for reliability and yield enhancement, in: Asia and South Pacific Design
Automation Conference, 2009, pp. 49–54.

91] I. Yeo, C.C. Liu, E.J. Kim, Predictive dynamic thermal management
for multicore systems, in: Design Automation Conference (DAC), 2008,
p. pp 739.

92] L. Yuan, S. Leventhal, G. Qu, Temperature-aware leakage minimization tech-
niques for real-time systems, in: IEEE/ACM International Conference on
Computer Aided Design (ICCAD), 2006, pp. 761–764.

93] F. Zanini, D. Atienza, L. Benini, G. DeMicheli, Multicore thermal management
with model predictive control, in: European Conference on Circuit Theory and
Design (ECCTD), 2009, pp. 711–714.

urther reading

[3] D. Atienza, G. De Micheli, L. Benini, J.L. Ayala, P.G. Del Valle, M. DeBole, V.
Narayanan, Reliability-aware design for nanometer-scale devices, in: 2008
Conference on Asia and South Pacific design automation, January, 2008.

[5] J.L. Ayala, D. Atienza, P. Brisk, Thermal-aware data flow analysis, in: 46th Annual
Design Automation Conference, July, 2009.

[7] N. Bansal, T. Kimbrel, K. Pruhs, Speed scaling to manage energy and tempera-

ture, Journal of the ACM 54 (March (1)) (2007) (Article 3).

[9] L. Benini, G.D. Micheli, Dynamic Power Management: Design Techniques and
CAD Tools, Kluwer, 1998.

13] P. Chaparro, J. Gonzalez, A. Gonzalez, Thermal-aware Clustered Microarchi-
tectures, in: International Conference on Computer Design (ICCD), 2004, pp.
48–53.

[

Informatics and Systems 1 (2011) 46–56 55

14] P. Chaparro, G. Magklis, J. Gonzalez, A. Gonzalez, Distributing the frontend
for temperature reduction, in: 11th International Symposium on High-
Performance Computer Architecture, 2005, pp. 61–70.

16] S. Chung, K. Skadron, Using on-chip event counters for high-resolution
real-time temperature measurements, in: IEEE/ASME Tenth Intersociety Con-
ference on Thermal and Thermomechanical Phenomena in Electronic Systems
(ITHERM), June, 2006, pp. 114–120.

21] www.efunda.com.
26] Y. Han, I. Koren, C.M. Krishna, TILTS: a fast architectural-level transient

thermal simulation method, Journal of Low-Power Electronics 3 (2007)
1–9.

34] W. Huang, M.R. Stan, K. Sankaranarayanan, R.J. Ribando, K. Skadron, Many-
core design from a thermal perspective, in: 41st Annual Conference on Design
Automation (DAC), 2008.

35] W. Huang, K. Skadron, S. Gurumurthi, R.J. Ribando, M.R. Stan, Differentiating
the roles of ir measurement and simulation for power and temperature-aware
design, in: 2009 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), April, 2009, pp. 1–10.

36] W. Huang, K. Skadron, S. Gurumurthi, R.J. Ribando, M.R. Stan, Exploring the
thermal impact on manycore processor performance, in: IEEE Semiconductor
Thermal Measurement, Modeling, and Management Symposium (Semi-Therm
26), February, 2010.

38] W. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir, Thermal-aware task alloca-
tion and scheduling for embedded systems, in: Design, Automation and Test in
Europe (DATE), 2005, pp. 898–899.

42] A. Keshavarzi, Power-aware architectural synthesis, in: Wai-Kai Chen (Ed.), The
VLSI Handbook, CRC Press, 2006.

43] M.M. Khellah, M.E. Elmasry, Power minimization of high-performance sub-
micron CMOS circuits using a Dual-Vdd Dual-Vth (DVDT) approach, in: ACM
International Symposium on Lower-Power Electronics and Design (ISLPED),
1998, pp. 106–108.

50] H. Li, P. Liu, Z. Qi, L. Jin, W. Wu, S. Tan, J. Yang, Efficient thermal simulation for
run-time temperature tracking and management, in: International Conference
on Computer Design (ICCD), October, 2005, pp. 130–136.

51] Y. Li, K. Skadron, Z. Hu, D. Brooks, Evaluating the thermal efficiency of SMT and
CMP architectures, in: IBM T. J. Watson Conference on Interaction between
Architecture, Circuits, and Compilers, October, 2004.

52] Y. Li, K. Skadron, D. Brooks, Z. Hu, Performance energy, and thermal consid-
erations for SMT and CMP architectures, in: 11th International Symposium
on High-Performance Computer Architecture, HPCA-11, February, 2005, pp.
71–82.

55] P. Liu, Z. Qi, H. Li, L. Jin, W. Wu, S. Tan, J. Yang, Fast thermal
simulation for architecture-level dynamic thermal management, in: Inter-
national Conference on Computer-Aided Design (ICCAD), November, 2005,
pp. 639–644.

59] F. Mulas, D. Atienza, A. Acquaviva, S. Carta, L. Benini, G. De Micheli, Ther-
mal balancing policy for multiprocessor stream computing platforms, EEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
28 (December) (2009) 1870–1882.

60] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, G. De Micheli, Temperature-
aware processor frequency assignment for MPSoCs using convex optimization,
in: 5th IEEE/ACM International Conference on Hardware/Software Codesign
And System Synthesis, 2007, pp. 111–116.

62] A. Naveh, E. Rotem, et al., Power and thermal management in the Intel Core
Duo, Intel Technology Journal 10 (2006).

63] G. Paci, P. Marchal, F. Poletti, L. Benini, Exploring Temperature-aware design in
low-power MPSoCs, in: Conference on Design, automation and test in Europe,
March, 2006.

66] M.D. Powell, M. Gomaa, T.N. Vijaykumar, Heat-and-run: leveraging SMT and
CMP to manage power density through the operating system, in: 11th Intl. Conf.
on Architectural Support for Programming Languages and Operating Systems,
October, 2004.

70] E. Rotem, A. Naveh, et al., Analysis of thermal monitor features of the Intel
Pentium M Processor, in: First Workshop on Temperature Aware Computer
Systems TACS-01, 2004.

72] M.-N. Sabry, Dynamic compact thermal models: an overview of current and
potential advances, in: International Workshop on Thermal Investigations of
ICs (THERMINIC), October, 2002, pp. 1–18.

73] M.M. Sabry, J.L. Ayala, D. Atienza, Thermal-aware compilation for system-on-
chip processing architectures, in: 20th Great lakes symposium on VLSI, May,
2010.

76] L. Shang, R.P. Dick, Thermal crisis: challenges and potential solutions, IEEE
Potentials 25 (September) (2006).

77] B. Shi, Y. Zhang, A. Srivastava, Dynamic thermal management for single and
multicore processors under soft thermal constraints, in: International Sympo-
sium on Low-Power Electronics and Design (ISLPED), 2010, pp. 165–170.

80] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, D. Tar-
jan, Temperature-aware computer systems: opportunities and challenges, IEEE
Micro 23 (6) (2003) 52–61.

82] K. Skadron, M.R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, D. Tar-

jan, Temperature-aware microarchitecture: modeling and implementation, in:
ACM Transactions on Architecture and Code Optimization (TACO), vol. 1, March,
2004, pp. 94–125.

83] J. Srinivasan, S.V. Adve, Predictive dynamic thermal management for multime-
dia applications, in: 17th Annual International Conference on Supercomputing,
June, 2003.

http://www.efunda.com/

5 uting:

[

H
A
a
1

Michigan. Since then, he has been at the University of
Massachusetts, where he is now a professor of electri-
cal and computer engineering. He has coauthored books
on real-time systems and fault-tolerant computing. His
research areas include real-time systems, fault-tolerance,
distributed systems, and sensor networks.
6 I. Koren, C.M. Krishna / Sustainable Comp

94] S. Zhang, K.S. Chatha, Approximation algorithm for the temperature-aware
scheduling problem, in: IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2007, pp. 281–288.

Israel Koren is currently a Professor of Electrical and
Computer Engineering at the University of Massachusetts,
Amherst and a fellow of the IEEE. He has been a consultant
to numerous companies including IBM, Analog Devices,
Intel, AMD and National Semiconductors. His research
interests include Fault-Tolerant systems, Computer Archi-
tecture, VLSI yield and reliability, Secure Cryptographic
systems, and Computer Arithmetic. He publishes exten-
sively and has over 200 publications in refereed journals
and conferences. He is an Associate Editor of the VLSI
Design Journal, and the IEEE Computer Architecture Let-

ters. He served as General Chair, Program Chair and
Program Committee member for numerous conferences.

e is the author of the textbook “Computer Arithmetic Algorithms,” 2nd Edition,
.K. Peters, 2002, a co-author of “Fault Tolerant Systems,” Morgan-Kaufman, 2007,
nd an editor/co-author of “Defect and Fault-Tolerance in VLSI Systems,” Plenum,
989.
Informatics and Systems 1 (2011) 46–56

C.M. Krishna received his PhD from the University of

	Temperature-aware computing
	Introduction
	Thermal measurement and modeling
	Temperature sensing
	Thermal modeling
	Hotspot heatflow model
	TILTS acceleration technique
	Iterative use of thermal models

	Temperature-aware chip design
	Runtime thermal management
	Motivation
	Dynamic voltage scaling
	Thermal-aware task assignment and scheduling
	Heat balancing
	Heat unbalancing
	Reducing execution rate of hot tasks
	Adding a predictive component

	Real-time systems

	Discussion
	Acknowledgment
	References
	Further reading

