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Discrete and Continuous Models for the
Performance of Reconfigurable Multistage Systems
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Abstract—When designing multistage multiprocessors consist-
ing of a large number of components (e.g., processors, memories,
and interconnection switches) we must expect some of the system
components to become faulty while the system is in operation.
In many cases, it may be desirable that the system be reconfig-
ured into a fully-connected network of smaller dimensions, and
its operation continued with some degradation in performance.
However, before making a decision whether to support such
graceful degradation we should estimate the expected reduction
in system performance.

In this paper, we analyze the performance of multiprocessor
systems with a multistage interconnection network in the presence
of faulty components. Models for estimating the system perfor-
mance, as measured by its bandwidth and processing power,
are developed for two different modes of operation. In the first
mode, the operation of the system is fully synchronized and
all processors which require memory access issue their requests
simultaneously. In the second, each processor is allowed to issue
its request at any time instant.

For each of the two modes of operation, two models are
presented providing lower and upper estimates for the bandwidth
of multistage systems and an upper estimate for their processing
power. The expected degradation in the performance of the
system predicted by these two models is then compared to
simulation results.

Index Terms—Bandwidth, faulty components, graceful degra-
dation, multistage networks, processing power.

I. INTRODUCTION

DVANCES in VLSI technology and development of new

computer-aided design tools enable the design and imple-
mentation of multiprocessing systems consisting of hundreds
or even thousands of components. One important class of
these multiprocessing systems includes the shared-memory
multiprocessors where all processors can access a set of
memory modules through a circuit-switching multistage in-
terconnection network (MIN).

When implementing a complex multiprocessor, some of its
components (like processors, memory modules, or intercon-
nection links) should be expected to become faulty. In many
cases the faulty components cannot be immediately repaired
or replaced, yet the remaining units can be reconfigured into
a functioning fully-connected (i.e., each processor is capable
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of communicating with every memory) network of smaller
dimensions. Using the reconfigured system at a degraded
rate of performance until a repair and/or replacement takes
place can be beneficial, for example in a real-time computing
system where even a relatively short down-time period may
be intolerable.

The decision whether to support such graceful degradation
of the system should depend upon its expected performance
in the presence of faults. This is especially important in the
case of multiprocessors with MIN’s which provide a unique
path between any processor and any memory module. These
systems are inherently very sensitive to failures of any kind,
since a single fault in any internal switch or link will render
some memories unreachable from certain processors.

In this paper, we analyze the performance (over time) of
reconfigurable multistage multiprocessors in the presence of
faults. A commonly used measure for the performance of
an interconnection network is its bandwidth. The bandwidth
BW(2) is defined as the expected number, at time ¢, of requests
for the shared memory which are accepted per time unit. The
bandwidth measures the effect of blocking which results either
from memory conflicts (i.e., two or more requests directed to
the same memory), from the sharing of paths by two or more
processor—memory pairs (even when the memories involved
are distinct), or, as in our case, from the presence of some
faulty components. Another measure for system performance
that we employ is the processing power defined as the average
number of nonfaulty processors which are computing, ie.,
operational processors which are neither communicating with
the memory nor waiting for such a communication to be
established. The processing power at time ¢ is denoted by C(t).

Two different types of models for analyzing the perfor-
mance of multistage networks can be developed. The first one
includes discrete models which assume a fully synchronized
mode of operation. Here, time is divided into network cycles
of fixed length, which equals the memory access time plus
the network delay (twice the propagation delay of a signal
through the network). Requests for memory access are issued
at the beginning of a network cycle and all successful commu-
nications terminate at the end of the same cycle. The second
type of model includes continuous models which assume an
asynchronous mode of operation, i.e., each processor can issue
a memory request at any time instant and the communication
period can last an arbitrary length of time.

Two discrete models are presented in Section III general-
izing previously suggested models ([12] and [13]) to allow
the presence of faulty links, faulty processors, and faulty
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memories. The first model is computationally simple, but too
pessimistic for probabilities of request which are not close to 1.
It assumes that a memory request blocked by the network is
lost, an assumption that could result in a loss of bandwidth
when the traffic is not very heavy. For very high request
probabilities, this model coincides with the second model,
which assumes that any processor whose memory request is
blocked, reissues its request in the consecutive network cycle.
This model is computationally more complex than the first
one and a simplifying assumption must be made to make it
mathematically tractable. Consequently, this model provides
only an upper estimate for the network bandwidth. These
two discrete models are compared to simulation results in
Section IV.

In Section V, two similar models for the asynchronous mode
of operation are presented based on the assumption that a
blocked request is either lost or reissued, respectively. They
too provide, for request rates which are not too high, lower
and upper estimates for the bandwidth of the system but are
computationally less complex than their discrete counterparts.
The two continuous models are compared to simulation results
in Section VI. Final conclusions are presented in Section VII.

II. PRELIMINARIES

Consider a multistage circuit-switching interconnection net-
work constructed of 2 x 2 switches which connect N proces-
sors (where N = 2%) to N memories. Analysis of this kind
of network can be generalized to the case where the number
of processors is not necessarily a power of 2, the number
of memories is different from the number of processors and
finally, the network is built of a x b switches (see for example
[12]). For the sake of clarity and brevity, however, we restrict
our discussion here to the above mentioned simpler case.

The performance of unbuffered MIN’s has been previously
analyzed. In [3], [9], [12], and [13] it has been assumed
that the network is fault-free. Networks in which faults may
occur are considered in [2], [4], [10], and [11]. However, it is
very difficult to extend the analysis in [2] to large values of
N, while [11] assumes independence among the processor to
memory paths, an unrealistic assumption which is omitted in
our analysis. The analysis in [4] concentrates mainly on the
number of operational paths in the network. The most recent
work in [10] analyzes a special fault-tolerant MIN, called
augmented shuffle-exchange network, and is based on two
previously used simplifying assumptions, namely, all blocked
requests are discarded and, arrivals of requests at different
links in the MIN are statistically independent.

Although we are attempting to estimate the performance of
a reconfigurable system, our analysis does not deal directly
with the size of the reconfigured network, since calculating
the exact probability of a fully-connected network of given
dimensions is a problem with exponential complexity. Instead,
our analysis takes into account all processors which are
connected to at least one fault-free memory (termed accessible
in [8]). We showed in [8] that due to the high correlation
among the processor to memory paths in the network, the
number of accessible processors can be viewed as a very
close estimate of the number of processors in the fully-
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connected reconfigured network. This has been confirmed by
our simulation results (reported in Sections IV and VI) in
which actual reconfiguration took place.

The N x N interconnection network consists of k¥ = log N
stages, each containing N/2 switches as illustrated in Fig. 1.
We assign numbers to the k stages in a descending order so
that stage O is the last stage and its output links are connected
to the memories, stage (k — 1) is the first stage and its input
links are connected to the processors (see Fig. 1).

Let ¢ be some given time instant, let g.(¢) denote the
probability that a processor is faulty at time ¢ and let p,.(t) =
1 — g-(t) denote the probability that the processor is fault-
free at time ¢. The functional form of g.(t) depends upon
the statistical model assumed for the faults occurring in
the network. The widely used model is the Poisson model,
according to which the probability of a fault-free processor at
time ¢ is

polt) = et @1)

where the failure rate A, is the average number of faults
occurring in a processor per time unit.

Similarly, we denote by ¢, (t) (pm(t)) the probability of a
faulty (fault-free) memory and by ¢;(t) (pi(¢)) the probability
of a faulty (fault-free) link, all at time ¢. Our fault model for
the interconnection network is the link fault model [1], i.e., p;
is the probability that the wires connecting an output port of a
switch and an input port of another switch are fault-free and
the transmit/receive circuits on both ends are fault-free. We
allow multiple link failures and consequently, entire switch
faults are covered as well (a switch failure can be viewed as
a failure of two links, thus having a probability of g?). This is
in line with a commonly made assumption that faults internal
to circuits (switches in this case) which are implemented as
integrated circuits are less likely to occur compared to faults
in links connecting several IC’s.

When Poisson distribution is assumed for fault occurrences,
expressions similar to (2.1) are obtained for p,,,(t) and p;(2),
with failure rates A, and A, respectively. Although we use
the Poisson model for the numerical examples, our analysis is
general in the sense that it applies to any other statistical fault
process, including models where the different components
(namely, processors, links, and memories) follow different
distribution laws and even models that allow repair of faulty
components. The only requirement is that the model allows
the calculation of the probabilities p,.(t), pm(t), and py(t).

For the purpose of our analysis we assume that the mean
time between component failures is very large compared to the
average length of the communication period (for both modes
of operation, the synchronous and the asynchronous one). This
implies that the status of the system components (i.e., faulty
or fault-free) is constant for a large enough period of time
allowing us to study the system’s behavior under a statistical
steady-state. We can, therefore, construct a Markovian process
based on which the bandwidth and the processing power (for
a given time instant ¢) will be calculated. For the synchronous
mode of operation we construct a discrete Markov chain, while
for the asynchronous mode we obtain a continuous Markov
process. In both cases we view, for the purpose of the analysis,
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Fig. 1. An 8 x 8 multistage interconnection network.

the probabilities that the system components are fault-free as
constants (for a fixed time instant t) and use for simplicity the
notation py., Pm, and p;. Similarly, we omit ¢t and denote the
bandwidth and processing power by BW and C, respectively.

III. DISCRETE MODELS

In this section, we present two discrete models for studying
the degradation over time of the performance of a MIN in the
presence of faults. Both models assume a fully synchronous
mode of operation, i.e., processors may issue a memory request
only at the beginning of a network cycle and the duration of
every communication period between processor and memory
is exactly one network cycle. The first model further assumes
that blocked requests are discarded while the second one
assumes that processors reissue their blocked requests in the
next network cycle. We call these two models nonpersistent
and persistent, respectively. The analysis of these two models
appears in [6] and [7], respectively, and is briefly summarized
here for the sake of completeness.

The Nonpersistent Model: The nonpersistent model gener-
alizes a similar model [12] where the bandwidth has been
calculated for a fault-free interconnection network.

Since in the nonpersistent model any blocked request is
discarded, the system (observed at the beginning of network
cycles) can be described by a memoryless stochastic process.
Adopting the common assumption that the destinations of the
memory requests are independent and uniformly distributed
among the N memories, the network bandwidth can be ob-
tained by multiplying the number of memories N by the
probability that a given memory module is fault-free and has
a request at its input. This last probability can be calculated
iteratively, following a path leading to this memory, i.e., the
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probability of a request on an output link of a switch is
calculated from the probability that such a request has been
accepted at the input links to the same switch. The probability
that a processor generates a request is denoted by pq.

Let X® denote the event that there is a request for the
memory on a particular output link of a switch in stage @ (see
Fig. 1). The probability of this event, denoted by P{X®W},
was shown in [6] to satisfy the following recurrence relation

plx0) < pfxe) - bt ()
=1- (1 - %pz : P{X("“)})

This recursion reduces to the one presented in [12] if fault-free
(e, pp=1)2x2 switches are assumed.

Equation (3.1) enables us 10 calculate the successive prob-
abilities P{X®}, starting from the processors outputs for
which we have

2

@3.1)

P{X(k)} = Pabr (32
up to the memory inputs yiclding P{X(©}. Finally, to cal-
culate the bandwidth for the nonpersistent model, denoted by
BW{"?} we note that the memory and its input link can be
faulty as well, hence

BW? = N . P{X(O)} PPl (3)

Under the assumptions of the nonpersistent model, each
fault-free processor whose memory access request is blocked,
discards its request and resumes computing. The only pro-
cessors which are not computing are therefore either faulty
or successfully communicating with the memory. This as-
sumption results in the following equation for calculating the
processing power

¢ = N . p, — BW{?, (34)
This equation implies that a lower bandwidth results in 2
higher processing power. The nonpersistent model is thus,
overly optimistic with regard to the processing power (as
will be illustrated in Section IV) and should not be used for
estimating it.

The persistent model, to be presented next, is more realistic
than the previous one and provides an upper estimate for
the bandwidth and a reasonably accurate estimate for the
processing power.

The Persistent Model: In the persistent model, a blocked
request is not discarded. Instead, the corresponding processor
reissues its request in the next network cycle. This model
generalizes a similar model [13] which was restricted to the
case of fault-free components. The stochastic process required
for describing the system behavior in the persistent model is
more complex than that for the nonpersistent one. An exact
state description should include the status of each processor,
each link, and each memory, resulting in a prohibitively large
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number of multidimensional states. We chose as an approxi-
mation for the state of the system a one-dimensional random
variable Z, denoting the number of processors which are
operational yet idle. These are the processors which are fault-
free yet not computing because they are either communicating
with some memory or waiting for such a communication to
be established. This choice, as opposed to approximations in
which the state of a single processor is considered, captures the
dependence among the processors which is one of the main
“ characteristics of an MIN.

The random variable Z is observed at the beginning of each
network cycle, i.e., Z(n) (n = 0,1,2,---) is the number of
idle processors at the beginning of cycle n. In order for Z (n)to
be a Markov chain, we must add the following assumption: At
the beginning of each cycle, all the existing requests (including
both the new requests and the reissued ones) are randomly
redistributed among all memories, regardless of their original
destination. This “independence assumption” is made in [11]
and in [13), and was shown to be inaccurate by Dias et al.
[5]- Still, models based on this assumption can be utilized to
obtain an upper estimate for the system’s bandwidth, since it
clearly tends to render the calculated bandwidth slightly higher
than its actual value. In what follows, we show how Z(n) can
be used to estimate the network’s bandwidth and processing
power.

Denote by R the number, at time £, of operational processors
(0 < R < N) and thus, N — R is the number of faulty
processors. For a given value of R, Z(n) can assume the
values 0,1, - - -, R. We denote by P(®) the one-step transition
probability matrix whose (i, j)th element is

PP = P{Z(n+1) = j|Z(n) =i}

This is the probability that j processors request memory access
at the beginning of cycle n + 1, given that i processors
requested it at the beginning of cycle n. Z(n) = i means that
i processors are idle requesting memory access while R — 1
are active performing internal processing. Out of the 7 requests,
only d (d < i) reach their destination and are accepted. The d
corresponding processors become active again at the beginning
of the n + 1 cycle, thus increasing the number of active
processors to R — i + d. These R — 4 + d active processors
will generate g new requests, which will join the 7 — d
resubmitted ones. Consequently, j = @ + g — d.

The transition from Z(n) = i to Z(n+ 1) = j involves
two random variables: the number d of requests reaching their
destination, and the number g of newly generated requests. The
calculation of the transition probability matrix P®) requires,
therefore, the calculation of the following two probability
matrices: D, whose (z,d) element is

D, 4 = P{d requests accepted|i requests submitted}
and G, whose (r,g) element is
G,y = P{g requests generated|r processors are active}.

Both matrices do not depend upon the actual value of R.
Therefore, we define them as (N + 1) x (N + 1) matrices
and use proper submatrices for any given value of R.
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The calculation of G g, the probability that r active pro-
cessors will generate g requests, is straightforward. The r
processors are independent, each having a probability p, of
generating a memory request, hence

G”“z(;)pg(l-z’a)"” rg=0N. (35

To calculate D; 4, the probability that d out of ¢ requests will
reach their final destinations, we repeat k times the calculation
for a single stage of switches. To this end, we denote by @,
the probability that v out of u requests at the inputs to the
switches of any given stage will reach the inputs of the next
stage. The elements ®,,,, form an (N + 1) x (N + 1) transi-
tion probability matrix denoted by ®. To find 9,,, we denote
by @ the number of switches in the observed stage which have
one incoming request and by b the number of switches with
two such requests. Clearly, a + 2b = u and the probability of

the pair (a,b) is
() (5

(%)
u
Each of the a “single request” switches will propagate the
incoming request depending on whether the appropriate link
is fault-free or not. The probability of propagating the single
request, denoted by o, is hence, a; = pi. The probability of
not propagating the request, denoted by ag, is g =1 —p1.

Denote by w the number of these “single request” switches
propagating their incoming request and thus, (a — w) single-
request switches produce no output. Then,

1 a w . a—w
P{w|a} = (w)al ag .

Each of the b “double request” switches will propagate 2, 1,
or 0 requests depending both on the destinations of the two
incoming requests and on the status of the links (faulty or not).
Denote by B2, B1, and (o, the respective probabilities and
by y, z, and (b — y — 2) the number of “double request”
switches propagating 2, 1, and 0 requests, respectively, then,

P =(0) (V1) 69

where B2 = 0.5 - plz, B =

Bo=1-p1—Pa
Based on the probabilities in (3.6), (3.7), and (3.8) we
obtain

Qu,u =

p{a,blu} = (3.6)

3.7

p - (1—p)+05-p and

3 P{ablu}- P{wla}- P{y,2lb}.  (9)

at2b=u
wi2ytz=v

Having calculated ®, the one-stage transition probability ma-
trix, the k-stage transition probabilities can be obtained simply
by raising ® to the kth power. The (i,v) element of the
resulting matrix <I>f1v is the probability that v out of 7 original
processors’ requests will reach the memories. Finally, to
calculate D; 4 note that some of the v memories accessed may
be faulty. The probability that out of v destinations, exactly
d will be fault-free is

(5)pa =P (3.10)
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and consequently,

D’i,d = i (p:'c,v :

v=d

() -pmy™ 61D

The matrices G and D enable us to find PP, the transition
probability matrix of the Markov process Z, for every given
number R of operational processors;

R
Pi(,j)= Z D;q-GRr-itdg

j=itg—d

i7.7‘=07”'7R'

(3.12)

The matrix P®) can now be used to calculate TI'®), the
(R + 1)-dimensional vector of the steady-state probabilities
of the Markov chain, by solving the set of linear equations

R .
S =1

=0

n® . p® - g, (3.13)

On the basis of the above steady-state probabilities the band-
width BW{?} and the processing power C {#} for the persistent
model can be calculated. There is, however, no need to
calculate both measures since they are furctionally related
in the currently presented model as shown in the following
lemma.

Lemma: The bandwidth and processing power of a syn-
chronous MIN for the persistent model satisfy
(for po < 1).

Bwirt = ¢fr}. (1_1’a_ (3.14)

_pa)

Proof: At the beginning of a network cycle, an average
number of C{P} processors are active, joined by an average
number of BW{?} processors which have completed their
memory access in the previous cycle and are now active too.
Each of these C{?} + BW{?} processors has a probability pa
of issuing a request, hence an average of (C {r} 4 BWP}).p,
requests are issued each cycle. Since the system must be in
equilibrium, the expected number of generated requests per
cycle must be equal to the expected number of accepted
requests per cycle, BW{}. Hence, BW} = (C{P} +
BWP}) . p, and (3.14) follows. [

The conditional processing power for a given value of R,
C{P}(R), can now be obtained using H(R)

R
c®(R) =3 (R-1) . (3.15)
=0

Averaging over all values of R using the appropriate proba-
bilities yields

N

cfir} = Z

R=0

(z) (prpt)*(1 = pop)" - CUH(R).
(3.16)

BW} can be obtained using (3.14). An alternative way of
calculating BW 1P}, which must be used if p, = 1 (since (3.14)
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does not hold in this case), is the following. Define BW{P}(R)
as the conditional bandwidth for a given value of R. Then,

R %
BW@(R) =Y ™ Y d- Dia. (3.17)

i=0 d=0

And similarly to (3.16),

BW{r} = i (N) (ep)®(1 = pop)" R - BWH(R)
= P R Y2 44 PrDt .
(3.18)

IV. SIMULATION RESULTS

In this section, we present some numerical comparisons
between the two previously presented models and results of
simulation runs. Our goal is to verify that, for the particular ex-
amples chosen, the nonpersistent and persistent models provide
lower and upper estimates for the bandwidth, respectively, and
to find out how close they are to the actual value (as obtained
by simulation).

In the fitst step of the simulation, each processor, memory,
and link has been set to be faulty or fault-free according to
the probabilities pr, Pm., and p;, respectively. In the second
step, the N x N netwerk was reconfigured into a fault-free,
fully-connected fetwork of smaller dimensions which was run
using the realistic protocol according to which a processor
resubmits any blocked request to its original destination until it
is fulfilled. The reconfiguration algorithm utilized is a “greedy”
one. First, all faulty processors and memories are discarded
from the system. Then, alternately, the processor connected to
the smallest number of remaining memories and the memory
connected to the smallest number of remaining processors are
omitted, until a fault-free fully-connected system is obtained.
This algorithm, which does not guarantee an “optimal” solu-
tion, provides good results for low fault probabilities which is
the range we are mainly interested in. Both simulation steps
were repeated many times, and the average bandwidth and
processing power of the simulated systems were calculated.
The results are depicted in Figs. 2—4 where the corresponding
calculated 95% confidence intervals are indicated.

The results of the comparisons between the estimated and
simulated values clearly depend upon the time £, the size of the
network NN, and tlie request probability p,. Fig. 2 compares
the values calculatéd for the bandwidth using the nonpersistent
and persistént models to the value obtained through simulation,
for a system with N = 16 processors and 16 memories. Time
is measu;ed in this figure in 1 /A units. The values chosen
for the other failure rates are A, /A, = 0.7 and A; /A =0.2.
The bandwidth has been calculated as a function of time, for
different values of p,. The results for two values of po (i.e.,
pe = 0.2 and p, = 0.6) are shown in Fig. 2.

As is évident from Fig. 2, the results of the simulation
lie between the two estimated values for the bandwidth, for
“reasonable” values qf t and p,. For large values of ¢ and
po (pa close to 1) the simulation results were lower than
both estimated values. Large values of ¢ and p, are, however,
impractical. Regarding t as the time since the last maintenance,
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Fig. 2. Comparing the bandwidth BW(¢) of a 16 X 16 synchronous network
to its estimates using the persistent and nonpersistent models for (i) pa = 0.2
and (ii) pa = 0.6. 95% confidence intervals are less than: (i) £0.04,
(i) £0.065. (The failure rates are Am/Ar = 0.7 and A\/Ar = 0.2)

a large value of ¢ indicates that the system is operating for
long periods of time without any maintenance. On the other
hand, a value of p, which is close to 1 indicates that the
processors access the memory very often and do very little
internal processing.

Another important conclusion that can be drawn from Fig. 2
is that, for the example chosen (as well as for several other
examples that we have run), the upper estimate for the band-
width, calculated using the persistent model, is slightly closer
to the simulation results than the lower estimate calculated
using the simpler (nonpersistent) model.

Fig. 3 depicts the two estimates and the simulation results
for the bandwidth, as a function of p,, for two time instances
(t = 0 and ¢t = 0.1). As can be seen from Fig. 3, the upper
estimate (using the persistent model) is closer to the simulation
results for small values of p,, while the lower estimate is
closer for high values of pg.

For high values of p, the two estimates are getting relatively
closer to each other; the loss of blocked requests is negligible
when processors issue new requests at a high rate. Conse-
quently, for high values of p,, the computationally simpler
model (the nonpersistent one) can be used for estimating the
bandwidth.

We have also compared the estimated processing power
of the synchronous system ‘to its value obtained through
simulation. Fig. 4 depicts the processing power of a 16 x 16
synchronous system as a function of time, for (i) pa = 0.2
and (ii) p, = 0.4. In case (i) we compare the simulation
results to the results obtained from both models. As expected,
the nonpersistent model is much too optimistic; the persistent
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Fig. 3. The bandwidth of a 16 X 16 synchronous network as a function of
pq for ()t = 0 and (i) ¢t = 0.1. 95% confidence intervals are less than:
(i) £0.01, (ii) £0.07.

model provides a better estimate for the processing power. We
therefore omitted the nonpersistent model in case (ii) of Fig. 4.
An important conclusion that can be drawn from Fig. 4 (and
other cases that are not included here) is that the persistent
model yields a reasonably good estimate for the processing
power of the particular systems that we have analyzed.

Finally, Fig. 4 also demonstrates that, in this specific ex-
ample, only a moderate reduction in performance is expected
when the system is allowed to continue its operation in the
presence of faults, making the support of graceful degradation
a worthwhile endeavor.

V. CONTINUOUS MODELS

Most of the previously published analytic models for mul-
tistage networks assume synchronous operation of the system.
An asynchronous system is analyzed in [2], but the analysis
there is restricted to N = 16. In this section, we present two
continuous models for studying thé degradation over time in
the performance of a multistage system un(yier’ asynchronous
operation, i.e., each processor can issue a ‘memory request
at any time, and the duration of the communication period
between the processor and the memory is of arbitrary length.
Similarly to the discrete models presented in Section III, the
first continuous model is nonpersistent assuming that a blocked
request is discarded, while the second one is a persistent
model, in which a blocked request is reissued. These models
provide lower and upper estimates for the bandwidth of the
asynchronous system, and the persistent model can be used
for estimating its processing power.

To study the behavior of the asynchronous system, a con-
tinuous stochastic process is required, and in order to make it
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Fig. 4. The processing power of a 16X 16 synchronous network as a function
of time for (i) pa = 0.2 and (ii) pa = 0.4. 95% confidence intervals are less
than: (i) £0.15, (i) £0.1.

tractable, we approximate (as we have done in Section III) the
state of the system by a one-dimensional random variable Z(t).
Z(t) denotes the number, at time £, of operational yet idle
processors, i.e., processors which are either communicating
with some memory or waiting for such a communication to
be established. Since fault rates are significantly smaller than
the rate of memory requests, Z(t) can reach a steady state for
a fixed combination of faulty and nonfaulty components. We,
therefore, omit ¢ and denote by Z the state of the system. The
steady-state probability distribution of Z still depends on t via
the probabilities of faulty components.

For Z to be a birth and death Markovian process, the
following assumptions have to be made. Each active (nonidle)
processor generates a new request after a time which is
exponentially distributed with a mean of % The duration
of each successful communication is exponentially distributed
with a mean of 71‘— We also assume (as in Section IIf) that
whenever a change in the state of the system occurs (whether
it is a generation of a new request or the termination of a com-
munication), all existing requests are randomly redistributed
among all memories, regardless of their original destination.

As in Section III, the performance measures are first calcu-
lated for a given value of R which denotes the number (at time
t) of operational processors. For a given R, Z can assume the
values 0,1,---, R, and Z = i implies that i processors are
requesting memory access while R — i are computing. Let p;
denote the “birth” rate at state Z = i (the rate of transition
from 4 to i + 1), and let v; denote the “death” rate at state
Z = i (the rate of transition from - to i — 1). The conditional
(on R) steady-state probabilities HgR) (i = 0,---,R) are
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obtained by solving the following set of equations

P - P PL L (=1, R) (B
nyz: v
and
R
anm =1. (52)

i=0
The preceding discussion applies to both continuous models.
The two models, however, have different transition rates,
which are calculated next.

The Nonpersistent Model: To find the transition rates for
this model, note that at state Z = i, all 4 idle processors
are actually communicating with some memory. Hence, the
“death” rate for the nonpersistent model, denoted by Vi{"” 13
is given by

v =i, (5.3)
For a transition from i to i-+1 to take place, an active processor
must generate a new request and this request must reach its
destination (or it would be discarded). The “birth” rate for the
nonpersistent model is therefore,

o = (R—i)- ATy (5.4

where T; is the probability that a new request will reach its
destination, given that ¢ processors are already communicating
with ¢ memories. The latter is equal to the probability that all
links on the route to the destination and the requested memory
are operational and not busy, given that ¢ memories are busy.
Combinatorial arguments yield

e[ o]
{r}

The Persistent Model: For the persistent model, the rate p;
at which a new request is generated at state Z=1tis

(5.5)

PP = (R-D)A. (5.6)

The rate ui{” } at which a communication ends, for Z = 1,
depends on the number d of requests out of i, which reach their
destination. The probability matrix D, whose (i, d) element is

D; 4 = P{d requests accepted|i requests submitted},

has been calculated in Section III, (3.6)-(3.11). The “death”
rate can be obtained from

ui{”} = ”’Z d-Digd.
d=0

.7

The rest of the analysis is again common to both continuous
models. The transition rates (from (5.3) and (5.4) for the
nonpersistent model or from (5.6) and (5.7) for the persistent
model) are now substituted into (5.1) to obtain the steady-
state probabilities HgR); (i = 0,---,R). Based on these
probabilities, the conditional processing power C(R) and the
conditional bandwidth BW(R) can be calculated. Since the
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expressions for C(R) and BW(R) are the same for both
continuous models, the superscripts {p} and {np} are omitted.

Similarly to (3.15), the (conditional) processing power is
given by

R
C(R) =Y (R—id) M

1=0

(5.8)
and thus, as in (3.16),
Y (N
c=3 (R> .p) (1 -pp)V R C(R). (59
R=0

To obtain BW(R), note that at state Z = ¢ the rate of new
arrivals is p; [p{™ from (5.4) or p{P} from (5.6)]. Since the
rate of new requests in the steady-state must be equal to the
rate of communication completions, we have

R
BW(R) =Y pi- TP (5.10)

=0

and averaging over all values of R yields

N
BW = RX_:O (],‘;) (:p) (1 = prp)" - BW(R).
_ (5.11)

VI. NUMERICAL RESULTS

In this section, we present some numerical comparisons
between the two continuous models and results of simulation
runs. Our first goal is to test whether, for the chosen examples,
the nonpersistent and persistent models provide lower and
upper estimates, respectively, for the bandwidth. In addition,
we want to investigate how close these two estimates are to
the simulation results, as a function of ¢ and the ratio between
the request rate A and the “service” rate p.

Similarly to the simulation for the synchronous model,
components were set to be faulty according to their fault
probabilities, the system was reconfigured to a smaller fully-
connected one which was then run in an asynchronous manner.
Estimates for the system bandwidth and processing power
and the corresponding 95% confidence intervals have been
calculated, and are reported in Figs. 5-7.

Fig. 5 compares the bandwidth calculated using the non-
persistent and persistent models to that obtained through
simulation, as a function of time, for a 16 x 16 system, and
for two values of the memory request rate A (i.e, A = 0.2
and A = 0.5). As before, time is measured in 1 /Ar units and
the values chosen for the other failure rates are Ap, /A, = 0.7
and Ai/A, = 0.2.

Fig. 6 depicts the bandwidth as a function of the memory
request rate A for two time instances (¢ = 0 and ¢ = 0.1). As is
evident from Figs. 5 and 6, the simulation results lie between
the two estimated values for the bandwidth, for “reasonable”
values of ¢ and . For large values of ¢t and A the simulation
results were lower than both estimated values. An important
conclusion that can be drawn from these two figures is that, for
this specific example, the upper estimate (obtained using the
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Fig. 5. Comparing the bandwidth BW(t) of a 16 x 16 asynchronous network
to its estimates using the persistent and nonpersistent models for ¢ = 1 and
@) A = 0.2 or (ii) A = 0.5. 95% confidence intervals are less than: (i) £0.05,
(ii) £0.07. (The failure rates are Am /Ar = 0.7 and \;/Ar = 0.2))
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Fig. 6. The bandwidth of a 16 x 16 asynchronous network as a function of
A for g = 1 and (i) t = 0 or (ii) t = 0.1. 95% confidence intervals are less
than: (i) £0.02, (i) £0.07.

persistent model) is closer to the results of the simulation for
small values of X and #, while the lower estimate is closer for
high values of A and t. Similar behavior has been observed
in other cases.
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Fig. 7. The processing power of a 16 x 16 asynchronous network as a
function of time for g = 1 and (i) A = 0.2 or (i)) A = 0.5. 95% confidence
intervals are less than: (i) +£0.22, (i) £0.14.

Fig. 7 compares the estimated value of the processing power
of a 16 x 16 asynchronous system to its value obtained through
simulation, as a function of time, for two values of the request
rate: (i) A = 0.2 and (i) A = 0.5. As for synchronous systems,
the nonpersistent model was found to be too optimistic; the
persistent model provides, for all the analyzed examples, a
better estimate for the processing power of the above system.
The processing power obtained using the nonpersistent model
is shown therefore, only for case (i) and is omitted in case (ii).

VII. CONCLUSIONS

The performance of multistage multiprocessor systems in
the presence of faulty components has been analyzed in this
paper. Two modes of operation have been studied, namely, the
fully synchronous mode and the asynchronous mode. For each
mode of operation we have developed two models allowing
us to calculate the bandwidth and processing power of the
multistage multiprocessor. The two models differ in the way
blocked requests are treated. In the first (nonpersistent) model,
blocked requests are discarded while in the second (persistent)
model the processors reissue their blocked requests. The two
discrete models presented in Section III generalize previous
models in which a fault-free system has been assumed to be
a system in which components may fail. The two continuous
models presented in Section V are novel ones.

The operation of 16 x 16 synchronous and asynchronous
reconfigurable systems has been simulated and the bandwidth
and processing power have been calculated. These values
were then compared to the estimated values using both the
nonpersistent and the persistent models. For all simulated
systems, the nonpersistent and persistent models provided
lower and upper estimates for the bandwidth, respectively, for
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“practical” values of ¢ and the request rate (Or probability).
Only the persistent model proved useful for estimating the
processing power of a multistage system; it provided a better
estimate than the nonpersistent model did.
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