
1

Thermal-Aware Management Techniques for
Cyber-Physical Systems

C.M. Krishna and I. Koren
Department of Electrical and Computer Engineering

University of Massachusetts, Amherst

Abstract—The power density of processors has increased
greatly over time. Since elevated temperatures greatly shorten
the lifetime of semiconductor devices, thermal management has
emerged as a key topic in the design and control of computational
platforms. In this paper, we provide a comprehensive yet compact
survey of thermal management in cyber-physical systems. Such
systems are constrained by the need to meet hard deadlines; this
distinguishes them from general-purpose systems and motivates
distinctive resource-management approaches.

I. INTRODUCTION

Elevated temperatures rapidly accelerate chip death. With
average chip temperature rising, heating-related failures are
a serious concern. Just a few degrees’ rise in temperature
can halve the mean lifetime of a chip [1]. At the same time,
high-speed processing that results in inceased temperatures is
essential for many cyber-physical applications. The question of
how to take thermal considerations into view while scheduling
the real-time workload to meet all hard deadlines is therefore
of considerable practical importance. The purpose of real-time
scheduling is to meet all task deadlines, especially those of
safety-critical tasks. A significant literature on the subject has
grown over the past four decades. Introducing thermal con-
straints expands the problem into another dimension, requiring
modification of traditional resource management algorithms.

The purpose of this paper is to provide an overview of
the resource-management approaches currently taken in this
field. While this paper is largely self-contained in its treatment
of the major topics in thermal-aware scheduling, it largely
complements two previously published surveys [2], [3]. We
focus here on the particular requirements of real-time cyber-
physical systems while [2], [3] dealt more broadly with
applications as well as aspects of chip design and heat flow
modeling.

This paper is organized as follows. In Section II, we
provide some technical background; both the impact of high
temperature on solid-state devices and the nature of cyber-
physical systems are discussed. We then turn in Section III
to the optimization criteria used in thermal-aware scheduling
and discuss how well they capture the underlying vulnerability
of devices to heating and how easy they are to compute. In
Section IV, we review ways to measure or estimate the on-
chip temperature. Since most thermal scheduling algorithms
work by considering the current on-chip temperature, it is
important that rapid, low-overhead, and accurate, temperature
measurement/estimation techniques be available. Major chal-
lenges in doing so arise from the process variation that exists

from chip to chip and also the wide variation in the thermal
impact of processes from one execution to the next (due to the
impact of input data on their execution path). In Section V,
we present the heat flow equation that is at the heart of almost
all contemporary thermal scheduling research. This is a linear
equation and the convenience of linearity is explored at some
depth. Also discussed is the issue of model granularity: how
fine-grained is the heat flow model used in practice? Thermal
control options are described in Section VI; almost all thermal
scheduling approaches consist of using one or more of these.
Given these options, Section VII covers reactive and proactive
ways of deploying them. Real-time thermal-aware scheduling
issues are covered in Section VIII and the paper concludes
with a discussion in Section IX.

II. TECHNICAL BACKGROUND

A. Cyber-Physical Workloads

A cyber-physical system (CPS) consists of two major parts:
(1) the cyber component, consisting of the controller which
runs the control algorithms to compute control inputs, and (2)
the physical component, in the form of a physical plant, which
is being controlled. A very wide variety of applications are
covered under this category: the physical plant may range in
size and scope from an implanted medical device to a system
for controlling a continent-wide power grid.

The cyber component – the controller – is in the feedback
loop of the controlled plant. There are two aspects of its
activity which affect the quality of the control it affords. One
is the response time of its tasks; the other is the quality of the
control algorithm it executes.

The response time affects feedback delay. We know from
basic control theory (and, indeed, from common sense) that
the greater the feedback delay, the worse the quality of control
tends to be. In fact, beyond a certain delay, the controlled plant
can actually become unstable. This response time is a function
of two things: the capability of the computational platform and
the intensity of its workload. Typically, control tasks are run
either periodically or sporadically. Periodic tasks are released
at regular intervals; sporadic tasks are run whenever triggered
by a human operator or the occurrence of some event in the
operating environment, under the condition that they will not
be invoked more often than a specified number of times per
unit time. Standard techniques from digital control theory are
used to determine the appropriate rate at which periodic tasks
must be dispatched.

The quality of the control algorithm can affect its complex-
ity and its robustness. As its complexity increases, so does the
intensity of the computational workload.

A key distinguishing feature of CPS applications from
general-purpose ones is that the CPS workload is usually well
characterized in advance. Whether the application is a fly-
by-wire aircraft or an implanted medical device, the set of
control tasks required is well known in advance. Each of these
tasks can be analyzed and profiled ahead of actual use in the
CPS. As a result, we have much more detailed information
as to the worst-case computational demand imposed by each
of the computational tasks in a CPS. Hence, decisions on
provisioning the cyber side to be able to meet all control task
deadlines can be made with confidence.

B. Thermally Accelerated Failure

There are several causes of thermally accelerated failures
and often, the acceleration is exponential in the temperature.
The expressions quoted here are from the well-known RAMP
model [4]. Several of them (listed below) follow the so-
called Arrhenius model, where the failure rate is exponentially
dependent on an activation energy, Ea, divided by the absolute
temperature, T .

Electromigration, as the term implies, is the physical move-
ment of metal atoms due to heating; this can cause open and
short circuits [5]. The Mean Time to Failure (MTTF) due to
this failure mode is

MTTFEM = KEMJ
−ne

Ea−EM
kT (1)

where Ea−EM is the activation energy (typically 0.9 eV for
Copper) and J is the current density. n is about 1.1 for
Copper, k is Boltzmann’s constant and KEM is a constant
of proportionality.

Stress migration is a failure due to unequal expansion of
different materials under heating. The mean time to failure
under this mode is

MTTFSM = KSM |T0 − T |−me
Ea−SM

kT (2)

where T0 is the temperature at which metal deposition was
made, Ea−SM is the activation energy (0.9 for Copper) and
m ≈ 2.5 for Copper; KSM is a constant of proportionality.

Time-Dependent Dielectric Breakdown is a breakdown of
the dielectric; as transistor gates become ever thinner, their
chances of being punched through goes up. The MTTF for
this failure mode has the expression

MTTFTDDB = KTDDBV
−(a−bT)e

X+Y/T+ZT
kT (3)

where V is the supply voltage, and a, b,X, Y, Z are constants;
KTDDB is a constant of proportionality.

Thermal cycling is due to repeated heating and cooling of
the chip. For slow cycling, the mean time to failure (due to this
mode) is inversely proportional to a power of the temperature
swing. No good models are quoted for rapid thermal cycling.

The effect of the different thermal failure modes can be
combined by adding up the rates of each of them. The rate of
failure is approximated by taking the reciprocal of the MTTF
of each mode. In other words, the total rate of failure is

approximated by λtot =
∑m
i=1 λi where λi = 1

MTTFi
and the

significant failure modes are numbered 1 to m. Reliability over
a given interval is conventionally defined as the probability that
the system suffers no failure over that interval. The reliability
over an interval [0, τ], and at a fixed temperature T , is then
approximated by RT (τ) ≈ e−λtotτ .

Note that the MTTF expressions assume a fixed temper-
ature, T . However, cyber physical systems often operate in
environments where the temperature varies. In such a case,
we can take a piecewise approach [6], dividing the time axis
into short enough segments so that the temperature can be
approximated as constant over each segment. Let Tj denote
the approximated constant temperature for segment j. The
probability of failing in segment j can be approximated as
pj = RTj

([j − 1]∆) − RTj
(j∆). The probability of failing

sometime in the first k segments is then approximated by∑k
j=1 pj ; the reliability over the interval [0, k∆] is thus

approximately 1−
∑k
i=j pj .

III. THERMAL SCHEDULING CRITERIA

The simplest – and perhaps the most widely used – thermal
scheduling criterion of all is a peak temperature constraint.
That is, the system tries to optimize some aspect of the
schedule while ensuring that the maximum temperature of the
chip does not exceed a user-specified bound. For example,
we might have a scheme whereby the processor is power-
gated when it reaches its peak temperature constraint (to keep
it from getting any hotter) and stays off until it cools to a
lower threshold. At this point, it starts up again. The problem
in such a situation is to determine schedulability tests which
ensure that a given real-time workload is completed by the
time available, despite time lost to power gating.

The peak temperature constraint, however, does not account
for the fact that thermal damage tends to be cumulative. For
example, metal atoms that migrate away from a wire when
heated do not magically migrate back into place once the
device cools. The Accumulated Thermal Impact (ATI) at any
point in time is defined as the integral of all the processor
temperatures up to that point [7]. This can be related to the
workload by calculating the ATI at an instant meaningful to
the workload. For example, if given a periodic workload, the
instant of interest might be the LCM (least common multiple)
of the task periods or some multiple thereof. Related to this
is the thermal utilization measure of a periodic task, which is
defined as its ATI multiplied by its dispatch frequency (thereby
counting the rate at which that task generates ATI) and divided
by the maximum temperature limit1. A thermal scheduling
constraint can then be introduced so that the total thermal
utilization of the entire task set will never exceed 1. The
analogy with task utilization in traditional real-time scheduling
[8] is obvious.

While ATI accounts for temperature history, it does not
account for the nonlinear impact of temperature on the damage

1In reality, the work in [7] uses a function of the actual or physical
temperature (rather than the actual temperature itself) in expressing the ATI
and temperature limit, but that is a detail for algebraic convenience and has
no conceptual implications.

2

inflicted on the chip. We have already seen (in Section II-B)
that for many failure modes, the failure rates are exponentially
accelerated by temperature. In addition, repeatedly heating and
cooling can itself cause damage. Such failure acceleration can
be directly taken into account during thermal management
[9]. The Thermal Age Acceleration Factor, (TAAF), seeks
to measure this quantity [10]. If η(t) is the age acceleration
induced at time t by heating, then

∫ τ
0
η(t)dt is the effective

age of the device at time τ . TAAF is the ratio of the effective
age to the chronological age. This does require a detailed
model of failure rate as a function of temperature; such
models applicable to the latest devices are not easy to find.
Furthermore, the above expression ignores the impact of cycles
of heating and cooling and it is not clear how one can capture
this impact effectively since it depends on the rate of heating
or cooling as well as the range of temperatures reached. One
might speculate that such a model might be created based
on the Fourier transform of the temperature curve (capturing
the rate and amplitude of temperature changes); however, we
are not aware of any experimentally well-validated model of
thermal cycling for modern deep-submicron devices. It is up to
the user to decide whether the additional information captured
by the thermal age acceleration factor is worth more than
the inaccuracies resulting from a simplified model of failure
acceleration. As things currently stand, TAAF is useful when
there is one dominant thermally-accelerated driver and when
thermal cycling between hot and cold does not play a large
role.

Thus far, we have presented criteria which solely focus
on the processor. However, an argument can be sometimes
made for considering the impact of the processor on its
surroundings. Indeed, in some cases, the concern is more
about the damage to the surrounding environment (caused by
elevated processor temperature) than to the processor. This is
justified in the case of implantable medical devices (IMDs).
IMDs are surrounded by living tissue which is highly sensitive
to being heated up. We must, therefore, balance the need for an
IMD to maintain an adequate level of computational activity
to fulfil its function while limiting (or avoiding) any thermal
damage to surrounding tissue. A measure called the real-
time thermal resiliency (RTR) has been proposed [11]. This
measure, which is along the lines of the traditional performa-
bility measure for real-time systems [12], identifies distinctive
levels of functionality (or performance) on the part of the
IMD. The thermal resiliency function, RTR(Mi, Tproc), is the
external (ambient) temperature at which the processor can
maintain its temperature at Tproc while delivering a level of
functionality associated with performance mode Mi or higher.
(For example, Mi could denote the successful execution of a
given set of real-time tasks dispatched at a specified rate.)

Each of these measures is a tradeoff between accuracy (in
capturing the extent of thermal damage) on the one hand
and complexity on the other. The peak temperature criterion
is effective when we want to prevent the temperature from
rising to such a point that failure becomes imminent. It is
simple to use; it is useful when the application does not have
long intervals during which repair/replacement is not available.
ATI is slightly more complicated, involving as it does the

integration of temperatures over time; it is accurate when
the chip temperatures are either always quite low or when
they are usually in a fairly narrow range. In both of these
cases, the thermal damage is reasonably accurately modeled
as a linear function of the temperature. TAAF is the most
complicated – and accurate – of these measures. It should be
used in conditions where chip temperatures may vary widely
with time and when accuracy of thermal damage estimates is
important (for example in applications which must function
unattended for long periods without being serviced). All of
these measures focus on the damage done to the computer
system as a result of elevated temperature. RTI must be used
when such elevated processor temperatures can cause damage
to the operating environment as well.

IV. MEASURING/ESTIMATING TEMPERATURE

There are several ways to estimate on-chip temperature. The
most direct method is to embed thermal sensors on the chip.
An indirect approach is to use performance counters (which
count the number of certain events in specified portions of the
chip) and then use a model to relate a vector of such counts
to the temperature. The third – and most indirect – approach
is to estimate the power consumption of the chip (either in the
aggregate or for various parts of the chip) and use heat flow
models. In this section, we will concentrate on the first two
approaches; heat flow models are presented in Section V.

A. Thermal Sensors

On-chip thermal sensors exploit the dependence on temper-
ature of (a) the forward resistance of a thermal diode, or (b)
the signal propagation delay. The former is used in analog
sensors; the latter in digital ones.

It is well known that the forward resistance of a diode is
dependent on temperature [13]. Thus, a small voltage can be
imposed across a diode and the resulting current measured.
Based on this, the forward resistance can be calculated and
the temperature looked up from a conversion/calibration table.
Note that the current level needs to be kept low, since any
current flow causes heating of its own and can affect the
measurements. At the same time, the current flow has to be
large enough to not be greatly affected by prevailing noise.

It is also known that signal propagation delay increases
with temperature. This can be used to measure temperature
by setting up a ring oscillator [14]. Such a circuit consists
of an odd number of diodes, connected head-to-tail, in a ring
formation. It is easy to show that such a circuit will start
oscillating, with the oscillation frequency being related to the
signal propagation delay. Thus, we can count the number of
oscillations in a given time period and then use a conversion
table to estimate the prevailing temperature.

A common problem that both types of thermal sensors
encounter is process variation. No two transistors are exactly
alike; even under the most tightly controlled manufacturing
conditions, and as a result, circuits vary in their behavior. The
trend towards ever-smaller feature sizes makes the process
variation problem worse and can easily lead to significant
measurement errors. For example, in an experiment, an actual

3

temperature of 35oC was “measured” in the range of 13o to
46oC while an actual temperature of 95oC was reported in the
range 61o to 109oC [15], [16].

Process variation effects can be countered by calibrating
individual sensors. This can be done, for example, by placing
the chip in a temperature-controlled environment and collect-
ing data for a calibration table. Recently, researchers have
suggested designing circuits which have a compensating com-
ponent making them somewhat immune to process variation
[15].

B. Counter-Based Approaches

Modern processors have several built-in performance coun-
ters. These are counters which can be tasked with recording the
number of specified events. Counter values can therefore be
used to reflect the level of processor activity [17], [18]. Since
power consumption – and therefore temperature – is linked
to such activity, we can use performance counter readings to
estimate on-chip temperature.

This approach relies on the strong correlation between
the performance counter readings, the activity levels in the
various units within the processor, and the power consumed
by these units [19], [20], [21]. This allows us to calculate
the total power consumption as a function of the performance
counter readings. Experiments are run for a large number of
benchmark workloads and the performance counters’ values
and power estimates collected. Heat flow models (see Sec-
tion V) can then estimate the temperature from the power
dissipation. Standard regression techniques are then used to
obtain a formula linking the performance counter values to the
power consumption. During runtime, counter readings can be
plugged into these formulae to estimate the temperature. Such
estimation involves just a handful of arithmetic operations
and therefore imposes little overhead during system operation.
The intermediate step of estimating the power can be skipped
allowing the temperature to be directly estimated from the
performance counters’ values [22].

C. Classification Algorithms

Classification algorithms are an increasing focus of research
interest in a variety of fields [23]. They use machine learning
techniques to associate certain features of system-related data
with certain system states. A traditional example from data an-
alytics is to associate certain biomarker readings with disease,
in expert medical diagnostic systems.

Using a classification algorithm to predict on-chip temper-
ature has been proposed in [24]. Offline models of temper-
ature are used and the real-time workload is also profiled
extensively. The thermal predictor is invoked repeatedly with
a given period. Two thermal states of a core are defined:
overheated and normal. Simulation or modeling data are used
to generate a correspondence between instances where the
core becomes overheated in the next thermal predictor period
given the current set of workload features. A Support Vector
Machines (SVM) [23] approach is used to automatically
“discover” the relationship between the workload feature set
and the current state on the one hand and becoming overheated

on the other. SVMs can then be employed to use such a offline-
discovered relationship to make predictions during regular
system operation. If a particular workload is predicted for
the core over the next thermal management period, then task
rescheduling/reassignment or other methods can be used to
mitigate the problem.

D. Neural Networks

Neural networks can be trained offline, using the predicted
workload of the system, and then used online to estimate (and
predict) core temperatures. The effectiveness of this approach
obviously depends on the choice of the input parameters on
which training is done. Note that in every instance, the set
of input parameters is just a synopsis of the thermal state
of the system; the question is one of balancing the size
of the input parameter set (and the resulting computational
complexity of the predictor) and its ability to capture the
thermal characteristics of the system.

An instance of training and then using neural networks to
predict temperature can be found in [25]. The inputs taken by
this network are the average and maximum power consumed
by a core as well as the temperatures of the neighboring cores.
There are one hidden, and one output, layer in the neural
network studied in [25], with a total of seven neurons.

E. Comparison

Of these four approaches, using sensors and counters are
the best evaluated to date. Techniques based on classification
and on neural networks are much more recent and appear to
require more validation before being used with confidence in
a wide number of applications.

The number of thermal sensors, their positioning on the chip
and the extent to which they are calibrated are all factors which
determine the usefulness of the sensor approach to estimation.
With performance counters, it is important to obtain a well-
calibrated relationship between the counter values and the
temperature at various positions on the chip.

V. HEAT FLOW EQUATION

Heat flow is typically modeled using a linear first-order
differential equation. Power that is dissipated is expressed as
heat, which contributes to increasing temperature and to heat
flow. We approximate loci of power dissipation by nodes:
these are the limits of resolution of the model. The amount of
heat energy required to increase the temperature of a node
by one degree Celsius is its thermal capacitance, C. The
rate of cooling is determined by the difference between the
temperature of a node and that of its neighbors as well as the
thermal resistance, R, between them. The ambient temperature
is usually modeled as a single node; generally, it is assumed to
be at a constant temperature, unaffected by heat flows (in other
words, the ambient is modeled as having infinite capacitance).
We have already noted that implanted medical devices are an
exception to this, where the ambient is the surrounding living
tissue.

Denoting the temperature of node i at time t as Ti(t), the
thermal resistance between nodes i and j by Ri,j , the thermal

4

capacitance of node i by Ci, and the power consumption of
node i by ωi(t), the differential equation governing the heat
flow is

ωi(t) = Ci
dTi(t)

dt
+
∑
j 6=i

Ti(t)− Tj(t)
Ri,j

(4)

The widely used Hotspot software for estimating processor
temperatures is built around this equation [26].

Two comments are in order. First, the heat flow equation is
linear. This linearity is of technical convenience, as we shall
see. Second, there is the question of how to break down a
given region of silicon into nodes to maintain model fidelity.

A. Linearity of the Heat Flow Equation

1) Accelerating the Heat Flow Solution: The linearity of
the differential equation (4) can be exploited to speed up its
solution by borrowing results from the field of linear control
systems [27]. Note that we can write this set of equations in
matrix form as follows:

C
dT(t)

dt
= DT(t) + ω(t) (5)

where C = [ci,j] such that

ci,j =

{
Ci if i = j
0 if i 6= j

D = [di,j] such that

di,j =

{
−
∑N
k=1R

−1
i,k if i = j

R−1
i,j if i 6= j

and ω(t) is the vector of power inputs to the various nodes at
time t. Using T(t) to denote the temperature vector, we can
write this expression in matrix form:

dT(t)

dt
= C−1DT(t) + C−1ω(t) (6)

which readers familiar with basic control theory will recognize
as the state equation of a linear system with state vector T(t)
and input vector ω(t).

Now, the power input is usually only specified at sampled
instants which are multiples of some sampling interval, ∆t.
The standard assumption is that the power consumption is
constant over the interval between sampling instants; if ∆t is
small, this assumption is sufficiently accurate for all practical
purposes. This corresponds to the model of a digital, linear
first-order feedback system, with zero-order control [28]. From
the theory of such systems, we can write the temperature
vector at the n−th sampling instant (i.e., time n∆t) as:

T (n) = AT (n− 1) + Bω(n− 1) (7)

where

A = e(C−1D∆t); B =

∫ ∆t

0

e(C−1D(∆t−s))C−1ds

By iteratively applying (7), we can write for any positive
integer k:

T (k) = AkT (0) +

k−1∑
i=0

Ak−i−1Bω(i) (8)

If the power inflow is constant (and denoted by ωc), we can
write an expression for the steady-state temperature vector:

Tss = (I−A)−1Bωc (9)

Exploiting the linear property of the heat flow equation signif-
icantly reduces the time complexity of the solution to the heat
flow model: the TILTS software package owes its improved
speed to this [29].

2) An Upper Bound Approximation: The linearity of heat
flow can also be used to obtain an upper bound on the
temperature of each node [30], [31]. Return to equation (6);
the temperature vector can be written in matrix form as

dT(t)

dt
= FT(t) + Gω(t) (10)

where F = C−1D and G = C−1. The solution of this system
of equations is well-known:

T(t) = eFt) T(0) +

∫ t

0

H(t− s)ω(s)ds (11)

where H(t) = e(Ft)G.
The first term is the impact over time of the initial state. The

second term is the sum of the impact of the power dissipation
(since time 0) at each node. This second term is the sum of
the contributions of each of the N nodes in the system. In
classical control theory terms, H(t) is the impulse response
matrix. That is, if τ seconds ago, there was an impulse of
value δk at node k, its impact now (at time t) at node i is
Hk,i(t − τ)δk. Integrating over all previous times yields the
impact at time t at node i of the power consumed over the
past at node k. Since the system is linear, the contribution of
each of the neighbors is added to its own to find the aggregate
contribution to the temperature at node k.

To find an upper bound, suppose Hmax
k,i is the maximum

value of Hk,i(t) for all t. Let ωmax
i denote the maximum

power consumed by node i. Then, the maximum contribution
of node k to the temperature of node i is upper-bounded
by Hmax

k,i ω
max
k . Denote by ωmax and Hmax the vector of

maximum powers and the matrix of the maximum impulse
terms, respectively. It then follows that the temperature vector
is upper-bounded by

Tmax = e(Ft)T(0) + Hmaxωmax (12)

The tightness of this upper bound will obviously depend on
the power consumption curves. The upper bound has been
calculated for each node i on the assumption that every other
node’s power consumption is timed precisely to heat up node i
to the maximum extent. Such power consumption is obviously
linked to the activity in each of the nodes, i.e., to the workload
in each node; when this is done, we can come up with worst-
case workload traces which can be simulated to yield the
worst-case temperature at each node [30].

3) Additive Effects of Individual Tasks: The linearity of
the heat-flow equation allows us to separately calculate the
temperature impact of individual tasks and then add them up.
This can often simplify analysis and reasoning considerably.
Since the composition of two linear functions is itself a linear
function, this benefit also carries over to any performance

5

measure which can be expressed as a linear function of the
temperature.

As an example, consider the Accumulated Thermal Impact
(ATI) measure mentioned in Section III. Let us consider a
coarse-granularity model, where the entire processor core is
modeled by a single node [7]. Denote by ATIi,si(t) the ATI
of an individual iteration of periodic task i being run at speed
si; its period is denoted by Pi. Since an individual iteration
is finite and its temperature impact decays exponentially with
time, this quantity has a limit, ATIi,si(∞). If there are n
tasks in the system (numbered 0 to n − 1), then linearity
can be exploited to show that

∑n−1
i=0 ATIi,si(∞)/Pi is a

lower bound on the maximum temperature of the processor2.
Note that since linearity allows us to separately add up
the contributions of the individual tasks for the ATI limit,
ATItot(∞) =

∑n−1
i=0 ATIi,si(∞) is not dependent on the ac-

tual task schedule (i.e., on when each task is run). Furthermore,
since the ATI of a task is obviously directly related to its total
energy consumption, we can show (again invoking the linearity
of the heat flow equation) that any selection of task execution
speeds si which minimizes the total energy consumption of
the task set also minimizes ATItot(∞). Thus, the entire set of
dynamic voltage and frequency scaling techniques (described
later in Section VI-C). used to minimize energy consumption
also automatically minimizes ATItot(∞).

B. Model Granularity

In the above discussion, we have treated the nodes as
abstract entities, consuming a certain amount of power (which
may be zero in the case of passive elements like heat sinks),
having a given thermal capacitance and whose thermal linkage
to other nodes is modeled by thermal resistance. The question
of how large a silicon area should constitute a node is not
clear. To a large extent, it depends on the input information
available about the workload. If this information is limited to
the total power consumption at each core, then we have no
means to divide it down among its various functional units,
and have to treat the entire core as a single node.

A more nuanced picture emerges when we are given the
workload. The workload can be run through an architecture
simulator (such as GEM5 [32]) and the activity of each of its
components (functional units, buffers) recorded. The power
consumption caused by such activity can be estimated by a
software tool (such as McPat [33].) This allows for a finer-
grained representation of activity in the core and allows us to
model temperature variations inside the core, information that
would be lost if we treated the entire core as a single node.
This approach is taken in, for example, [22], [34]. A wide
variation in temperatures between subunits is observed when
fine-grained temperature models are used.

Most of the research published so far in thermal-aware
scheduling uses a coarse-granularity model, with a core being
modeled by a single node. The system of differential equations

2We assume here that each iteration of the same task i is run at clock speed
si. The adjustment required when this is not true and different iterations of
the same task are run at differing speeds is rather straightforward and left to
the reader.

governing heat flow reduces, then, to a single equation and
analysis is greatly simplified. Rather than dealing with the
vector representing power consumption at each of the various
units in the processor core, we only work with a scalar function
of the power consumption at the entire processor. Further
simplification is possible, and conclusions are often drawn,
assuming steady power consumption over time.

Two questions must be addressed when considering the
impact of model granularity:
• How valid is the single node assumption, i.e., are tem-

peratures, in practice, really more or less uniform across
a chip?

• If temperatures are not, in fact, spatially uniform, then
how does this deviation from uniformity affect the mod-
eled impact of thermal scheduling techniques using the
various optimization criteria described in Section III?

In practice, as chip temperature maps show, on-chip tem-
peratures vary considerably from one location to another.
Typically, caches are among the coldest units of all; while
they may consume a considerable amount of energy in the
aggregate, this energy is typically dissipated over so wide an
area that the cache energy density is very low. At the other
end of the range are the integer and floating-point registers
and functional units; these are typically among the hottest
elements. Of course, all this depends on the workload; for
instance, workloads heavily dominated by integer operations
will leave floating-point registers cold.

We now turn to the second question, i.e., how using the
coarse-grained model affects our evaluation of the thermal
management techniques.

If the goal is to keep the maximum temperature below a
given limit, then modeling the entire chip as a single node
will result in inaccuracies, since the peak average temperature
is likely (as mentioned above) to be very different from the
peak spot temperatures. Performance numbers and conclusions
drawn from techniques using the peak temperature as the
optimization criterion must therefore be treated with caution
when evaluated with a coarse-granularity model.

If the criterion is ATI, then coarse-granularity models will
provide quite accurate results. The reason is that the heat
capacity (modeled as thermal capacitance) of the entire chip is
the sum of the heat capacities of the individual subunits. The
total energy consumed is the sum of the energy consumed
at the individual subunits. From this and the linearity of the
heat flow equation, we can conclude that the ATI value will
be accurately estimated by modeling in the aggregate (which
is what the coarse-grained model does). Furthermore, due to
linearity, the contribution of each task to ATI can be added up
after being assessed separately as a function of its dynamic
power consumption (recall that static power consumption is a
function of temperature and is folded into the heat-flow differ-
ential equation), its period, and its execution time. Thus, a task
which has period τP , average dynamic power consumption
ωdyn, and execution time (per iteration) of e, will contribute
Kωdyne/τP , where K is a constant of proportionality. Note
that we can easily model multicore systems using the same
approach: the only difference will be that the impact of power
dissipation at core i on the temperature at core j has to be

6

modeled for each (i, j) pair. This is captured by deriving
pairwise constants of proportionality, Ki,j [35].

If the criterion is TAAF, then coarse-grained models will
likely not give accurate estimates. The reason is that TAAF
is a nonlinear function of temperature. As noted in Section
II-B, many failure modes follow the Arrhenius model and are
exponentially accelerated with temperature. The average chip-
wide temperature underestimates the temperature of some re-
gions while overestimating that of others. The improvements in
TAAF from having a region cooler by ∆T o C are outweighed
by degradations from having an equivalent area hotter by ∆T o

C; the greater the value of ∆T , the more the deviation from
the average TAAF. Note that the extent to which this happens
depends on the activation energy, Ea.

If the criterion is RTR, then coarse-grained models should
be sufficient, so long as the heat spreader is efficient enough
that the unit presents a uniform temperature to the surrounding
environment. Recall that the principal concern underlying
the use of RTR is the impact of processor heating on its
surroundings.

The granularity of the thermal model also affects the esti-
mated thermal time constant: this is analogous to the RC time
constant in electrical circuits. The thermal time constant is an
indication of how rapidly the temperature of the node rises
in response to power dissipation. If a coarse-grained model is
used, the high value of the thermal capacitance usually leads
to the thermal time constant being in the order of milliseconds,
if not higher. However, thermally induced damage occurs as a
result of localized heating for which one can expect the time
constant to be much lower. The point behind this remark is that
designers should not take too much comfort from large nodal
thermal time constants; these are likely to be an artefact of the
model granularity rather than representing low-level physical
impact on the chip.

VI. THERMAL CONTROL OPTIONS

A. The Heat Flow Equation Revisited

In the preceding discussion, we assumed that the power
consumption is known; the implicit assumption is that it is
largely independent of temperature. However, power consists
of a dynamic and a leakage component. While the leakage
power is typically modeled as an exponentially increasing
function of temperature, it has been shown that for the range
of typical temperatures, leakage power can be modeled quite
accurately as increasing linearly with temperature [36], i.e.,
the leakage power at node i whose temperature at time t is
Ti(t), is given by αTi(t) + ρ for some constants α and ρ.
Such a linear approximation allows us to quite easily fold
the leakage power into the heat-flow differential equation
by writing ui(t) = ωdyni (t) + αTi(t) + ρ and making the
obvious adjustments, where ωdyni (t) is the dynamic power
consumption caused by circuit switching [30]. This latter term
now becomes the independent term in the differential equa-
tion; it can be controlled by scheduling tasks and processing
resources. Over the rest of this section, we will assume that an
entire processor core is modeled as an isolated, single node in

our thermal model. The power and temperature vectors thus
degenerate to scalars.

To see that the independent term can be controlled by
scheduling, consider what makes up the dynamic power con-
sumption. It is the power dissipated as a result of circuit
switching and is proportional to the product of (a) the amount
of activity in a cycle, expressed by the number of switches
taking place in the same cycle, (b) the frequency of switching,
and (c) the energy consumed per switch. This last quantity is
proportional to the square of the supply voltage. Now, the
maximum switching frequency can be roughly modeled as
linearly rising with supply voltage (within acceptable voltage
bounds). (This assumes that we are running the clock at
its voltage-determined limit; it is easy enough to suitably
modify the equation if we are not.) Putting all this together,
the dynamic power is expressed as a cubic function of the
switching frequency and linear in the number of switches in
the same cycle. Denote the activity factor by a(t); that is,
ωdyni (t) = Ka(t)f3(t) where f(t) is the clock frequency at
time t [37]. If we know the constant of proportionality, K,
we can plug this back into the heat flow differential equation
to obtain the dependence of the temperature on the activity
of the circuit, its switching frequency, and the circuit leakage
parameters. The total power consumption is therefore given
by P (t) = αT (t) + ρ+Ka(t)f3(t).

We can now write the temperature differential equation as
follows:

C
dT (t)

dt
= −T (t)− Tamb

R
+ P (t) (13)

where Tamb is the ambient temperature, and R,C are the
thermal resistance and capacitance, respectively, associated
with the processor.

What is the relationship between the activity factor a(t) and
the amount of useful work done? In the simplest processors,
it is roughly linear. However, modern processors employ a
large number of tricks to speed up execution; most of these
involve speculative execution [38]. Examples include branch
prediction and out-of-order execution of instructions. In such
a case, a certain portion of the activity is being carried out in
the hope that it will be useful based on a guess by the system
as to the correct execution path. Modern processors owe much
of their speed to being able to guess at a high success rate.
However, the more aggressive the speculation and the deeper
the processor pipeline, the lower the guess success rate tends to
be. For simplicity, in our discussions below, we will assume
that the useful work is linearly related to the activity level;
the reader should, however, always keep in mind that this is
an approximation. The actual relationship is a function of the
processor architecture, the quality of the compiler, and the
application software being run.

B. Power Gating

Power gating is one of the simplest thermal control schemes.
It requires only that we can turn the processor on and off.
That is, we run the system at a certain frequency for a certain
amount of time, then turn it off to cool down before turning
it on again. Consider a setup where we turn on the processor

7

(at some given frequency) when it reaches a temperature of
T0, run it until it heats up to temperature T1, switch it off
(meaning its power consumption goes to zero) until it cools
back to T0, and continue this cycle indefinitely. Suppose we
have a roughly constant activity factor, i.e., a(t) ≡ a0 and
a constant frequency, f . We can now solve the differential
equation (13) to find the duration for which the system can
be kept on, denoted by τon. Then, power is turned off and the
processor is allowed to cool back to T0: the period for which
it is off is denoted by τoff .

Solving (13), we obtain the on and off times. For notational
convenience, define T∞ = Tamb+(ρ+Kaf3)R

1−αR and ξ = 1−αR
RC .

T∞ is the steady-state temperature if we never switched off
the processor. We can then write:

τon =

{
−(1/ξ) ln

(
T∞−T1

T∞−T0

)
if T1 ≤ T∞

∞ otherwise
(14)

τoff =

{
−RC ln

(
T0−Tamb

T1−Tamb

)
if Tamb < T0 < T1

0 otherwise
(15)

Gating is not free: there is a certain time consumed by it while
the processor is active but not doing any useful work. Let the
time for each switch be τgate (assume that the turn-on and
turn-off times are roughly the same). Then, for each cycle of
duration τon + τoff , the system is able to spend τon − 2τgate
on doing useful work.

Figure 1 shows the impact of selecting T0 and T1. As T0 gets
closer to Tamb, the off-interval τoff increases exponentially;
similarly as T1 approaches T∞, the on-interval τon increases
exponentially. Note, however, that increasing either T0 or
T1 results in greater thermal damage. Both trends together
contribute to the duty cycle, which is the ratio of the on time
to the sum of on and off times.

One variation of this approach notes that the leakage is a
function not only of temperature but also of supply voltage
[39]. Since supply voltage is linked to the maximum clock
frequency, we can quite easily fold this parameter also into
our main heat flow equation.

C. Dynamic Voltage and Frequency Scaling

Dynamic Voltage and Frequency Scaling (DVFS) uses the
relationships mentioned above. If we have the technical ca-
pability to switch supply voltages and clock frequencies, then
we can tune the performance of the system to minimize the
energy consumed while still meeting task deadlines.

The question is whether, in a multicore system, we have
the ability to carry out DVFS independently in each core or
whether the scaling can only be done chip-wide (meaning that
each core on the chip runs at the same voltage and clock
frequency). Obviously, supporting the former capability adds
complexity to the chip; such capability is not always available.
Having to run all cores at the same voltage/frequency combi-
nation reduces our flexibility considerably, since we have to
run the overall clock at a frequency that ensures that every
core meets its workload hard deadlines.

If we use DVFS, the frequency is a parameter that can
be controlled to change the thermal behavior of the system

and the speed of processing. The activity factor, a(t), depends
on how the processor architecture interacts with the workload
[37], [39]. For example, if we use a very simple linear pipeline
issuing at most one instruction per cycle and not capable of any
Instruction Level Parallelism (ILP), then a(t) is controlled by
the workload. Controlling a(t) is then a matter of deciding, by
scheduling, the tasks running at any given time. On the other
hand, if we use high-end modern processor cores, we have
multiple instructions (potentially) being fetched, executed, and
retired, per clock cycle. Controlling the level of ILP by, for
example, limiting the number of instructions fetched per cycle,
gives us another means to control the activity factor, a(t).

A complementary approach to DVFS has been recently
studied [34]. The idea behind this is that the activity factor
varies with time, even for the same task. Many applications
have distinct phases of execution with widely varying levels
of ILP [37], [40]. If we have a total amount of schedule
slack that we can “spend” by slowing down the processor,
we get better savings in energy (and in temperature) by
preferentially slowing down the high-activity regions of code.
A very simple calculation suffices to show what improvements
might be possible, at least to a first order. For example, suppose
slowing down reduces power consumption by a factor αp and
increases execution time by a factor of αe. (That is, the ratio
of the decreased to original power consumption is αp and
the ratio of increased to original execution time is αe.) Let
the runtime of the task at high voltage be τ , of which τh
is in a high-activity region and τ` = τ − τh is the rest.
Let ωh, ω` be the average power consumed at high voltage
in the high-activity and low-activity regions, respectively; the
average power consumption is ωav = (τ`ω` + τhωh)/τ . Each
second that we devote to slowing down the high-activity region
saves us energy ωh(1 − αpαe); while applying it at random
saves us just ωav(1−αpαe), on the average. (Note that since
power consumption drops much faster than the execution time
increases with voltage scaling, αpαe < 1.) If ωh/ωav is large,
there are considerable savings to be had from focusing our
slowdown efforts on the high-activity region (assuming that
τh is large enough to make a difference).

Implementing such a policy requires advance profiling of
each task, to determine its high-activity regions. Such param-
eters as the rate at which instructions are retired can be used
to detect when a program is in its high-activity region. The
effectiveness of this approach will depend on how repeatable
the task characteristics are: clearly, if the high-activity fraction
varies significantly from one iteration of the task to the
next (due, for example, to changes in input parameters), this
technique will not work well.

D. Architecture Adaptation

Modern pipelines are complex and use multiple techniques
to increase the number of instructions that can be executed in
parallel. Such techniques increase the amount of activity on
the chip and consequently, the power consumption.

Adapting the architecture, by limiting the fetch rate or by
switching off components of the core, allows us to control the
power consumption at the cost of increased execution time.

8

T0=350K

T0=320K

T0=340K

d
u

ty
 c

yc
le

T1

 0.3

 0.9

 1

 330 340 350 360 370

 0.7

 0.6

 0.5

 0.4

 0.8

T0=320K

T1

O
n

 I
n

te
r
v
a

l

T0=340K

T0=350K
 0

 1.2

 1.4

 1.6

 1.8

 330 340 350 360 370

 0.8

 0.6

 0.4

 0.2

 1

T0=350KT0=340K

T0=320KO
ff

 I
n

te
rv

a
l

T1

 0.1

 350 360 370 330

 0.4

 0.3

 0.2

 340

Fig. 1. Power Gating: Impact of T0 and T1 Selection (Tamb = 300K, ρ = 0.1;K = 10E − 6; a = 1; f =1 GHz; R = 0.36;C = 0.8;α = 0.001)

This has been studied, for example, in [41], [42]. Various
approaches can be taken to adapt the activity:
• Fetch Unit: The number of instructions fetched per cycle

can be varied. Furthermore, we might alternate idle cycles
between consecutive fetches, for example, we might idle
the fetch unit for one or two cycles after every active
fetch cycle.

• Buffers: Processors typically contain multiple buffers. By
reducing the number of available (to the processor) entries
in such buffers, we can reduce the level of activity. For
example, the reorder buffer size can be varied: the size
of the reorder buffer limits the number of instructions
in flight at any given time. We can also change the
size of the load-store queue; this reduces the number of
load/store operations that can be supported and throttles
back the processing rate.

• Functional Units: There are typically multiple integer and
floating-point functional units available. By turning off
some of them, we can reduce the rate at which arithmetic
and logical operations are carried out.

The more complex the pipeline, the more options are available
for architecture adaptation. So long as control capability exists
to carry out such adaptation, we can do so with minimal over-
head and no complicated additional software requirements.

Architecture adaptation can be carried out in a focused
manner. That is, individual programs can be profiled and a
cost/benefit analysis can be carried out as to the appropriate
level of speculative execution that returns good results (and
beyond which processor activity is largely wasted). Such a
profiling action can be used to adapt the architecture keeping
the task in mind; for different tasks, different adaptations may
yield the best cost/benefit ratio. For some case studies, see
[41], [42].

E. Greedy Slack Deployment

If we have a purely periodic task set with some slack
available in the schedule, one approach is to deploy the slack
so that some target temperature is maintained. One way to
do this is presented in [37]. Recall from Section V-A3 that a
lower bound of the temperature in a periodic task set running
on a uniprocessor is given by

∑n−1
i=0

ATIi,si (∞)

Pi
. We can set

that up as a target temperature. So long as there is slack in the
schedule (with respect to each task), we have the freedom to
schedule any task without risk of missing a deadline. Once the
slack of some task has been reduced to 0, we are constrained

in which task we can execute. Different tasks have different
activity levels, i.e., they differ in the amount of heating they
cause. If we have information about the estimated activity level
of each task (this can be obtained – to some level of accuracy
– by profiling the task on the family of anticipated input sets),
we can use such information to keep the temperature close to
the target without missing deadlines. One heuristic for this is
to do the following [37]:
• If each task has slack available (at least equal to the du-

ration between successive invocations of the scheduler),
then greedily pick whichever task (or none) will keep
the temperature of the core closest to the target until the
scheduler is invoked again (likely as a periodic task in its
own right).

• If one or more tasks has no slack available, then use
the traditional Earliest Deadine First (EDF) algorithm to
schedule processor activity.

Typically, there is a considerable amount of slack in the
schedule of cyber-physical systems. There are two reasons for
this. First, we do not often schedule tasks to fully utilize the
available capacity. (For example, some reserve is often kept to
provide time redundancy against transient failures or to permit
the processor to assume some of the workload previously
assigned to a failed processor [43].) Second, tasks usually
run to much less than their worst-case execution times, and
an early-finishing task releases slack into the schedule (with
respect to tasks with lower priority than itself).

F. Task Assignment Using Complementary Tasks

In a multicore system, tasks can be assigned based (in part)
on their thermal characteristics. At a coarse granularity, tasks
may be classified as “hot” or “cold,” and each core might be
assigned a roughly balanced mix of hot and cold tasks. When
scheduling, we can try to interleave hot and cold tasks, under
the constraint that all hard deadlines must continue to be met.

A finer-granularity, and evocatively named, “Heat-and-
Run,” approach has also been suggested (albeit in a non-
CPS context) [44]. This uses the fact that heat flow on a
chip is typically much more efficient in the vertical direction
(i.e., through the heat sink) than in the horizontal (to a
neighboring part of the silicon). If we group tasks so that they
exercise different parts of the chip (e.g., one task in the group
intensively uses the floating-point registers and functional units
while another restricts itself mostly to using the integer side),
then complementary areas of the chip are heated up. Then, we
can assign such task groups to an individual core, allow the

9

core to heat up in response to the load, and then “run,” i.e.,
migrate the entire task group to another core while the first
one cools down.

G. Task Assignment Using Quotas: 3D Chips

As technology advances, 3D chips are likely to become
more prevalent. These consist of cores stacked one above the
other in layers. (2D VLSI is already multilayered; here, we
refer to layers of cores, each of which is itself constructed
out of multiple metal and other layers.) This changes the heat
flow pattern between cores. In a 2D arrangement, while there
is obviously heat flow from one core to another, the dominant
heat flow is from a core to the heat sink. In a 3D arrangement,
where cores are stacked one atop another, the dominant heat
flow is still through the heat sink; however, heat from a core
far away from the heat sink will have to flow through other
cores to get there. There is, therefore, much greater thermal
coupling between cores in a 3D arrangement than there is in
2D.

Consider, for example, an arrangement where we have a 4-
layer system. If the heat sink is at the bottom, then the heat
generated by the top layer cores is mostly dissipated through
the 3 cores below them to the heat sink (while there is some
heat flow in other directions as well, we are focusing here
on the dominant component). In such a case the “ambient”
temperature as seen by a core is the temperature of the core
directly below it.

Any task assignment on a 3D system must therefore take
into account the vertical position of each core. One way of
doing this is the idea of thermal size [45]. In what follows we
will follow [45] in assuming a single heat sink at the bottom
which governs the dominant heat flow. The thermal size of
a node is the difference between its steady-state temperature
and that of the core below it (or the heat sink if this is a
bottom-layer core). The thermal-size approach consists of (a)
assigning a thermal size quota to each layer, and (b) assigning
workload to each core based on its thermal size.

Denote by rj,j−1 the thermal resistance between a layer j
core and the core below it (or the heat sink if this is the bottom
layer). (We count layers from the bottom up: the bottom layer
is layer 1 and the heat sink is layer 0.) The resistance on
the dominant heat flow path from a core in layer i is therefore
given by Ri =

∑i
j=1 rj,j−1. Assume we are given a maximum

thermal size for the entire stack, ψstack; this is the sum of the
thermal sizes of each layer in the stack: ψstack =

∑`
j=1 ψj

where there are ` layers in all. Several ways of assigning
thermal size now suggest themselves:

• Average Assignment: Assign each layer an equal thermal
size:

ψi = ψstack/`, ∀i = 1, · · · , `

• Balanced Assignment: Make an assignment by consider-
ing the resistance of the path from each core to the heat
sink:

ψi = ψstack
Ri

R1 + · · ·+R`
, ∀i = 1, · · · , `

• Proportional Assignment: Assign by considering the ther-
mal conductances of the path from each core to the heat
sink:

ψi = ψstack
R−1
i

R−1
1 + · · ·+R−1

`

, ∀i = 1, · · · , `

A task assignment can then be done by considering the peak
power, πi of each task i and considering its consumption of
thermal size at layer j to be πiRj . (Note that if the core-
to-heat-sink heat flow path is dominant, this quantity is the
peak steady-state temperature caused by consuming πi watts
of power at a layer-j core.) We must ensure that the total
thermal size consumption of all the tasks assigned to each core
does not exceed its assigned quota, based on the assignment
approaches mentioned above.

H. Task Migration

Task migration is an obvious way to control the loading on
a core. It can be used either by itself or in conjunction with
other approaches.

We have already encountered task migration in Heat-and-
Run. There are two types of task migration: migration of a
task before it starts execution, and migration of a partially
completed task.

Migration of a task before it starts executing simply consists
of moving the task executable to the target core and inserting
it into the appropriate task queue. Before a task is migrated,
we have to ensure that it does not overload the target core and
lead to hard deadlines being missed. Standard techniques from
real-time scheduling theory can be used for this purpose [46].

Migrating partially executed tasks requires the state of the
task to be migrated. Depending on the size of that state and the
on-chip bandwidth, this may or may not be expensive. Also,
if virtual memory is used, this involves the movement of page
tables.

The cost of migration depends on the structure of the
system. For example, if we have multiple cores sharing a
lower-level cache, then moving a task may not take much time.
On the other hand, if we have a loosely coupled system with
independent caches, moving the task can lead to significant
delays and may not be worth the effort.

Deciding when to trigger a move is usually made based on
a simple heuristic. (Note that in a real-time system, we always
need to verify that the migration does not cause any critical
task to miss its deadline.) For example, in [47], a temperature
threshold, Tlim, for each core is prespecified along with a
parameter ξ. The task migration code is invoked periodically;
if the temperature is judged to fall, over the subsequent period,
in the range [Tlim − ξ, Tlim], then migration is triggered. In
[25], there are two procedures suggested. In the first, the
steady-state temperature of each core is computed based on
its power consumption. When neighboring cores differ in
such temperature by more than a threshold, workload can
be swapped between them, with the hotter core exchanging a
hotter (i.e., more power-consuming) task for a cooler one. The
second procedure in [25] uses current or predicted tempera-
tures instead of steady-state ones; this allows one to capture the

10

transient effects of a varying workload. A two-phase process
is carried out to find the best hotter/cooler task pair to swap
between a hotter and a cooler core.

It is possible to adaptively adjust the temperature threshold
at which migration is triggered [48]. The system can increase
the threshold if migrations are too frequent; it can relax the
threshold back down if this is no longer the case.

In [49], cores that are warmer than their immediate neigh-
bors consider exchanging tasks with them. The aim is to carry
out an exchange that results in the new arrangement delivering
a lower temperature. Note that the same task can be involved
in multiple migrations, i.e., a task which was exchanged from
core 1 to core 2 can then be moved on in an exchange from
core 2 to core 3, and so on.

In general, picking a target core to migrate to is also usually
done using a heuristic. The obvious approach is to migrate to
the coldest core which has the spare capacity to assume this
additional workload. However, this may not always be the best
target, since it may be physically close to warm cores which
may be heated up as a result. We might, instead, pick a target
core which (given the activity in its surroundings) will take
the longest time to get heated up [48].

I. Evaluation

The thermal management technique selected depends on
the circumstances. Power gating is easy to implement: it
requires only a temperature monitor. However, the on and off
temperatures have to be selected carefully, keeping the needs
of the application in mind: we have to effectively balance
the available processor utilization against the thermal damage
that is allowed. Also, simple power gating can result in rapid
temperature swings, which can elevate the failure rate. One
great advantage of power gating is that it is orthogonal to the
other approaches. When feasible, power gating can be used
as a backup safety mechanism, simply to prevent excessive
heating, relying on other (more sophisticated) techniques to
reduce thermal damage.

Voltage scaling requires us to have multiple voltage levels
available. As technology advances, the maximum supply volt-
age decreases. The reduces the range of voltages available;
as this happens, the scope for voltage scaling will naturally
decrease. Further, if task ILP is to be used in managing voltage
scaling, these tasks need to be profiled, either in advance or
during execution.

Architecture adaptation can be used in combination with the
other approaches. However, it requires low-level control of the
architecture. Also, it is only applicable when the pipeline is
complex enough that there are multiple configurations offering
a sufficiently wide range of performance/thermal options.

Greedy slack deployment and complementary tasks are
based on the same idea: separate high-heat intervals by low-
heat intervals. Both require advance profiling of tasks. Further,
complementary tasks may not always be available from among
the set of ready tasks.

Task migration is theoretically appealing but requires a
system architecture which facilitates migration. In many in-
stances, migration imposes considerable overheads in aligning

the process state appropriately. In a 3D architecture, migra-
tion may be combined with quotas. Quotas require extensive
advance profiling when used alone; however (at least theoret-
ically) a learning approach which learns task characteristics
amy be used instead. An initial assignment can be adjusted
with task migration as better information is obtained about
task characteristics.

VII. PROACTIVE AND REACTIVE MANAGEMENT
APPROACHES

The various thermal control options can be applied either in
a reactive or proactive way. Reactive means that we monitor
the temperature and react when it gets too high. Proactive
means that we try to prevent the core temperature from rising
too much in the first place. A purely proactive scheme, which
has no reactive component at all (and operating as an open-
loop system), will need to use highly conservative assumptions
as to the impact of execution on temperature. For this reason,
to be efficient, it is likely that proactive schemes will need to
have some component that is reactive, i.e., involve feedback.
To that extent, the term proactive as used to describe thermal
scheduling algorithms is somewhat misleading.

A. Proactive Management: Speed Selection

Perhaps the simplest proactive approach of all is to calculate
if a given task schedule will breach thermal limits on any core,
and if so, try to adjust the schedule to meet thermal constraints.

The key question is at what frequency-and-voltage combina-
tion we can run a core (without stopping) without overheating
it. We shall concentrate here on the single-core case. Returning
to Equation (13) and setting the differential dT (t)

dt = 0, we
get the steady-state temperature: Tss = Tamb + PssR. Here,
we assume a constant power consumption Pss, at steady-
state frequency fss and activity factor ass. Since Pss =
αTss + ρ+Kassf

3
ss, we have the result

fss =

(
Tss(1− α)− Tamb − ρ

Kass

)1/3

(16)

If the activity factor is variable, then we can use its upper
bound in place of ass in the above expression to get a safe
frequency at which to run the processor.

B. Reactive Management: Using Feedback Control

Feedback control theory can be used to determine the
workload that can be executed under the constraint that the
processor temperature should be mostly at, or below, a target
value.

Much of the theory of feedback control is devoted to
calculating input values to ensure that a given controlled plant
follows a specified state trajectory with little error [50], [51].

For our purposes, the state is the temperature, and one
aim might be to keep the processor temperature as steady as
possible, at a relatively safe level. The control input is the
power consumption. A discussion of the control techniques
used to calculate the optimal input to minimize the tracking
error of a feedback control system is outside the scope of this

11

paper; over the past several decades, researchers have built up
a formidable array of techniques to do this: these are described
in any book covering optimal control theory, e.g., [50], [51].

Unlike in traditional control theory, we do not really have
freedom in selecting the control inputs. The power consump-
tion depends on the task being executed. The principal means
we have of controlling power consumption are (a) Dynamic
Voltage and Frequency Scaling (DVFS) and (b) duty cycling.
Earlier, we saw how DVFS would work. If DVFS is not
available, duty cycling can be used. In this approach, the
processor is active for only a fraction of the time. For example,
we can keep the processor active only for τa seconds during
each period of τp seconds, for a duty cycle of τa/τp. We
can control the average power consumption by adjusting the
duty cycle. Given that the thermal time constant of a chip is
in the order of milliseconds, that may be all that is required
for thermal purposes so long as τp is kept small. (Keep in
mind, however, that there is an overhead associated with duty
cycling; the smaller the value of τp, the greater the fraction of
time spent turning activity on and off.)

Given a set of prescribed performance levels (recall the
modes described in Section III), we can then link the per-
formance level possible for each average power consumption.
A design framework built on this principle is described in [11].

Another control-theoretic approach involves using processor
utilization as the control [52]. Two controllers are used: a
thermal controller and a utilization controller. The thermal
controller assesses the current temperature and adjusts the
target core utilization to prevent overheating. Since the thermal
time constant of the chip (the implicit assumption here is
that the entire core is modeled as a single node in a coarse-
grained thermal model) is large, the claim is that this controller
only needs to update its utilization targets at a relatively low
frequency. The utilization controller has the job of tracking
the target core utilization set by the thermal controller. It
is responsible for dispatching tasks for execution. Note that
one can incorporate DVFS into the inner loop quite easily by
redefining utilization to be the number of useful computational
cycles delivered in a unit interval. Traditional control-theoretic
approaches can be used to select the appropriate rate at which
each of the two controllers must be run. Note also that
one can extend this approach to a more fine-grained thermal
model. For example, if we have temperature readings from
individual parts of a core (e.g., integer and floating-point
register files, functional units), we can use the maximum of
these temperatures as the parameter to be kept below some
limit and set the utilization appropriately. This is a core-
by-core control mechanism; when the entire computational
workload is running on multiple cores, we will need to assign
and reassign tasks based on the target utilization of each core.
Furthermore, in a multicore setup, we will need to account for
thermal interactions between neighboring cores.

VIII. EVALUATING AND ENSURING SCHEDULABILITY

Schedulability checks are a vital part of cyber-physical
systems. We need to be sure that the computational platform is
capable of executing the critical workload required to provide

commands to the controlled plant actuators in a timely and
correct fashion. In this section, we consider how thermal con-
siderations impact such schedulability checks. Before doing
so, we provide a brief description of how schedulability checks
are done in traditional real-time systems (without thermal
considerations).

We will focus on uniprocessor scheduling of a set of peri-
odic and independent tasks, each of whose relative deadline
equals the task period. That is, a given iteration of a task has to
be completed before the next iteration of the same task arrives.
A few remarks are provided later on about how to deal with
multiple-core platforms and interacting tasks.

For simplicity, assume that we are running at a fixed
frequency, f . Denote by µ(τ) the minimum amount of service
(measured in computational cycles or execution time at a
standard frequency) provided by the computational platform
over an interval of time, τ .

Now, consider the demand induced by the workload as-
suming a set of independent and periodic tasks. There are
two standard uniprocessor scheduling algorithms used in real-
time systems: the Rate Monotonic (RM) and the Earliest
Deadline First (EDF) algorithms [53], [8]. In RM, a periodic
task’s priority is inversely related to its period, i.e., the
smaller its period, the greater its priority. In EDF, a task’s
priority is related to the closeness of its absolute deadline: the
closer a task’s deadline is to expiring, the greater its priority.
Hence, in RM, we will always pick for execution the lowest-
period task in the ready queue. In EDF, we will pick the
earliest-deadline task in the ready queue. Tasks are preempted
whenever a higher-priority task arrives; we follow scheduling-
theory tradition here by assuming that such preemption costs
are negligible. Now, there are exceptions and work-arounds
for regions where tasks cannot be preempted: these consist of
calculating the maximum time for which a lower-priority task
can block a higher-priority task (for an example of recent work
in this area, see [54]). Other recent work in scheduling for
real-time includes limited preemptive scheduling [55], mixed
criticality systems [56], federated scheduling approaches [57],
varying period approaches [58] and parallel scheduling [59]. In
all these cases, the scheduling algorithm picks which task is to
be executed on each processor or core. The number of compu-
tational cycles that can be delivered by each processor depends
on the thermal control mechanisms employed. Schedulability
checks consist of evaluating whether the number of cycles
delivered is sufficient to meet task deadlines given the priority
structure imposed by the scheduling algorithm.

For concreteness, let us focus on the most commonly used
scheduling algorithm in real-time systems: RM. Denote by
νi(τ) the maximum service required over any interval of
duration τ by tasks of priority i and higher. We can use µ
and νi to compute the maximum response time of task i. An
iteration of task i can only execute when a higher-priority task
is not ready to execute. Based on this, we can write down
an expression for the maximum response time (time between
release and execution completion) of such a task: such a time,
τ respi , is given by τ respi = min{τ : µ(τ) ≥ νi(τ)}. Task i
is schedulable so long as it responds by its relative deadline,
which is its period, Pi. So, we need to check that τ respi ≤ Pi

12

for all critical tasks.
It only remains for us to compute νi(·). This function is

maximized when an iteration of task i arrives at the same
time as the iteration of every other higher-priority task. The
maximum number of such iterations of any task j over any
interval τ is given by nj(τ) = d(τ/Pj)e. Hence, we must
have νi(τ) =

∑i−1
j=1 nj(τ)ej + ei, where ei is the worst-case

execution time of task i. (Note that we traditionally number
tasks in decreasing order of priority: task 1 is the highest
priority task.)

How is this calculation affected when thermal considera-
tions are introduced? Suppose we assume that the computa-
tional demand (represented here by νi(·)) is unaffected as it
is determined by the needs of the cyber-physical plant being
controlled. What is affected is µ(τ), the minimum amount
of computation that can be delivered by the system over any
interval of duration τ . In a system whose activity is modulated
by thermal considerations, we have to replace µ(τ) by µ(τ, T0)
which is the minimum amount of computation the system is
guaranteed to deliver in any interval of duration τ which starts
with the system being at initial temperature T0.

To take a concrete example, consider the single reactive
scheduling approach of [60], discussed earlier. Here, we run
the system at any frequency up to when it reaches its temper-
ature limit and then run it at fE to ensure it does not exceed
that limit. Hence, we must do the following:

• Solve the thermal differential equation (13) with initial
condition corresponding to a specified initial temperature,
T0 to determine how long it can run at fmax before it
reaches the temperature limit. Let this time be ta.

• We now have two cases:
– If t ≤ ta, then we are running at fmax throughout

and tfmax cycles are delivered.
– If t > ta, then we run the first ta time at fmax and

the rest of the time at fE ; hence tafmax +(t− ta)fE
cycles are delivered.

To evaluate schedulability under this scheme, we would there-
fore need to obtain an upper bound of the temperature at a
given point in time, t, to be inserted into µ(t, T0). Given the
workload, this can be done: see [60] for details.

Another option is to work on the demand side. There are
several ways in which this can be done. One is to reduce
the order of complexity of the system being controlled. For
example, if the controlled plant is modeled as an n-order linear
system, we can use techniques such as Principal Component
Analysis (PCA) to approximate it as an m-order linear system,
where m < n. Calculating control inputs for this reduced order
system can reduce the workload. The cost is likely to be a
reduction in the quality of control.

Another approach is to adjust the amount of fault-tolerance
applied. Life-critical cyber-physical systems must be extraor-
dinarily reliable. For this reason, fault-tolerant techniques are
used to keep their catastrophic failure rate within very low
levels (e.g., 10−9 for a 10-hour flight in a fly-by-wire airliner).
Fault-tolerance consists generally of duplicating or triplicating
computations and voting on these copies [43]. By reducing or
eliminating fault-tolerance, significant workload reductions are

possible. We can do this and still retain system safety if we
adapt the amount of fault-tolerance to the current state of the
controlled plant [10].

Yet another approach is applicable whenever the workload
consists of anytime or IRIS (Increased Reward with Increased
Service) tasks [61]. Such tasks can be terminated prematurely
at the cost of reduced precision. The penalty for a reduced
workload burden is a reduction in the quality of the compu-
tational output. Depending on the state of the controlled plant
and its dynamics, this may or may not be acceptable. See
[62] for an example (non-thermal-related) where a controller
in a cyber-physical system sends requests in the form of (δ, ε);
here, δ is the delay and ε the quality of output.

Alternatively, we may use demand shapers [63]. A demand
shaper adjusts the flow of tasks. Denote the demand shaper by
the function σ(·). Then, if the arrival rate of a given task is
bounded by d(τ) (meaning that this is the maximum number
of its iterations that can arrive in an interval of duration τ),
then the output of the demand shaper is a shaped arrival rate,
denoted by ds(τ),

ds(τ) = d⊗ σ = inf
0≤ξ≤τ

{d(τ − ξ) + σ(ξ)}.

It is possible to show that the shaper ensures that the number
of jobs (i.e., iterations) of this task arriving in any interval of
duration τ is upper bounded by σ(τ). Furthermore, we can
obtain an upper bound on the amount of time by which the
shaper can delay a job; we can also set the shaper in such a
way as to reduce the peak temperature of the chip (see [63]
for details). We can therefore set the shaper to ensure that no
task misses its deadline while its arrival to the system ready
queue is adjusted to the extent possible.

Thus far, we have concentrated on uniprocessors running
sets of independent tasks. The scheduling approach can be
extended to cover multiprocessors. One approach is to carry
out a two-phase algorithm: in the first phase, we allocate tasks
to processors; in the second, we run a uniprocessor scheduling
algorithm (e.g., RM or EDF), to decide when the tasks should
be run. See [61], [8] for details. (Note, however, that analyzing
multicore activity is a very difficult task owing to the complex
interference patterns between one core and another, in their
competition for common resources. Indeed, this difficulty is
such that in the most critical applications, users are sometimes
forced to work with single-core systems by using just one core
in a multicore processor and turning off or idling the rest [54].)

Scheduling of task graphs, as opposed to independent tasks,
is much more difficult. One approach is to assign virtual
deadlines and virtual release times to each task; set the virtual
release time of a task to be greater than the virtual deadline
of each of its precedent tasks [64]. Another approach is to set
the problem up as an integer linear programming and solve it
[65].

IX. DISCUSSION

With the increasing thermal density of today’s semicon-
ductor devices and the emergence of complex cyber-physical
applications, has come the need to prevent device overheating

13

while still delivering adequate levels of service to the applica-
tion. There is a large number of thermal-aware management
schemes in the literature. These all derive from just a handful
of relationships: between frequency and voltage on the one
hand and energy consumption on the other, between energy
dissipation and temperature, the exponential acceleration of
many failure processes with temperature, and the workload
demands of the cyber-physical application, as well as the
adaptation of such workload to the state of that application.
In this paper, we have presented the principal ways in which
these reliationships have been exploited in order to reduce
thermal stress while satisfying the computational demands of
the cyber-physical application.

ACKNOWLEDGEMENT

The authors thank the reviewers for their careful reading
of the manuscript and their helpful comments. This work was
partially supported by the National Science Foundation under
CNS-1329831.

REFERENCES

[1] Ram Viswanath, Vijay Wakharkar, Abhay Watwe, Vassou Lebonheur,
et al. Thermal performance challenges from silicon to systems. 2000.

[2] Israel Koren and CM Krishna. Temperature-aware computing. Sustain-
able Computing: Informatics and Systems, 1(1):46–56, 2011.

[3] Hafiz Fahad Sheikh, Ishfaq Ahmad, Zhe Wang, and Sanjay Ranka. An
overview and classification of thermal-aware scheduling techniques for
multi-core processing systems. Sustainable Computing: Informatics and
Systems, 2(3):151–169, 2012.

[4] Jayanth Srinivasan, Sarita V Adve, Pradip Bose, and Jude A Rivers.
The impact of technology scaling on lifetime reliability. In Dependable
Systems and Networks, 2004 International Conference on, pages 177–
186. IEEE, 2004.

[5] RL De Orio, Hajdin Ceric, and Siegfried Selberherr. Physically based
models of electromigration: From blacks equation to modern tcad
models. Microelectronics Reliability, 50(6):775–789, 2010.

[6] Cheng Zhuo, Dennis Sylvester, and David Blaauw. Process variation
and temperature-aware reliability management. In Proceedings of the
Conference on Design, Automation and Test in Europe, pages 580–585.
European Design and Automation Association, 2010.

[7] Rehan Ahmed, Parameswaran Ramanathan, and Kewal K Saluja. On
thermal utilization of periodic task sets in uni-processor systems. In
2013 IEEE 19th International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 267–276. IEEE, 2013.

[8] Jane W.S. Liu. Real-Time Systems. Wiley, 2000.
[9] Anup Das, Akash Kumar, and Bharadwaj Veeravalli. Temperature aware

energy-reliability trade-offs for mapping of throughput-constrained ap-
plications on multimedia mpsocs. In Proceedings of the conference on
Design, Automation & Test in Europe, page 102. European Design and
Automation Association, 2014.

[10] C Mani Krishna. Ameliorating thermally accelerated aging with state-
based application of fault-tolerance in cyber-physical computers. IEEE
Transactions on Reliability, 64(1):4–14, 2015.

[11] Pradeep M Hettiarachchi, Nathan Fisher, Masud Ahmed, Le Yi Wang,
Shinan Wang, and Weisong Shi. A design and analysis framework
for thermal-resilient hard real-time systems. ACM Transactions on
Embedded Computing Systems (TECS), 13(5s):146, 2014.

[12] John F. Meyer. On evaluating the performability of degradable comput-
ing systems. IEEE Transactions on computers, 100(8):720–731, 1980.

[13] Bernie Siegal. An introduction to diode thermal measurements. Thermal
Engineering Associates, Inc., Santa Clara, CA. USA, 2009.

[14] Chan-Kyung Kim, Jae-Goo Lee, Young-Hyun Jun, Chil-Gee Lee, and
Bai-Sun Kong. Cmos temperature sensor with ring oscillator for mobile
dram self-refresh control. Microelectronics Journal, 38(10):1042–1049,
2007.

[15] Spandana Remarsu and Sandip Kundu. On process variation tolerant low
cost thermal sensor design in 32nm cmos technology. In Proceedings of
the 19th ACM Great Lakes symposium on VLSI, pages 487–492. ACM,
2009.

[16] Chunhua Yao, Kewal K Saluja, and Parmesh Ramanathan. Calibrating
on-chip thermal sensors in integrated circuits: A design-for-calibration
approach. Journal of Electronic Testing, 27(6):711–721, 2011.

[17] Shirley Browne, Jack Dongarra, Nathan Garner, Kevin London, and
Philip Mucci. A scalable cross-platform infrastructure for application
performance tuning using hardware counters. In Supercomputing,
ACM/IEEE 2000 Conference, pages 42–42. IEEE, 2000.

[18] Xiao Zhang, Sandhya Dwarkadas, Girts Folkmanis, and Kai Shen.
Processor hardware counter statistics as a first-class system resource.
In HotOS, 2007.

[19] Sung Woo Chung and Kevin Skadron. Using on-chip event counters
for high-resolution, real-time temperature measurement. In Thermal
and Thermomechanical Proceedings 10th Intersociety Conference on
Phenomena in Electronics Systems, 2006. ITHERM 2006., pages 114–
120. IEEE, 2006.

[20] Canturk Isci and Margaret Martonosi. Runtime power monitoring in
high-end processors: Methodology and empirical data. In Proceedings
of the 36th annual IEEE/ACM International Symposium on Microarchi-
tecture, page 93. IEEE Computer Society, 2003.

[21] Rance Rodrigues, Arunachalam Annamalai, Israel Koren, and Sandip
Kundu. A study on the use of performance counters to estimate power in
microprocessors. IEEE Transactions on Circuits and Systems II: Express
Briefs, 60(12):882–886, 2013.

[22] Mayank Chhablani, Israel Koren, and C.M. Krishna. Online inertia-
based temperature estimation for reliability enhancement. Journal of
Low Power Electronics, 12(3), 2016.

[23] Charu C Aggarwal. Data mining: the textbook. Springer, 2015.
[24] Buyoung Yun, Kang G Shin, and Shige Wang. Thermal-aware schedul-

ing of critical applications using job migration and power-gating on
multi-core chips. In 2011IEEE 10th International Conference on Trust,
Security and Privacy in Computing and Communications, pages 1083–
1090. IEEE, 2011.

[25] Yang Ge, Parth Malani, and Qinru Qiu. Distributed task migration for
thermal management in many-core systems. In Proceedings of the 47th
Design Automation Conference, pages 579–584. ACM, 2010.

[26] Wei Huang, Shougata Ghosh, Sivakumar Velusamy, Karthik Sankara-
narayanan, Kevin Skadron, and Mircea R Stan. Hotspot: A compact
thermal modeling methodology for early-stage vlsi design. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 14(5):501–513,
2006.

[27] Yongkui Han. Temperature aware techniques for design, simulation and
measurement in microprocessors. ProQuest, 2007.

[28] Karl J Åström and Björn Wittenmark. Computer-controlled systems:
theory and design. Courier Corporation, 2013.

[29] Yongkui Han, Israel Koren, and C Mani Krishna. Tilts: A fast
architectural-level transient thermal simulation method. Journal of Low
Power Electronics, 3(1):13–21, 2007.

[30] Lars Schor, Iuliana Bacivarov, Hoeseok Yang, and Lothar Thiele. Worst-
case temperature guarantees for real-time applications on multi-core
systems. In 2012 IEEE 18th Real Time and Embedded Technology and
Applications Symposium, pages 87–96. IEEE, 2012.

[31] Lars Schor, Hoeseok Yang, Iuliana Bacivarov, and Lothar Thiele.
Thermal-aware task assignment for real-time applications on multi-core
systems. In Formal Methods for Components and Objects, pages 294–
313. Springer, 2011.

[32] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar
Krishna, Somayeh Sardashti, et al. The gem5 simulator. ACM SIGARCH
Computer Architecture News, 39(2):1–7, 2011.

[33] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M
Tullsen, and Norman P Jouppi. Mcpat: an integrated power, area, and
timing modeling framework for multicore and manycore architectures.
In Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, pages 469–480. ACM, 2009.

[34] Shikang Xu, Israel Koren, and CM Krishna. Improving processor
lifespan and energy consumption using dvfs based on ilp monitoring. In
Green Computing Conference and Sustainable Computing Conference
(IGSC), 2015 Sixth International, pages 1–6. IEEE, 2015.

[35] Rehan Ahmed, Parameswaran Ramanathan, and Kewal K Saluja. Nec-
essary and sufficient conditions for thermal schedulability of periodic
real-time tasks under fluid scheduling model. ACM Transactions on
Embedded Computing Systems (TECS), 15(3):49, 2016.

[36] Yongpan Liu, Robert P Dick, Li Shang, and Huazhong Yang. Accurate
temperature-dependent integrated circuit leakage power estimation is
easy. In Proceedings of the conference on Design, automation and test
in Europe, pages 1526–1531. EDA Consortium, 2007.

14

[37] Rehan Ahmed, Parameswaran Ramanathan, and Kewal K Saluja. Tem-
perature minimization using power redistribution in embedded systems.
In 2014 27th International Conference on VLSI Design and 2014 13th
International Conference on Embedded Systems, pages 264–269. IEEE,
2014.

[38] John L Hennessy and David A Patterson. Computer architecture: a
quantitative approach. Elsevier, 2011.

[39] Huang Huang, Vivek Chaturvedi, Gang Quan, Jeffrey Fan, and Meikang
Qiu. Throughput maximization for periodic real-time systems under
the maximal temperature constraint. ACM Transactions on Embedded
Computing Systems (TECS), 13(2s):70, 2014.

[40] Rance Rodrigues, Arunachalam Annamalai, Israel Koren, and Sandip
Kundu. Improving performance per watt of asymmetric multi-core
processors via online program phase classification and adaptive core
morphing. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 18(1):5, 2013.

[41] Huaping Wang, Israel Koren, and C Mani Krishna. Utilization-based re-
source partitioning for power-performance efficiency in smt processors.
IEEE Transactions on Parallel and Distributed Systems, 22(7):1150–
1163, 2011.

[42] Huaping Wang, Israel Koren, and C Mani Krishna. Runtime architecture
adaptation for energy management in embedded real-time systems. In
Green Computing Conference (IGCC), 2012 International, pages 1–9.
IEEE, 2012.

[43] Israel Koren and C Mani Krishna. Fault-tolerant systems. Morgan
Kaufmann, 2010.

[44] Mohamed Gomaa, Michael D Powell, and TN Vijaykumar. Heat-and-
run: leveraging smt and cmp to manage power density through the
operating system. In ACM SIGARCH Computer Architecture News,
volume 32, pages 260–270. ACM, 2004.

[45] Ting-Hao Tsai and Ya-Shu Chen. Thermal-throttling server: A thermal-
aware real-time task scheduling framework for three-dimensional mul-
ticore chips. Journal of Systems and Software, 112:11–25, 2016.

[46] Albert MK Cheng. Real-time systems: scheduling, analysis, and verifi-
cation. John Wiley & Sons, 2003.

[47] Buyoung Yun, Kang G Shin, and Shige Wang. Predicting thermal
behavior for temperature management in time-critical multicore systems.
In Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2013 IEEE 19th, pages 185–194. IEEE, 2013.

[48] Bagher Salami, Mohammadreza Baharani, and Hamid Noori. Proactive
task migration with a self-adjusting migration threshold for dynamic
thermal management of multi-core processors. The Journal of Super-
computing, 68(3):1068–1087, 2014.

[49] Zao Liu, Sheldon X-D Tan, Xin Huang, and Hai Wang. Task migra-
tions for distributed thermal management considering transient effects.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
23(2):397–401, 2015.

[50] Farid Golnaraghi and Benjamin C Kuo. Automatic Control Systems.
Academic Press, 2009.

[51] Katsuhiko Ogata. Modern Control Engineering. Pearson, 2009.
[52] Yong Fu, Nicholas Kottenstette, Yingming Chen, Chenyang Lu, Xeno-

fon D Koutsoukos, and Hongan Wang. Feedback thermal control
for real-time systems. In 2010 16th IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 111–120. IEEE, 2010.

[53] Robert I Davis and Alan Burns. A survey of hard real-time scheduling
for multiprocessor systems. ACM computing surveys (CSUR), 43(4):35,
2011.

[54] Bryan C Ward. Relaxing resource-sharing constraints for improved hard-
ware management and schedulability. In Real-Time Systems Symposium,
2015 IEEE, pages 153–164. IEEE, 2015.

[55] Giorgio C Buttazzo, Marko Bertogna, and Gang Yao. Limited preemp-
tive scheduling for real-time systems. a survey. IEEE Transactions on
Industrial Informatics, 9(1):3–15, 2013.

[56] Alan Burns and Robert Davis. Mixed criticality systems-a review.
Department of Computer Science, University of York, Tech. Rep, 2013.

[57] Sanjoy Baruah. The federated scheduling of constrained-deadline spo-
radic dag task systems. In Proceedings of the 2015 Design, Automation
& Test in Europe Conference & Exhibition, pages 1323–1328. EDA
Consortium, 2015.

[58] Zhishan Guo and Sanjoy K Baruah. Uniprocessor edf scheduling of
avr task systems. In Proceedings of the ACM/IEEE Sixth International
Conference on Cyber-Physical Systems, pages 159–168. ACM, 2015.

[59] Junsung Kim, Hyoseung Kim, Karthik Lakshmanan, and Ragu-
nathan Raj Rajkumar. Parallel scheduling for cyber-physical systems:
Analysis and case study on a self-driving car. In Proceedings of the
ACM/IEEE 4th International Conference on Cyber-Physical Systems,
pages 31–40. ACM, 2013.

[60] Shengquan Wang, Youngwoo Ahn, and Riccardo Bettati. Schedulability
analysis in hard real-time systems under thermal constraints. Real-Time
Systems, 46(2):160–188, 2010.

[61] C.M. Krishna and Kang G. Shin. Real-Time Systems. McGraw-Hill,
1996.

[62] Yash Vardhan Pant, Houssam Abbas, Kartik Mohta, Truong X Nghiem,
Joseph Devietti, and Rahul Mangharam. Co-design of anytime compu-
tation and robust control. In Real-Time Systems Symposium, 2015 IEEE,
pages 43–52. IEEE, 2015.

[63] Pratyush Kumar and Lothar Thiele. Cool shapers: shaping real-time
tasks for improved thermal guarantees. In Design Automation Confer-
ence (DAC), 2011 48th ACM/EDAC/IEEE, pages 468–473. IEEE, 2011.

[64] Riccardo Bettati and JW-S Liu. End-to-end scheduling to meet deadlines
in distributed systems. In Distributed Computing Systems, 1992.,
Proceedings of the 12th International Conference on, pages 452–459.
IEEE, 1992.

[65] Ayse K Coskun, Tajana S Rosing, Keith A Whisnant, and Kenny C
Gross. Static and dynamic temperature-aware scheduling for multipro-
cessor socs. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 16(9):1127–1140, 2008.

15

