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Abstract 
 

In this paper we present an area-efficient register transfer level technique for gracefully 

degradable data path synthesis called phantom redundancy. In contrast to spare-based 

approaches, phantom redundancy is a recovery technique that does not use any standby 

spares. Phantom redundancy uses extra interconnect to make the resulting data path 

reconfigurable in the presence of any (single) functional unit failure. When phantom 

redundancy is combined with a concurrent error detection technique, concurrent error 

detection followed by reconfiguration is automatic. 

We developed a register transfer level synthesis algorithm that incorporates phantom 

redundancy constraints. There is a tight interdependence between reconfiguration of a 

(faulty) data path and scheduling and operation-to-operator binding tasks during register 

transfer level synthesis. We developed a genetic algorithm based register transfer level 

synthesis approach to incorporate phantom redundancy constraints. The algorithm 

minimizes the performance degradation of the synthesized data path in the presence of 

any single faulty functional unit. The effectiveness of the technique and the algorithm are 

illustrated using high level synthesis benchmarks. 
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1.0 Introduction 

Advances in VLSI have made it possible to implement complex algorithms on a single 

integrated circuit (IC) with the attendant advantages of reduced power consumption, 

higher reliability and reduced size and weight.  While increasing device densities have 

made it possible to implement such complex VLSI systems, they have also rendered the 

ICs highly susceptible to a variety of fabrication-time fault mechanisms. In many VLSI 

applications, it is not uncommon to experience circuit yields on the order of 10% or even 

less thereby increasing the cost of manufacturing the circuit. 

A number of researchers have examined fabrication-time reconfiguration approaches to 

enhance the yield of ICs. These techniques identify failed functional units in a fabricated 

IC and program the wires to reconfigure the fault free functional units into a working IC.  

Built-In-Self-Repair (BISR) is a popular reconfiguration technique. BISR approaches 

have been applied mostly to regular architectures such as memory [1]. In BISR, 

reconfiguration is realized by providing a set of spare modules in addition to the core 

operational modules [1]. 

In this paper we present a register transfer level technique for reconfiguration of ICs 

called phantom redundancy that does not use spare modules. Rather, phantom 

redundancy uses redundant programmable interconnect. When a functional unit is faulty, 

the interconnection network in the data path is reprogrammed to configure the fault-free 

functional units into an operational data path albeit with a degraded performance. 

Phantom redundancy is applicable to both regular and non-regular data paths and entails 

small area overhead. Phantom redundancy does not perform CED. When combined with 

a concurrent error detection (CED) and faulty unit location technique such as 



introspection [6], phantom redundancy can be used for dynamic reconfiguration in the 

field.   

1.1 Related Research  

VLSI reconfiguration techniques have been developed to make regular processor arrays 

tolerant to faults occuring during operation. Using a spare row (column) of processing 

elements, Negrini et. al. developed a rippling replacement strategy [14]. A faulty module 

is replaced with its neighbor in the same row (column). When both a spare row and a 

spare column are available the fault stealing strategy can be used. In fault stealing, a 

faulty module is replaced with a neighbor either in the same row or in the same column 

[14]. When multiple spare rows and columns are present a repair-most strategy can be 

used [15]. Repair-most strategy is based on a graph theoretic formulation and bipartite 

matching approach. An RT level reconfigurable data path synthesis technique based on 

spare functional units called built-in-self-repair (BISR) has been proposed by Guerra et. 

al. [3]. Instead of one spare module for each active module, BISR uses one spare module 

for each module type.  All of these approaches use spare modules. 

Tolerance to IC fabrication process related defects can be improved using two 

techniques. Tuning the process parameters can reduce such fabrication time defects in the 

device [19]. However, such process yield maximization does not totally eliminate the 

fabrication-related defects. Along an orthogonal dimension, defect-tolerant circuit design 

and layout techniques can maximize the circuit yield. While Chiluvuri and Koren [20] 

developed layout compaction algorithms to maximize defect-tolerance, Allan et. al. [21] 

proposed selective relaxation of the layout design rules. Phantom redundancy 

complements these layout level defect-tolerance.  



RT level synthesis techniques for area optimal [8,9], performance optimal [10,11] and 

power optimal data path design have been explored [22,24]. RT level data path synthesis 

targeting off-line testability [23,26] and on-line testability [2,3,4,5,7,12] has also been 

addressed. In [2,5] it has been shown that recovery from transient faults can be done 

efficiently at RT level by checkpointing and roll back in hardware. Before, rollback based 

recovery or reconfiguration can be carried out, the faulty unit should be identified. 

Concurrent error detection (CED) and faulty unit location are hence important. 

Straightforward duplication entails significant area overhead. RT level techniques for 

area-efficient CED based on fault security were developed in [4,7]. RT level techniques 

using spare capacity in a design have also been proposed [6]. RT level reconfigurable 

data path synthesis technique using spare functional units has been proposed by Guerra 

et. al. [3]. On-line testable controller unit synthesis has been reported in [12]. The 

proposed technique can be used in combination with these CED techniques. 

1.2 Issues in Gracefully Degradable Data path Synthesis 

1.2.1 The Design Methodology 

We propose to incorporate phantom redundancy reconfiguration constraints within a top-

down VLSI design methodology.  From among the various levels of abstraction in such a 

VLSI design methodology, the register transfer (RT) level is the right abstraction at 

which to incorporate phantom redundancy. This is because: 

1. there is a tight interdependence between the synthesized data path and the 

reconfiguration of such a data path, 

2. the fault model is at the RT level of functional units, and 



3. data for reconfiguration such as the clock-by-clock schedule and operation-to-

operator binding can be easily obtained at the RT level. 

RT level synthesis involves (I) translation of a high-level algorithmic description into an 

intermediate representation called the Control Data Flow Graph (CDFG), (ii) assignment 

of operations in the CDFG to clock cycles (scheduling), (iii) mapping the scheduled 

operations onto available functional units (binding) and (iv) synthesis of the control unit. 

It has been shown that scheduling and binding are NP-hard [13]. Besides, scheduling and 

binding are interdependent. Hence numerous heuristics have been proposed to solve these 

problems [9]. Most RT level synthesis systems solve scheduling and binding independent 

of each other. Since the synthesized architecture profoundly influences its 

reconfigurability, it should be integrated manner with the other synthesis tasks. 

In this paper we developed a genetic algorithm [18] based technique to solve the 

simultaneous scheduling, binding and reconfiguration problem. The schedule and binding 

in the presence of any single functional unit failure is constructed simultaneously. This 

yields an RT level data path with a minimal degradation in performance. 

1.2.2 Controller Issues  

In a gracefully degradable data path the control unit is important since it orchestrates the 

reconfiguration. There are two viable options for designing a controller for 

reconfiguration.  

1. Programmable Controllers: Although programmable controllers suffer from the 

disadvantage of slightly larger silicon area for implementation and a slightly lower 

performance, they have a major advantage in terms of ease of reconfiguration. Even in 

the absence of faults in the system the extra interconnect and the controller 



programmability gives the user the option to implement new CDFGs on the architecture 

much more efficiently.  

2. Composed Controllers: The controller for operating the fault free data path is 

composed with the controllers for each of the single unit failure scenarios. Although 

these composed controllers are smaller in size and faster they are hardwired.  

1.3 Research Contributions 

The important contributions of this paper are:  

1. Phantom Redundancy: we present an area efficient technique for data path 

reconfiguration. Phantom redundancy adds extra programmable interconnect to make 

the resulting data path reconfigurable in the presence of functional unit failures. 

2. Integrating reconfiguration constraints with scheduling and binding: We 

developed a genetic-algorithm-based global optimization approach for the synthesis 

of area-efficient gracefully degradable data paths. This is because the problem of 

reconfiguring a data path with minimal area overhead strongly depends on the 

original data path. The algorithm performs simultaneous scheduling, binding and 

reconfiguration to minimize the performance degradation in the presence of a 

functional unit failure. The reported technique is applicable to regular array 

architectures and non-regular data path based designs. 

2.0 Phantom Redundancy 

Phantom redundancy is an area-efficient approach to implement gracefully degradable 

data paths. Phantom redundancy uses additional interconnections and yields gracefully 

degradable data paths with low hardware overhead. Upon detecting a faulty functional 

unit, the interconnection network is programmed to perform the intended function on the 



fault-free functional units albeit at a reduced throughput. Phantom redundancy can be 

used for fabrication-time and real-time reconfiguration of data paths. This capability is 

crucial in military and space applications where replacement of a faulty module is either 

impossible or prohibitively expensive. 

Towards illustrating and clarifying the concept of phantom redundancy, consider a CDFG 

consisting of six operations a, b, c, d, e, f shown in Figure 1.  Assuming that all 

operations are of the same type and no back-to-back chaining is allowed, the fastest 

schedule requiring two clock cycles and four functional units is shown in Figure 1 (a). 

The redundant interconnect shown as dotted lines in Figure 1 (b) make this data path 

gracefully degradable in the presence of any single functional unit failure. 

 

Figure 1: (a) Scheduled CDFG. (b) Data path implementing the CDFG. Two additional 
point-to-point links shown as dotted lines make the data path reconfigurable. 
 

Upon identifying a faulty functional unit, the controller can be reprogrammed to operate 

the reconfigured data path with a degraded performance. For example, if functional unit 

F1 is faulty, operations a, c bound to it in the original data path are mapped to the fault-

free functional unit F3 as shown in Figure 2 (a). Further, operation b is remapped to 

functional unit F4. This reconfigured data path operates at a degraded performance of 4 

clock cycles (as opposed to 2 clock cycles in the fault-free data path).  

 



 
Figure 2: reconfiguration in the presence of faulty functional units 

 

The corresponding schedule is also shown in Figure 2 (a). This data path can tolerate all 

single functional unit failures (see Figure 2 (a,b)).  This data path does not use any spare 

modules but uses two additional interconnections. This data path can also tolerate 50% of 

all two-unit faults ((F1, F2) and (F3, F4)). For all these scenarios the reconfigured data 

path consumes twice as many clock cycles as the fault-free data path.   

Consider another CDFG consisting of fifteen add operations (a1,..,and a15) as shown in 

Figure 3 (a). The schedule shown here uses three adders (A0, A1, A2).  One possible 

operation-to-operator binding is shown in Figure 3. The functional unit on which an 

operation is carried is shown in capital letters. In Figure 3 (a), node a14 is scheduled in 

clock cycle 4 and is executed on adder A2. Until now scheduling and binding did not 

account for possible performance degradation in the presence of an adder failure. 

Arbitrarily reallocating the responsibilities of the failed unit among the fault free units 

increases the complexity of the interconnection network. Consequently, we propose to 

reallocate the responsibilities of a failed unit to a single backup unit.  
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Figure 3: (a) Example schedule and binding that uses 3 adders (b) a reconfigured 
schedule in the presence of a faulty A0. 
 

In Figure 3 reconfiguration can be achieved by identifying (A0, A1) and (A1, A2) to be 

two backup pairs. If A0 is faulty A1 takes over, if A2 is faulty A1 takes over and if A1 

is faulty either A0 or A2 take over. This backup pair assignment entails a performance 

degradation of four clock cycles in the worst case. One such schedule that requires 11 

clock cycles when A0 is faulty is shown in Figure 3 (b). In this reconfigured data path A1 

takes over from a failed A0.  

 

 



Figure 4: (a) A schedule and allocation obtained by simultaneously considering the 
performance of the primary data path and reconfigured data path (b) A reconfigured 
scheduled using 10 clock cycles in the presence of a faulty A0. 

A data path can be made gracefully degradable by determining backup pairs following 

the scheduling and binding phases of RTL synthesis. However, this will yield 

architectures with a poor performance. Consequently, scheduling, binding and 

reconfiguration constraints will be considered in an integrated fashion.  In Figure 4 an 

alternate schedule and binding with a worst-case performance degradation of only three 

clock cycles is shown. To find such solutions, we use genetic algorithm based approach 

to perform simultaneous scheduling, binding and creation of backup pairs. 
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The two functional units forming a backup pair need not be identical in terms of 

performance although they should be capable of carrying out the same function. For 

example, a fast multiplier unit can have a slow multiplier as its backup. It is the task of 

the RT level synthesis algorithms to explore these tradeoffs. 

 

 

 

 



3.0 Gracefully Degradable Data path (GDD) Synthesis  

3.1 Architectural Model 
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Figure 5: (a) Hardware model for basic data path synthesis. (b) Hardware model for 
gracefully degradable data path synthesis using phantom redundancy. Extra 
interconnections and extra layers of multiplexers and demultiplexers are used to form the 
backup pairs. 

The hardware models for the basic and gracefully degradable data path synthesis are 

shown in Figure 5. Extra levels of multiplexing (mux2) at the input and at the output 

(mux3) together with the additional links combine two similar functional units in the 

basic data path into a backup pair. Within such a backup pair, if one of the functional 

units is faulty, its functionality is switched to the other functional unit by programming 

the select signals of mux2 and mux3. In general, to have redundancy among N functional 

units of a given type, at least 


 2
N

  backup pairs are necessary. In the final 

implementation, the two level multiplexers shown in Figure 5 (b) can be flattened into a 

single level. Observe that adding these extra multiplexors and registers will degrade the 

performance of the datapath circuit even if there is no faulty unit. The backup pair based 

hardware model with the additional level of multiplexes increases the clock cycle 

duration. Although this backup pair hardware model guarantees single unit fault 



tolerance, some multiple faults can be tolerated. The data path in Figure 2 (b) can tolerate 

50% of all two-unit faults ((F1, F2) and (F3, F4)).  Although this backup pair model can 

be extended to tolerate all multiple functional unit failures, the number of links required 

in this case would be larger and the performance degradation would also be greater. 

Further, it has been shown that single unit tolerance is sufficient in most cases.  

3.2 RT Level fault model  

Our functional fault model is based on the observation that the critical area (i.e., the area 

susceptible to faults) of the functional units is much larger than that of the buses and the 

registers. Consequently, the probability of faults in functional units is much larger than 

that in the buses and register files. Hence, we initially target single functional unit failures 

only. Faults in a bus or a register file results in faulty data being fed to all the units that 

are connected to it. Hence, fault in a bus or a register file is equivalent to multiple 

functional unit failures. Faults in those buses and register files that feed into a single 

functional unit can be targeted using phantom redundancy. The controller fault-tolerance 

can be implemented using the technique presented in [12] or by straightforward 

duplication. 

3.3 Genetic Algorithm based Gracefully Degradable Data path Synthesis  

We will outline a genetic algorithm [18] based approach to synthesizing gracefully 

degradable data paths. GAs have been used in a wide variety of optimization tasks, 

including the traveling salesman problem, circuit design and job shop scheduling [27,28]. 

A genetic algorithm is based on the principles of the evolution via natural selection. It 

employs a population of individuals that undergo selection in the presence of mutation 

and recombination (i.e. crossover) operators. These two operators introduce variation into 



the individuals in a population. A fitness function is then used to evaluate individuals, 

and reproductive success varies with this fitness.  

An initial population M(0) is randomly generated. The fitness f(i) for each individual i in 

the current population M(t) is computed. Selection probabilities p(i) for each individual i 

in M(t) are defined such that p(i) is proportional to f(i).  Population M(t+1) is generated 

by probabilistically selecting individuals from M(t) and combined to produce offspring 

via the mutate and crossover genetic operators. Applying crossover and mutation 

probabilistically modifies the individuals in a population. The crossover and mutation 

operations depend not only on the problem structure but also  on the way the solution is 

encoded as chromosomes. Crossover exchanges partial solutions from two chromosomes 

that have been probabilistically selected based on their fitness functions.  Mutation is 

applied with a very low probability to introduce new search points. This process is 

repeated until either the best solution is found or the maximum number of generations is 

reached. 

A genetic algorithm can be applied to a problem, once the solutions to the problem are 

encoded as chromosomes. An effective genetic algorithm representation and a simple and 

meaningful fitness function are key to the success deployment of a GA.  

The gracefully degradable data path synthesis problem can be formulated as follows: 

Given a CDFG and a hardware model, synthesize a gracefully degradable data path such 

that: 

1. Performance of the unimpaired system is not compromised. 

2. Performance degradation in the event of any single functional unit failure is minimal. 

3. Area overhead of reconfiguration is minimal. 



We will now outline the fitness function, the problem specific coding of the solutions, the 

genetic operators and the fitness proportionate stochastic selection scheme of the genetic 

algorithm to solve this RT level synthesis problem.   

3.3.1 The Fitness Function 

The proposed algorithm simultaneously explores the time and space domains of the 

design space. A candidate solution α is evaluated by the following fitness function  

C(α) =  w2 × area(F) + w3 × area(M) + w4 × area(X) + w5  × area(IC)  × (wl × S)γ 

where, wi are user defined weights, F is the set of functional units, M is the set of 

registers, and X is the set of multiplexers, IC is the interconnect complexity, S is the 

number of clock cycles and γ is a user defined parameter. Thus the fitness function is of 

the form area × time γ. 

The interconnect complexity IC is obtained as the weighted sum of the area required for 

the links associated with the inputs and outputs of each functional unit and the number of 

buses required to provide the requisite data transfers as given below. 
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multiplexer is provided at input fi of the functional unit if the number is greater than one. 

The area cost of the multiplexers is obtained from a table containing the area of the 

multiplexer for different number of multiplexer inputs. ρ(var) is the minimum number of 

registers required to store the set of variables var, given the lifetime table of the variables 



in var. This is obtained using the left-edge algorithm [25]. The number of links is 

computed as the sum of the number of links used by each of the functional units in the 

architecture. The number of buses required is the maximum number of distinct sources 

and sinks over all time steps. 

3.3.2 Problem specific genetic coding  

Each valid solution is encoded using four chromosomes (strings) g1, g2, g3 and g4.  

Module selector string g1 encodes the space dimension of the solution.  For each 

functional unit type there is one gene (element) in g1 indicating the number of units of 

that type. Each element in the string g1 can vary from 1 to ntmax, where ntmax is the 

maximum number of functional units of type t. The value of ntmax is either assigned by 

the user or is computed from an as soon as possible schedule without resource 

constraints. For example, for the CDFG shown in Figure 7, two adders and two 

multipliers are required as shown in string g1. 

Module allocation string g2 encodes the functional unit on which an operation is carried 

out. For each operation in the CDFG there are two adjacent entries in the string g2. The 

first entry gives the index of the functional unit that will carry out the operation. The 

second entry is a binary value that indicates if the operator is commutative. Commuting 

the inputs is useful in optimizing the multiplexers at the inputs to the functional unit. For 

example, from the g2 string in Figure 7 it can be seen that operation a2 is performed on 

adder A0 whose left and right inputs can be interchanged. 

Time stamp string g3 encodes the time dimension of the scheduling and binding 

problem. For each node in the CDFG there is one entry in string g3. Data dependencies 

between operations in the CDFG complicate the coding scheme. Towards ensuring that 



the crossover and mutation operators yield valid schedules in the presence of data 

dependencies we use two techniques. Firstly, the genes within a chromosome are placed 

based on a depth-first ordering of the corresponding nodes in the CDFG. Secondly, a 

differential coding scheme is used wherein each gene denotes the time by which the 

corresponding operation is deferred from the earliest schedulable clock cycle. From the 

g3 string in Figure 7, it can be seen that operations a2, a3 and a7 are scheduled one clock 

cycle away from their earliest schedulable clock cycles. 
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Figure 7: An Example CDFG and g1, g2, g3 and g4 strings. 

Backup pair string g4 identifies the backup pairs in the reconfigured architecture. A 

natural representation for g4 is as a permutation of the indices of the functional units with 

the permutations corresponding to a single functional unit being grouped together in the 

string. The elements in the string g4 are read pair wise in a cyclic order from left to right 

and each of these pairs form one backup pair. In the event of a failure of any single 

functional unit, the other unit in the backup pair takes over. The functional units should 

be partitioned in such a way that the worst-case performance degradation in the presence 

of any single functional unit failure is minimal. 



3.3.3 Construction of a schedule and binding  

Strings g1 through g4 are used to construct the schedule, binding and backup pairs of the 

functional units. First constructing a schedule and binding assuming that none of the 

functional units fail create a gracefully degradable data path. Then a schedule and binding 

is constructed by assuming single faulty functional units as follows. There are two types 

of operations: those that are bound to a faulty unit and those that are bound to a fault free 

unit.  

An operation that is bound to a faulty functional unit is re-bound to its backup unit. If the 

backup unit is free, the operation is scheduled in that clock cycle. Otherwise, the 

operation is deferred to a later clock cycle when the backup unit becomes available.  

An operation bound to a fault-free functional unit may have to be re-scheduled and re-

bound when its predecessor operations in the CDFG are re-scheduled and re-bound. If the 

functional unit is still free, then the operation is scheduled into the clock cycle. 

Otherwise, if the backup unit is free then the operation is re-bound to the backup unit. In 

the worst case, the operation is deferred until one of the units in the backup pair becomes 

available.  

Faults in different functional units impact the performance degradation of the data path to 

a different extent. Hence, the worst-case performance degradation δ of the gracefully 

degrading data path should be considered. The worst-case performance degradation δ is 

measured, as the additional clock cycles required executing the CDFG. The cost function 

is modified to account for δ as follows:  

C (α) = (w2×area (F) + w3×area(M) + w4×area(X) + w5×area(IC)) × (w1×S+ w6×δ) γ 



Where, w6 is the user-defined weight for the worst-case performance degradation δ for 

the gracefully degradable data path and S is the number of clock cycles for the basic data 

path.  

3.3.4 Genetic Operators 

The genetic encoding employed allows the use of simple crossover and mutation 

operators. We use the single point crossover for the strings g1, g2, and g3.  The minimal 

area overhead constraint requires that each functional unit have only one backup unit. 

This implies that the index of each functional unit must appear only once in string g4. 

This cannot be enforced using the single point crossover. Hence we employ the partially 

matched crossover (PMX) [18] for string g4. PMX ensures that all functional unit 

indices used in a design appear at least once and no more.  
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A 8 A 7 A 1 A 2 A 3 A 0 A 9 A 5 A 4 A 6
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P a r e n t  1

P a r e n t  2

C h i l d  1

C h i l d  2

Figure 8: partial matched crossover (PMX) 

In PMX, two parent strings are aligned and two crossover sites are selected at random 

along the strings. These two points define the matching section that is used to effect a 

crossover through position-by-position exchange operations. This is shown in Figure 8. 

PMX proceeds by position-by-position exchange between the two strings. First, the string 

Parent2 is mapped to Parent1, and the entries in the matching section are exchanged. In 

Figure 8, the sub string A2A3A0 Parent2 is mapped on to the corresponding sub string in 

Parent1. This results in duplicate A2, A3 and A0. To remove these matching elements A4, 



A5 and A6 from Parent2 are exchanged yielding the Child1 string. Following this, the 

string Parent1 is mapped on to Parent2 and the matching entries are once again 

exchanged. A simple shuffle operator that randomly exchanges two genes of the same 

function unit type is used as the mutation operator. 

3.3.5 Selection scheme 

An individual is selected for crossover and reproduction with a probability that is 

proportional to its fitness [18]. This selection scheme increases the representation of 

above average fitness chromosomes in the population and has a marked effect on the 

performance of the genetic algorithm. The genetic operators exploit this increased 

concentration of quality chromosomes in constructing better solutions as the generations 

evolve. 

4. Results 

We summarize the trade-off studies conducted on a set of benchmark examples including 

the fifth order elliptic wave digital filter (EWF5), an AR filter (ARMA), a third order 

bilinear loss-less discrete integrator filter (LDI3), and the FIR filter (FIR16).  

4.1 Phantom Redundancy using Non-pipelined Functional Units 

Initially, we used non-pipelined functional units with the multiplier taking 2 clock cycles 

and the adder taking one clock cycle. Also, we assume that the adder is also capable of 

carrying out subtract operations. The system word length is 24 bits and the filter 

coefficients are 16 bits. 

 

 

 



Number of Perf. (Clock Cycles) #  of registers Chip area % Overhead Ex. 

Name 
Mult Add Orig Degr % Degr Orig Phant Orig Phant BISR Phant BISR % impr 

Ewf5   3   3   17   19  11.76   6   8  1.82   1.84   2.40   1.47  31.78  30.31  

Arma   2   2   19   34  78.95   6   15  1.24   1.30   1.82   4.59  46.58  41.99  

Arma   4   3   11   18  63.64   6   12  3.15   3.21   3.92   1.91  24.50  22.59  

Arma   4   2   11   18  63.64   6  13  3.12   3.18   3.89   2.06   4.75  22.69  

Ldi3   2   2   8   11  37.50   3   5  1.22   1.25   1.80   1.73  47.17 45.44  

Fir16   4   4   8   12   0.00   8  11  2.80   2.84   3.47   1.42  24.09 22.67  

Fir16   8   8   6   8  33.33   8   9  7.84   7.89   8.81   0.67  12.31 11.64  

Table 1: Impact of phantom redundancy on designs synthesized using non-pipelined 
functional units. 

Results of this experiment are summarized in Table 1. The second and third columns 

show the number of multipliers and adders used in the design. While the fourth column 

(titled basic) shows the number of clock cycles required for executing the CDFG when 

the system is unimpaired, the fifth column gives the worst case execution time (in clock 

cycles) to compute the CDFG in the presence of any single functional unit failure. The 

next column summarizes the percentage degradation in performance. Supporting 

phantom redundancy entails use of additional multiplexers at the inputs and outputs to the 

modules used in the data path. This increases the clock cycle duration by about 10% 

when compared to the clock cycle of the basic data path. The overall performance 

overhead when this is considered is 1.1x of that discussed in the rest of the paper. To 

compare the performance overhead of the proposed scheme viv-a-vis the BISR scheme, 

we assume that the performance of a BISR design is same as that of the basic design. 

Hence, the reported performance degradation for phantom redundancy is also its 

performance degradation when compared to BISR. Number of registers in the original 

design and number of registers in the gracefully degradable design appear in the next two 



columns. The chip area estimates for the original IC, the gracefully degradable IC, and 

the BISR IC are given in the columns titled Chip Area Orig., Chip Area Phant. and Chip 

Area BISR. The reported chip area estimates were obtained using HYPER hardware 

database [11]. These area estimates include the controller area, are fairly accurate and are 

known to be, in the worst case, 15% off the actual layout areas [11]. The BISR area was 

computed by assuming one redundant functional unit of each type and does not consider 

any additional interconnect and multiplexing overheads. Thus the figures quoted for 

BISR consistently underestimate the area overhead of an actual implementation. The 

percentage area overheads for the phantom redundancy and BISR over that of the original 

chip area are indicated in the twelfth and thirteenth columns. The last column summarizes 

the percentage savings in area overhead of the phantom redundancy vis-a-vis BISR. 
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Figure 9: (M0, M2), (M1, M3), (A0, A3) and (A1, A2) are the back up pairs. (a) 8 clock 
cycle Schedule and binding (b) Schedule and binding of the reconfigured data path when 



adder A0 fails (c) Schedule and binding of the reconfigured data path when multiplier 
M0 fails. 
 

From Table Table 1, it can be seen that on an average, phantom redundancy entails 

28.19% less area (with a standard deviation of 11.96%) when compared to BISR. The 

figures for LDI and EWF5 indicate that large savings in area can be obtained at the cost 

of a small performance loss - 2 clock cycles for the EWF5 and 1 clock cycle for LDI3. 

While area overhead of phantom redundancy is negligible when compared to that of the 

original design, additional area required for BISR corresponds to a significant proportion 

of the original chip area.  If the basic design has a large number of functional units, then 

the phantom redundant design has to support one backup schedule for each possible 

failure scenario. This is the main source of controller overhead and contributes to the 

overall area overhead.  

Figure 10: (M0, M1), (M0, M2), (A0, A2), and (A1, A2) are the backup pairs. (a) A 17-
clock cycle schedule (b) Schedule and binding of the reconfigured data path when adder 
A0 fails (c) Schedule and binding of the reconfigured data path when multiplier M0 fails. 
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Performance degradation of these gracefully degradable data paths using non-pipelined 

functional units is quite significant. Performance degradation (of over 78%) is highest for 

the AR filter built from 2 adders and 2 multipliers. A closer look into this synthesized 

design and the AR algorithm reveals that this is because of two factors. Firstly, the 

number of functional units of a given type is very small resulting in a small number of 

operational functional units in the presence of a failure. Secondly, the multiplication and 

the addition operations in the AR filter are clustered. This dramatically increases the 

critical path in the algorithm. 

The schedule and binding corresponding to the seventh row Table 1 for the 16- tap FIR 

filter with 4 adders and 4 multipliers is shown in Figure 9 (a). The schedule and binding 

when adder A0 fails is shown in Figure 9 (b). The performance degradation is one clock 

cycle. The schedule and binding when multiplier M0 fails is shown in Figure 9 (c). The 

performance degradation is four clock cycles. Similarly, a 17-clock cycle schedule for 

EWF5 with 3 adders and 3 multipliers (corresponding to second row in Table 1) is shown 

in Figure 10 (a). The reconfigured 18-clock cycle schedule and binding when adder A0 

fails is shown in Figure 10 (b). The reconfigured 19-clock cycle schedule and binding 

when multiplier M0 fails is shown in Figure 10 (c). 

4.2 Impact of Pipelined Functional Units on Phantom Redundancy 

We have seen that non-pipelined functional units entail large performance degradations. 

However, all these reconfigured ICs are obtained at no or minimal additional cost, 

thereby increasing the effective number of usable ICs (perfect ICs + partially good ICs). 

We will now assess the impact of pipelined functional units on performance degradation.  



For this experiment we use a two stage pipelined multiplier with a latency of 2 clock 

cycles and an initiation rate of 1 clock cycle. The results are summarized in Table 2. 

 # of Clock cycles # registers IC area % Overhead % Improvement 

 × + Orig Degr 

% Perf 

Degr Orig Phant Orig Phant BISR Phant Phant  BISR 

Ewf5   2   3  17   19  11.76   7   10   1.27   1.30   1.85   2.29  45.53  43.24  

Arma   2   2  13   19  46.15   6   14   1.24   1.29   1.81   4.18  46.58  42.40  

Arma   4   3  11   13  18.18   6   10   3.15   3.19   3.92   1.48  24.50  23.02  

Arma   4   2  11   16  45.45   6   10   3.12   3.16   3.89   1.40  24.75  23.34  

Ldi3   2   2   8   9  12.50   3   4   1.22   1.24   1.80   1.31  47.17  45.85  

Fir16   4   4   7   9  28.57   6   9   2.79   2.83   3.46   1.43  24.19  22.76  

Fir16   8   8   6   7  16.67   8   8   7.84   7.89   8.81   0.56  12.31  11.74  

Table 2: Impact of pipelined functional units on phantom redundancy 

The best results were obtained for the EWF5 example where the performance degradation 

is 11.76% while the area overhead incurred is only 2.29%. The BISR strategy leads to no 

performance degradation but the area overhead amounts to 45.53%. The worst 

performance degradation occurs for the ARMA example with 2 multipliers and 2 adders. 

The increase in degradation in performance is largely due to the availability of only one 

adder (multiplier) unit in the event of a failure in one of the 2 adder (multiplier) units 

present. This leads to a 45.45% penalty in performance when one of the adders fails. On 

an average the savings in area over the spare-based BISR approach is 30.34% while the 

standard deviation is 13.28%. The average degradation in performance is 25.61% and the 

standard deviation is 14.85%.  

There is a marked reduction in performance degradation when pipelined functional units 

are used. This is because pipelined units permit the initiation of operations at a much 

higher rate when a functional unit fails. Thus operations assigned to a failed unit are 



scheduled in earlier steps as opposed to waiting for a multi-cycle operation to be 

completed before the next operation can be initiated. Pipelining is particularly effective 

when operations of a type are clustered in the CDFG. The reduction in performance 

degradation will be even more significant with deeply pipelined functional units (multiple 

pipeline stages). 

4.3 Phantom Redundancy using multifunctional ALUs 

In Table 3 we present the results when multifunctional ALUs are employed. The ALU is 

assumed to carry out multiplication, addition and subtraction in a single clock cycle. The 

period of each clock cycle is, however, considerably longer. 

# Clock cycles #  of registers Chip Area % Overhead % Impr Ex 

Name ALU Unimp Degr 

% Perf 

Degr Orig. Phant Orig Phant BISR Phant Phant BISR 

Arma   3   12   15  25.0  6   11  1.75  1.78  2.32  1.93  33.08  31.14 

Arma   4   9   14  55.56   7   14  3.06  3.12  3.83  1.92  25.20  23.28  

Arma   6   8   10  25.0   6   12  4.53  4.59  5.30  1.27  17.02  15.75  

Fir16   4   9   13  44.44   9   13  2.70  2.73  3.37  1.29  25.03  23.74  

Fir16   8   5   7  40.00   8   11  7.52  7.57  8.49  0.63  12.82  12.19  

Table 3 : Results on benchmark examples using multifunctional ALUs 

The results for the examples using ALU type functional units are summarized in The 

average saving in area over the BISR technique is 21.22% and the standard deviation is 

7.42%. The average degradation in performance is 38% and the standard deviation is 

13.15%. The degradation values are higher in this table as compared to Table 1 and Table 

2 because the number of functional units used in the examples is much smaller.  

4.4. Phantom redundancy based on an enhanced fault model 

A closer look at the components of the area of an IC shows that interconnect uses about 

50% of the total area. Hence, targeting faults in single functional units alone may not be 



sufficient. Consequently, we adopted an enhanced functional fault model proposed in [3] 

that targets single faults in functional units, register files and interconnections. A fault in 

a register file is considered as a fault in the functional unit that the register file feeds, 

while a fault in an interconnect line is considered as a fault in the functional unit/register 

file from which it emanates. These constraints are then modeled as register and bus 

allocation constraints.  

Table 4 summarizes the results of  phantom redundancy based data path synthesis on four 

additional benchmark examples (the HAMMING code, 7th order IIR filter, 8th order IIR 

filter and WANG’s discrete cosine transform) and using this enhanced fault model. The 

first major column shows the benchmark, the second major column identifies the type of 

design (basic and phantom redundancy based data path) and the third major column 

shows the number of clock cycles in the design. 

Hardware allocation Area (mm2) overhead   Clock 
cycles 

#  of 
schedules + - * Reg Mux Active intercon

nect 
Total (%) 

basic   8        1   6 0  1   83(15)   18  25.1  23.9   49.0  -  HAMMING    
phant  9-10     3   6 0  1  113(16)   28  29.8  29.4   59.3  21.0  
basic   10       1   2 2  2   39(20)   11  32.1  23.0   55.1  -  IIR7    

        phant  11-14    5   2 2  2   62(20)   16  35.2  30.4   65.6  19.1  
basic  20       1   3 0  3   48(30)    9  42.1  36.3   78.4  -  IIR8D   

        phant  21-22    6   3 0  3   89(39)   26  47.9  51.8   99.7  27.2  
basic   10       1   3 3  4   54(44)   17  31.8  33.5   65.3  - WANG    

        phant  12       7   3 3  4   74(44)   59  37.6  40.6   78.2  19.7 
Table 4:  Results on benchmark examples using the enhanced fault model 

The fourth major column shows the number of backup schedules (each with a different 

latency) required to tolerate all possible 1-unit faults. The five minor columns of the fifth 

major column show the number of adders, subtractors, multipliers, registers and 

multiplexes in the design. The sixth major column summarizes the area of the design. For 

each design, the area includes the active area (data path +controller) and the interconnect 

area. Finally, the last major column shows the area overhead of the phantom redundant 



data path design. Corresponding to each benchmark, there are two rows in the table –the 

basic and phantom redundant.  Except for HAMMING data path, all designs tolerate all 

1-unit faults. For the HAMMING, the basic design uses a single multiplier and hence a 

fault in it cannot be tolerated without a spare module. Enforcing the constraints based on 

the enhanced fault model resulted in the larger area overhead (15% -30% range). 

4.5 Discussion 

Phantom redundancy is applicable only when there are at least two functional units of 

each type. Performance degradation is due to two sources. Additional multiplexers used 

at the inputs and outputs of functional units used to create the backup pairs are the first 

source. The second source is the additional clock cycles used to perform the computation 

in the presence of a faulty unit.  Performance degradation is quite severe in small data 

paths that use a small number of functional units. There is a corresponding increase in the 

number of registers. Intermediate results in a gracefully degradable data path need to be 

stored longer before being consumed by the fault-free functional units. This increase in 

lifetime of the intermediate results in the computation translates into an increase in the 

number of registers.  

Pipelined functional units entail smaller performance degradation when compared to 

multi-cycle non-pipelined functional units. This is particularly true when deeply 

pipelined functional units are used. This is because pipeline units permit the initiation of 

operations at a much higher rate. Thus operations assigned to a failed unit can be re-

scheduled earlier clock cycles when compared to multi-cycle functional units. Benefit of 

deploying pipelined functional units is especially evident when operations of a type are 

clustered in the CDFG. 



Phantom redundancy can be used for defect tolerance in mature fabrication processes 

where the process yield is sufficiently high to make the area overhead of BISR 

unreasonable. In mature fabrication process the phantom redundancy technique provides 

a low cost technique for improving the yield of ICs by yielding partially good chips. In 

application scenarios where the targeted performance quality is not stringent, phantom 

redundancy is once again a good alternative. BISR does not entail performance 

degradation and may be preferable in designs where tight performance constraints on the 

system should be met. BISR is good for new process lines where stringent performance 

standards must be satisfied.  

The synthesis results showed that the interconnect area is about 50% of the total area. 

Phantom redundancy technique presented in this paper that is based on enhanced fault 

model can tolerate single functional unit failures, registers, multiplexers and 

interconnection lines. Graceful degradation in the presence of single functional unit 

failures is sufficient in almost all application scenarios. Further, these single-fault tolerant 

designs yield some amount of multiple-fault tolerance as well. Guaranteed 

reconfiguration around multiple functional unit failures can also be handled as an 

extension of the proposed technique. 

The controller overhead associated with phantom redundancy based graceful degradation 

is due to extra control signals to support execution of multiple backup schedules in the 

presence of faulty functional units. Notwithstanding this important source of controller 

overhead, the reasons for small control area overhead associated with phantom 

redundancy are three-fold (less than 5% of the total area overhead): 



1. In  data dominated designs, the data path tends to occupy far more area than the 

controller. So the impact of control on the overall area of the chip is small. 

2. In the hardware model that we use the control is distributed throughout the design 

and any increase in controller area is accommodated in the dead areas of the layout. 

3. While the complexity of the control logic increases, it does not correspond to the 

controller area in a one-to-one fashion. The controller area is a non-linear function of 

the schedule, allocation and mapping. Moreover, state assignment for the new 

controller results in a different encoding of the states and hence is a factor in keeping 

the control overheads low.  

If controller fault-tolerance is necessary, then existing techniques such as [12] or 

straightforward duplication can be used.  

5.0 Conclusions 

In this paper we presented a low-cost RT level technique for designing gracefully 

degradable data paths called phantom redundancy. Phantom redundancy adds extra 

interconnections to make the resulting data path degradable in the presence of any single 

functional unit failure. The proposed technique supports reconfiguration and should be 

used in conjunction with a concurrent error detection technique. We demonstrated the 

interdependence of the scheduling, allocation and reconfiguration and presented a genetic 

algorithm based global optimization approach for the synthesis of gracefully degradable 

data paths. Gracefully degradable data paths can be used for performance-based binning 

of designs at fabrication-time or graceful degradation in real-time. The effectiveness of 

phantom redundancy is demonstrated on several benchmark examples and compared it 

with the BISR approach.  
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